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Abstract

This paper presents minimax rates for den-
sity estimation when the data dimension d is
allowed to grow with the number of observa-
tions n rather than remaining fixed as in pre-
vious analyses. We prove a non-asymptotic
lower bound which gives the worst-case rate
over standard classes of smooth densities,
and we show that kernel density estimators
achieve this rate. We also give oracle choices
for the bandwidth and derive the fastest rate
d can grow with n to maintain estimation
consistency.

1 INTRODUCTION

A convincing argument for the use of sparsity or other
structural priors in machine learning and statistics of-
ten begins with a discussion of the “curse of dimension-
ality” (e.g. Donoho, 2000). Unmistakable evidence of
this curse is simply demonstrated in the fundamen-
tal scenario of non-parametric density estimation: the
best estimator has squared L2 error on the order of
n−4/(4+d) given n independent observations in d di-
mensions, a striking contrast with the parametric rate
d/n. If d is even moderately large (but fixed), accu-
rate estimation requires significantly more data than
if d were small. In fact, we will show that if d is al-
lowed to increase with n, estimation accuracy degrades
even more quickly than the non-parametric rate above
indicates.

At first, it may seem that allowing d to grow with n
is a rather strange scenario, but the use of “triangu-
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lar array” asymptotics is exceedingly common in the
theory of high-dimensional estimation. Theoretical re-
sults for the lasso, beginning at least with (Green-
shtein and Ritov, 2004), regularly adopt this frame-
work allowing the number of predictors to grow with
n. Bühlmann and van de Geer (2011) introduce the
idea at the very beginning of their foundational text,
and it has been widely adopted in the literature on reg-
ularized linear models (e.g. Belloni et al., 2011; Bickel
et al., 2009; Meinshausen, 2007; Nardi and Rinaldo,
2008; Ye and Zhang, 2010). Under this framework,
the marginal distribution of the predictors has sup-
port whose dimension is increasing with n. In the
scenario of high-dimensional regression, the dimen-
sion can increase very quickly (often on the order of
d = o(nα), α > 1) as long as most of these dimen-
sions are irrelevant for predicting the response. The
extension of these results for linear models to the non-
linear scenario has been studied mainly in the case
of generalized (sparse) additive models (Ravikumar
et al., 2008, 2009; Yuan and Zhou, 2015) which allow
for predictor specific non-linearities as long as the fi-
nal predictions are merely additive across dimensions.
Fully nonparametric regression without the additivity
assumption has been completely ignored outside of the
fixed-d framework, although it is a natural extension
of the work presented here.

Another motivation for appropriating the triangular
array framework in non-parametric density estima-
tion is the burgeoning literature on manifold estima-
tion (Genovese et al., 2012a,b; Talwalkar et al., 2008).
Given high-dimensional data, a natural assumption is
that the data is supported on a low-dimensional man-
ifold embedded in the high-dimensional space. While
estimating the manifold is possible, we may also wish
to estimate a density or a regression function sup-
ported on the manifold. Recent work has focused on
density estimation when the dimension of the mani-
fold is fixed and known (Asta, 2013; Bhattacharya and
Dunson, 2010; Hendriks, 1990; Pelletier, 2005), but the
extension of such results to manifolds of growing di-
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mension is missing. Such an extension presumes that
the minimax framework we present can be extended
to manifolds. As pointed out by a reviewer, the short
answer is yes. The lower bound we derive applies im-
mediately. The only modification we need relates to
our upper bound: the kernel should depend on the
metric given by the manifold rather than Euclidean
distance as we use here.

A specific application of our setting would be from
fMRI data. Given a sequence of 3D resting-state fMRI
scans from a patient, researchers seek to estimate the
dependence between cubic centimeter voxels (e.g. Bull-
more and Sporns, 2009). Each scan can contain on the
order of 30,000 voxels, while the number of scans for
one individual is smaller. It is too much to estimate
the dependence between all voxels, so the data are av-
eraged into a small number (∼20–200) of regions. To
estimate the dependence, standard methods assume
everything is multivariate Gaussian and estimate the
covariance or precision matrix. But the Gaussian as-
sumption cannot be tested without density estimates.
Using our results, we could estimate smooth densities.
As the number of scans grows, we would want to in-
crease the number of regions. Our work illustrates how
quickly the number of regions can grow.

The remainder of this section introduces the statis-
tical minimax framework, discusses the specific data
generating model we examine and details notation,
presents some background on the estimator we use
which achieves the minimax rate, and gives a short
overview of related literature. In Section 2, we give
our main results and discuss their implications, specif-
ically obtaining the fastest rate at which d can grow
with n to yield estimation consistency. Section 3 gives
the proof of our lower bound over all possible esti-
mators while the proof of the matching upper bound
for the kernel density estimator is given in Section 4.
Finally, we discuss these results in Section 5, provide
some related results for other loss functions, and sug-
gest avenues for future research.

1.1 The Minimax Framework

In order to evaluate the feasibility of density estima-
tion under the triangular array, we use the statistical
minimax framework. In our situation, this framework
begins with a specific class of possible densities we are
willing to consider and provides a lower bound on the
performance of the best possible estimator over this
class. With this bound in hand, we have now quan-
tified the difficulty of the problem. If we can then
find an estimator which achieves this bound (possibly
up to constants), then we can be confident that this
estimator performs nearly as well as possible for the
given class of densities. Thus, the minimax framework

reveals gaps between proposed estimators and the lim-
its of possible inference. Of course if the bounds fail
to match, then we won’t know whether they are too
loose, or the estimator is poor.

1.2 Model and Notation

We specify the following setting for density estima-
tion in a triangular array. Suppose for each n ≥ 1,

X
(n)
i ∈ Rd(n), i = 1, . . . , n are independent with com-

mon density f (n) in some class which we define below.
For notational convenience, we will generally suppress
the dependence on (n). To be clear, in specifying this
model, we do not assume a relationship for some se-
quence of densities {f (n)}∞n=1, but rather we seek to
understand the limits of estimation when there is a
correspondence between d(n) and n. Thus, we seek
non-asymptotic results which characterize this behav-
ior. We will also employ the following notation: given
vectors s, x ∈ Rd, let |s| =

∑
i si, s! =

∏
i si! and

xs = xs11 · · ·x
sd
d . Then define

Ds =
∂|s|

∂xs11 · · · ∂x
sd
d

.

Let bβc denote the largest integer strictly less than β.
Throughout, we will use a and A for positive constants
whose values may change depending on the context.

Even were d fixed at 1, it is clear that density estima-
tion is impossible were we to allow f to be arbitrary.1

For this reason, we will restrict the class of densities
we are willing to allow.

Definition 1 (Nikol’skii class). Let p ∈ [2,∞). The
isotropic Nikol’skii class Np(β,C) is the set of func-
tions f : Rd → R such that:
(i) f ≥ 0 a.e.
(ii)

∫
f = 1.

(iii) partial derivatives Dsf exist whenever |s| ≤ bβc
(iv)

[∫
(Dsf(x+ t)−Dsf(x))

p
dx
]1/p ≤ C ‖t‖β−|s|1 ,

for all t ∈ Rd.

This definition essentially characterizes the smooth-
ness of the densities in a natural way. It can be shown
easily that the Nikol’skii class generalizes Sobolev and
Hölder classes under similar conditions (see e.g. Tsy-
bakov, 2009, p. 13).

1.3 Parzen-Rosenblatt Kernel Estimator

Given a sample X1, . . . , Xn, the Parzen-Rosenblatt
kernel density estimator on Rd at a point x is given

1In the sense that, an adversary can choose a density
and give us a finite amount of data on which our estimators
will perform arbitrarily poorly.
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by

f̂h(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
.

We will consider only certain functions K.

Definition 2. We say that K : Rd → R is an isotropic
kernel of order β if K(u) = G(u1)G(u2) · · ·G(ud) for
G : R → R satisfying

∫
G = 1,

∫
|u|β |G(u)|du < ∞,

and
∫
ujG(u)du = 0, for 0 < j ≤ bβc.

For the standard case β = 2, the Epanechnikov kernel
G(u) = 0.75(1−u2)I(|u| ≤ 1) satisfies these conditions
and is often the default in software. The Gaussian
kernel, G(u) = (2π)−1/2e−u

2/2, is also a member of
this class. For β > 2, the kernel must take negative
values, possibly resulting in negative density estimates,
although, using the positive-part estimator eliminates
this pathology without affecting the results. Kernels
for such β can be constructed using an orthonormal
basis (see Tsybakov, 2009, p. 11).

The intuition for this estimator is that it can be seen
as a smooth generalization of the histogram density es-
timator which uses local information rather than fixed
bins. Thus, if we believe the density is smooth, using
such a smoothed out version is natural. Another way
to see this is to observe that the kernel estimator is
the convolution of K with the empirical density func-
tion fn, defined implicitly via

∫ x
−∞ fn(y)dy = Fn(x) =

1
n

∑
I(xi ≤ x). Using the empirical density itself is

an unbiased estimator of the true density (and it sat-
isfies the central limit theorem for fixed d), but by
adding bias through the kernel, we may be able to re-
duce variance, and achieve lower estimation risk for
densities which “match” the kernel in a certain way.

In this work, we have chosen, for simplicity, to use
isotropic kernels and the isotropic Nikol’skii class of
densities. Basically, densities f ∈ Np(β,C) have the
same degree of smoothness in all directions. The same
is true of the kernels which satisfy Definition 2. Allow-
ing anisotropic smoothness is a natural extension, al-
though the notation becomes complicated very quickly.
For the anisotropic case under fixed-d asymptotics, see
for example Goldenshluger and Lepski (2011).

1.4 Related Work

Density estimation in the minimax framework is a well-
studied problem with many meaningful contributions
over the last six decades, and we do not pretend to
give a complete overview here. Recent advances tend
to build on one of four frameworks: (1) the support
of f , (2) the smoothness of f , (3) whether the loss
is adapted to the nature of the smoothness, and (4)
whether the estimator can adapt to different degrees
of smoothness. For a comprehensive overview of these

and other concerns, an excellent resource is Golden-
shluger and Lepski (2014) which presents results for
adaptive estimators over classes of varying smooth-
ness when the loss is not necessarily adapted to the
smoothness. It also contextualizes and compares ex-
isting work. For previous results most similar to those
we present in terms of function classes and losses,
see Hasminskii and Ibragimov (1990). Other impor-
tant work is given in Devroye and Györfi (1985); Gold-
enshluger and Lepski (2011); Juditsky and Lambert-
Lacroix (2004); Kerkyacharian et al. (1996).

Unlike in the density estimation setting, there are
some related results in the information theory liter-
ature which endeavor to address the limits of estima-
tion under the triangular array. Essentially, this work
examines the estimation of the joint distribution of a
d-block of random variables observed in sequence from
an ergodic process supported on a finite set of points.
Marton and Shields (1994) show that if d grows like
log n, then these joint distributions can be estimated
consistently. An extension of these results to the case
of a Markov random field embedded in a higher dimen-
sion is given by Steif (1997). Our results are slightly
slower than these (see Corollary 5), but estimating
continuous densities rather than finitely supported dis-
tributions is more difficult.

2 MAIN RESULTS

Our main results give non-asymptotic rates for density
estimation under growing dimension. It generalizes
existing results in that, had d been fixed, we recover
the usual rate. Deriving the minimax rate for density
estimation requires two components: (1) finding the
risk of the best possible estimator for the hardest den-
sity in our class and (2) exhibiting an estimator which
achieves this risk. Our results are only rate minimax
in that the upper and lower bounds match in d and n,
but constants may be different.

We first present the lower bound. Our proof is given
in Section 3.

Theorem 3 (Lower bound for density estimation).
For any d ∈ Z+, β > 1, p ∈ [2,∞), choose n > n∗

with

n∗ = 64 ‖Γ0‖−2d
2 ×[

‖Γ0‖−(d+1)(2β+d)
p C4β+d

(
σ

ϕ(1/σ)

)d(d+β)
]1/β

.
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Then,

inf
f̂

sup
f∈Np(β,C)

Ef

[(
nβ

dd

) 1
2β+d ∥∥∥f − f̂∥∥∥

p

]

≥ c
(

1

8

)
C

2

κ−β

81/p
,

for c(v) a function only of v and κ := ϕ(1/σ)

σ‖Γ0‖22
. The

infimum is over all estimators f̂ .

This result says that there exists a triangular array
{f (n)} of densities in Np(β,C) so that the best risk we

can hope to achieve over all possible estimators f̂ is

Ef
[∥∥∥f − f̂∥∥∥

p

]
= O

((
dd

nβ

) 1
2β+d

)
.

The specific constant κ as well as the minimum n∗

are properties of the proof technique, so their forms
are not really relevant (except that κ is independent

of n and d). Specifically, ϕ(u) = (2π)−1/2e−u
2/2 is

the standard normal density, σ > 0 is the standard
deviation to be chosen, and Γ0 is a small perturbation
we make explicit below. One could make other choices
for the “worst case” density which result in different
values. We also note that here C is the same constant
in each equation (and in the remainder of the paper):
it quantifies the smoothness of the class Np(β,C).

Our second result shows that, for an oracle choice of
the bandwidth h, kernel density estimators can achieve
this rate. That is, for any density in Np(β,C), the risk
of the kernel density estimator is optimal. The proof
is given in Section 4.

Theorem 4 (Upper bound for kernels). Let f ∈
Np(β,C). Let K(u) be an isotropic kernel of order
` = bβc which satisfies

∫
K2(u)du <∞. Take d ∈ Z+,

p ∈ [2,∞). Finally, take h = A(d2n)−1/(2β+d) for
some constant A. Then, for n large enough,

sup
f∈Np(β,C)

Ef
[∥∥∥f̂h(x)− f(x)

∥∥∥
p

]
= O

((
dd

nβ

) 1
2β+d

)
.

Our results so far have been finite sample bounds
(which nonetheless depend on d and n). However, we
also wish to know how quickly d can increase so that
the estimation risk can still go to zero asymptotically
(estimation consistency). Clearly, to have any hope
that kernel density estimators are consistent, d must
increase quite slowly with n.

Corollary 5. If d = o
(

β logn
W (β logn)

)
, then

sup
f∈Np(β,C)

Ef
[∥∥∥f̂h(x)− f(x)

∥∥∥
p

]
= o (1) .

Here W is the Lambert W function, implicitly defined
as the inverse of u 7→ u exp(u). For n large, one
can show using a series expansion that W (log n) =
log log n − log log log n + o(1). So essentially, we re-
quire d to grow just slightly slower than log n, the
information theoretic rate for estimating finite distri-
butions with a sample from an ergodic process (see
Section 1.4).

While we have stated both main theorems in terms of
expectations, analogous high-probability bounds can
be derived similarly without extra effort.

3 LOWER BOUND FOR DENSITY
ESTIMATION

The technique we use for finding the lower bound is
rather standard. The idea is to convert the problem of
density estimation into one of hypothesis testing. This
proceeds by first noting that the probability that the
error exceeds a constant is a lower bound for the risk.
We then further reduce this lower bound by searching
over only a finite class rather than all possible den-
sities. Finally, we ensure that there are sufficiently
many members in this class which are well-separated
from each other but difficult to distinguish from the
true density. Relative to previous techniques for min-
imax lower bounds for density estimation, the main
difference in our proof is that we must choose different
members of our finite class such that they have the
right dependence on d. Our construction will make
use of the Kullback-Leibler divergence.

Definition 6 (KL divergence). The Kullback-Leibler
divergence between two probability measures P and P ′

is

KL(P, P ′) =

{∫
dP log dP

dP ′ P � P ′

∞ else.

If both P and P ′ have Radon-Nikodym derivatives
with respect to the same dominating measure µ, then
we can replace distributions with densities and inte-
grate with respect to µ. As long as the KL divergence
between the true density and the alternatives is small
on average, it will be difficult to discriminate between
them. Therefore, the probability of falsely rejecting
the true density will be large. The following lemma
makes the process explicit.

Lemma 7 (Tsybakov 2009). Let L : R+ → R+ which
is monotone increasing with L(0) = 0 and L 6≡ 0, and
let A > 0 such that L(A) > 0.

1. Choose elements θ0, θ1, . . . , θM , M ≥ 1 in some
class Θ;

2. Show that ρ(θj , θk) ≥ 2τ > 0, ∀0 ≤ j < k ≤ M
for some semi-distance ρ;
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3. Show that Pθj � Pθ0 , ∀j = 1, . . . ,M and

1

M

M∑
j=1

KL(Pθj , Pθ0) ≤ α logM,

with 0 < α < 1/8.

Then for ψ = τ/A we have

inf
θ̂

sup
θ∈Θ

Eθ
[
L(ψ−1ρ(θ̂, θ))

]
≥ c(α)L(A),

where inf θ̂ denotes the infimum over all estimators and
c(α) > 0 is a constant depending only on α.

To use this result, we first choose a base density f0 and
M alternative densities in Np(β,C). We then show
that these densities are sufficiently well-separated from
each other in the Lp-norm, p ∈ [2,∞), that is we take
ρ(u, u′) = ρ(u−u′) = ‖u− u′‖p. Finally, we show that
the KL-divergence between the alternatives and f0 is
uniformly small, and therefore small on average. Our
proof will use L(u) = u, though, as discussed following
the proof, other choices of monotone increasing func-
tions (e.g. L(u) = u2) simply modify the conclusion
but not the proof.

In order to get the “right” rate, we need to choose
a base density and a series of small perturbations to
create a large collection of alternatives. Getting the
perturbations to be the right size and allow sufficiently
many of them is the main trick to derive tight bounds.
In our case, it is the choice Γ(u) (described below)
that has this effect. The multiplicative dependence on
d turns out to be the necessary deviation from existing
lower bounds. Determining that this is the appropri-
ate modification is an exercise in trial-and-error, and
even this seemingly minor one is enough to compel a
complete overhaul of the proof.

The densities. Define f0(x) = 1
σd

∏d
i=1 ϕ(xi/σ)

where ϕ(u) is the standard Gaussian density.

Let Γ0 : R→ R+ satisfy

(i) |Γ(`)
0 (u)− Γ

(`)
0 (u′)| ≤ |u− u′|β−`/2,

∀u, u′, ` ≤ bβc,
(ii) Γ0 ∈ C∞(R),

(iii) Γ0(u) > 0⇔ u ∈ (−1/2, 1/2).

There exist many functions satisfying these conditions:
e.g. Γ0(u) = a−1 d

du exp(−1/(1− 4u2))I(|u| < 1/2) for
some a > 0, since it is infinitely continuously differen-

tiable and
∥∥∥Γ

(s)
0

∥∥∥
∞

is decreasing in s.

Define Γ(u) = dC
∏d
i=1 Γ0(ui), and for any integer

m > 0, let

γm,j(x) = m−βΓ(mx− j), j ∈ {1, . . . ,m}d.

Note that γm,j(x) > 0 ⇔ ‖x‖∞ ≤ 1. Finally, take
fω(x) = f0(x) +

∑
j ω(j)γm,j(x) where for any j,

ω(j) ∈ {0, 1} so that ω = {ω(j)}j is a binary vector

in R(m−1)d .

Now, we show that f0, fω are densities in Np(β,C).
For f0, this is a density which is infinitely differen-

tiable, so we choose σ > 0 such that
∥∥∥f (s)

0 (x)
∥∥∥
p
≤ C/2.

We also have that for any j, the functions γm,j are
non-zero only on non-intersecting intervals of the form
(0, . . . , jim ±

1
2m , . . . , 0), so for any |s| < β,∥∥∥∥∥∥

∑
j

ω(j)
[
γ

(s)
m,j(x + t)− γ(s)

m,j(x)
]∥∥∥∥∥∥
p

≤ dCm−β+|s| sup
|z|<t

∥∥∥Γ
(s)
0 (x+ z)− Γ

(s)
0 (x)

∥∥∥d
p

≤ 2−ddCm−β+|s| sup
z∈[0,1]

|z|d(β−|s|) < C/2,

∀m > 0, so, fω is sufficiently smooth by the triangle
inequality. As long as fω is a density, we will have
fω ∈ Np(β,C). First,

∫
Γ0 = 0, so

∫
fω = 1. It

remains to show that fω ≥ 0. We have∥∥∥∥∥∥
∑
j

ω(j)γm,j

∥∥∥∥∥∥
∞

≤ m−β ‖Γ‖∞ ≤ dCm
−β ‖Γ0‖d∞ .

(1)
The smallest value taken by f0 on the inter-
val [−1, 1] where we are adding perturbations is
infu∈[−1,1] f0(u) = (ϕ(1/σ)/σ)d . So, it is sufficient
to require (1) to be smaller. Therefore, we require

m >

[
dC

(
σ ‖Γ0‖∞
ϕ(1/σ)

)d]1/β

.

Sufficient separation of alternatives. We have
for any fω, fω′ ,

‖fω − fω′‖p =

∥∥∥∥∥∥
∑
j

(ω(j)− ω′(j))γm,j

∥∥∥∥∥∥
p

= m−β−d/pH1/p(ω, ω′) ‖Γ‖p ,

where H is the Hamming distance between binary vec-
tors. We will use some of the fω as our collection of
M alternatives. But we need to know how many there
are in the collection that are far enough apart. The
following theorem tells us about the size of such a col-
lection.

Lemma 8 (Varshamov-Gilbert; Tsybakov 2009). Let
m ≥ 8. Then there is a subset D of densities fω such
that for all ω, ω′ ∈ D, H(ω, ω′) ≥ md/8 and |D| ≥
exp{md/8}.
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We now restrict our collection of densities to be only
those corresponding to the set D. Then,

m−β−d/pH1/p(ω, ω′) ‖Γ‖p

≥ m−β−d/p
(
md

8

)1/p

dC ‖Γ0‖dp

= 8−1/pdm−βC ‖Γ0‖dp .

Constant likelihood ratio. We have that for dis-
tributions P0 with density f0 and Pω with density
fω ∈ D,

KL(Pω, P0)

= n

∫
Rd
dxfω(x) log

fω(x)

f0(x)

= n

∫
Rd
dx

 1

σd

d∏
i=1

ϕ(xi/σ) +
∑
j

ω(j)γm,j(x)


×

log

 1

σd

d∏
i=1

ϕ(xi/σ) +
∑
j

ω(j)γm,j(x)


− log

(
1

σd

d∏
i=1

ϕ(xi/σ)

)]

≤ n
∫
Rd
dx

 1

σd

d∏
i=1

ϕ(xi/σ) +
∑
j

ω(j)γm,j(x)


×

[ ∑
j ω(j)γm,j(x)

1
σd

∏d
i=1 ϕ(xi/σ)

]

=

∫
[0,1]d

dx

(∑
j ω(j)γm,j(x)

)2

1
σd

∏d
i=1 ϕ(xi/σ)

≤ n

(
σ ‖Γ0‖22
ϕ(1/σ)

)d
d2C2m−2β

Therefore, we must choose m so that for n, d, large
enough,

n

(
σ ‖Γ0‖22
ϕ(1/σ)

)d
C2m−2β ≤ α log |D|

with 0 < α < 1/8. This is equivalent to requiring

8

(
σ ‖Γ0‖22
ϕ(1/σ)

)d
d2C2m−2β−d ≤ 1

8n

which is equivalent to

m ≤

 1

(8C)2
(d2n)

(
σ ‖Γ0‖22
ϕ(1/σ)

)d 1
2β+d

.

Completing the result. Combining the results of
the previous two sections gives us the following lower
bound on density estimators in increasing dimensions.

Proof of Theorem 3. Choose an integer m =

‖Γ0‖(d+1)/β
p κ−1

d (d2n)1/(2β+d) where for convenience

we define κd := (64C2)1/2β+d
(
ϕ(1/σ)

σ‖Γ0‖22

)d/(2β+d) d→∞−−−→

κ = ϕ(1/σ)

σ‖Γ0‖22
. Note that κd < κ for all d so κ−1

d > κ−1.

Then, we have the following:

1. The functions f0, fω are densities in Np(β,C) as,

for n > n∗, m >

[
dC
(
σ‖Γ0‖∞
ϕ(1/σ)

)d]1/β

.

2. For all fω, fω′ ∈ D,

‖fω − fω′‖p ≥ 8−1/pdm−βC ‖Γ0‖dp

=
dC

81/p

(
‖Γ0‖(d+1)/β

p κ−1
d (d2n)1/(2β+d)

)−β
‖Γ0‖dp

=
2C

81/p
‖Γ0‖p κ

−β
d dd/(2β+d)n−β/(2β+d)

≥ 2C

2
8−1/pκ−βdd/(2β+d)n−β/(2β+d) =: 2Aψnd,

where A = C
2 8−1/pκ−β and ψnd =

(ddn−β)1/(2β+d).

3. 1
M

∑
ω∈DKL(Pω, P0) ≤ α log |D| since

‖Γ0‖(d+1)/β
p < 1 for all d, β by construction

of Γ0. Therefore,

m ≤

 1

8C2
(d2n)

(
σ ‖Γ0‖22
ϕ(1/σ)

)d 1
2β+d

.

Therefore, all the conditions of Lemma 7 are satisfied.

We note that Lemma 7 actually allows more gen-
eral lower bounds which are immediate consequences
of those presented here. In particular, we are free
to choose ρ to be other distances than Lp-norms,
and we may take powers of those norms or apply
other monotone-increasing functions L. For exam-
ple, this gives the standard lower bound under the
mean-squared error. We will not pursue these gener-
alities further here, however, as finding matching up-
per bounds is often more difficult, requiring specific
constructions for each combination L and ρ. Deriving
lower bounds for 1 ≤ p < 2 is also of interest, although
this requires more complicated proof techniques. The
case of p = ∞ is actually a fairly straightforward ex-
tension, and we discuss it briefly in Section 5.
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4 UPPER BOUND FOR KERNELS

To prove Theorem 4, we first use the triangle inequal-
ity to decompose the loss into a bias component and
a variance component:

E
[∥∥∥f̂h − f∥∥∥

p

]
≤ E

[∥∥∥f̂h − Ef̂h
∥∥∥
p

]
+
∥∥∥Ef̂h − f ]

∥∥∥
p

=: E

[(∫
|σ(x)|p

)1/p
]

+

(∫
|b(x)|p

)1/p

.

We now give two lemmas which bound these compo-
nents separately. For the bias, we will need a well
known preliminary result.

Lemma 9 (Minkowski’s integral inequality). Let
(Ω1,Σ1, µ1), (Ω2,Σ2, µ2) be measure spaces, and let
g : Ω1 × Ω2 → R. Then for p ∈ [1,∞][∫

Ω2

∣∣∣∣∫
Ω1

g(x1, x2)dµ1(x1)

∣∣∣∣p dµ2(x2)

]1/p

≤
∫

Ω1

[∫
Ω2

|g(x1, x2)|p dµ2(x2)

]1/p

dµ1(x1),

with appropriate modifications for p =∞.

Lemma 10. Let f ∈ Np(β,C) for p ∈ [1,∞) and let
K be an isotropic Kernel of order ` = bβc. Then for
all h > 0, d ≥ 1, and n ≥ 1,∫
|b(x)|pdx :=

∫ ∣∣∣Ef̂h(x)− f(x)
∣∣∣p dx = O

(
dphpβ

)
.

For the bias, the proof technique depends on the
smoothness of the density f as well as the smoothness
of the kernel. It also holds for any p ∈ [1,∞).

Proof. By Taylor’s theorem

f(x+ uh) = f(x) +
∑
|s|=1

ushDsf(x) + · · ·+

h`

(`− 1)!

∑
|s|=`

us
∫ 1

0

(1− τ)`−1Dsf(x+ τuh)dτ.

Since the kernel is of order `, lower order polynomials
in u are equal to 0, so

|b(x)|

=

∣∣∣∣∫ duΩ`(u) ×∑
|s|=`

us
∫ 1

0

dτ(1− τ)`−1Dsf(x+ τuh)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
duΩ`(u)

∑
|s|=`

us
∫ 1

0

dτ(1− τ)`−1∆(x, τ)

∣∣∣∣∣∣ ,

where ∆(x, τ) = Dsf(x+ τuh)−Dsf(x) and Ω`(u) =

K(u) h`

(`−1)! . Now applying Lemma 9 twice,∫
|b(x)|pdx

≤
∫
dx

(∫
du|Ω`(u)| ‖u‖`1 ×∫ 1

0

dτ(1− τ)`−1 |∆(x, τ)|
)p

≤
(∫

du|Ω`(u)| ‖u‖`1 ×[∫
dx

(∫ 1

0

dτ(1− τ)`−1 |∆(x, τ)|
)p]1/p)p

≤
(∫

du|Ω`(u)| ‖u‖`1 ×∫ 1

0

dτ(1− τ)`−1

(∫
dx∆(x, τ)p

)1/p)p
.

Because f ∈ Np(β,C), we have(∫
dx∆(x, τ)p

)1/p

≤ C(τh ‖u‖1)β−`.

So,∫
|b(x)|p

≤
(∫

du|Ω`(u)| ‖u‖`1 ×[∫ 1

0

dτ(1− τ)`−1C(τh ‖u‖1)β−`
])p

=

(∫
du|K(u)|

C ‖u‖β1 hβ

(`− 1)!

[∫ 1

0

dτ(1− τ)`−1τβ−`
])p

= AChpβ

(
d∑
i=1

∫
|ui|β |G(ui)|dui

)p
= O(dphpβ).

Next we find an upper bound on the variance compo-
nent. This result does not depend on the smoothness
of the density, only on properties of the kernel. It does
however depend strongly on p. Finally, note that the
result is non-random, so we can ignore the outer ex-
pectation.

Lemma 11. Let K : Rd → R be a function satisfying∫
K2(u)du < ∞. Then for any h > 0, n ≥ 1 and any

probability density f , and p ≥ 1,∫
|σ(x)|pdx =

∫ (
f̂h(x)− Ef̂h(x)

)p
dx

= O

((
1

nhd

)p/2)
.
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Proof. The proof is an easy generalization of Proposi-
tion 1 in (Masaon, 2009) and is omitted. For intuition,
we simply present the case of p = 2.∫
|σ(x)|2dx ≤ 1

nh2d
E
[
K2

(
Xi − x
h

)]
=

1

nh2d

∫ [∫
f(z)K2

(
z − x
h

)
dz

]
dx

=
1

nh2d

∫
f(z)

[∫
K2

(
z − x
h

)
dx

]
dz

=
1

nhd

∫
K2(u)du = O

(
1/nhd

)
.

With these results in hand, we can now prove Theo-
rem 4.

Proof of Theorem 4. Applying Lemma 10 and
Lemma 11 gives

sup
f∈Np(β,C)

E
[∥∥∥f̂h − f∥∥∥

p

]
= O

(
dhβ

)
+O

((
1

nhd

)1/2
)
.

Taking h = A(d2n)−
1

2β+d balances the terms and gives
the result.

5 DISCUSSION

In this paper we have developed the first results for
density estimation under triangular array asymptotics,
where both the number of observations n and the am-
bient dimension d are allowed to increase. Our results
generalize existing, fixed-d minimax results, in that,
were d fixed rather than increasing, we would recover
previously known minimax rates (both lower and up-
per bounds). Our results also show that kernel density
estimators are minimax optimal, which should come as
no surprise, since they are minimax optimal for fixed
d.

The results presented in this paper say essentially that,
for n large enough there exist constants 0 < a < A <
∞ independent of d, n such that for n large enough,

a

(
dd

nβ

) 1
2β+d

≤ inf
f̂

sup
f∈Np(β,C)

E
[∥∥∥f̂ − f∥∥∥

p

]

≤ sup
f∈Np(β,C)

E
[∥∥∥f̂h − f∥∥∥

p

]
≤ A

(
dd

nβ

) 1
2β+d

,

for p ∈ [2,∞) when f̂h is the kernel density estimator
with oracle h. This result generalizes immediately to

a result for E
[∥∥∥f̂ − f∥∥∥p

p

]
. With longer proofs, we can

generalize this result to E
[∥∥∥f̂ − f∥∥∥s

p

]
for some s 6= p

and to the case p ∈ [1, 2). Another extension is to the
case p = ∞ which picks up a factor of log n in the
numerator of the rate.

With the same techniques used here, we could also
give results for nonparametric regression under trian-
gular array asymptotics. Given pairs (yi, xi), kernel
regression g(x) can be written in terms of densities as
g(x) = E[Y | X = x] =

∫
yf(x, y)dy/f(x) for joint

and marginal densities f(x, y) and f(x) respectively.
So results for the Nadaraya-Watson kernel estimator

ĝh(x) =

∑n
i=1 yiK((x− xi)/h)∑n
i=1K((x− xi)/h)

can be obtained with similar proof techniques to those
presented here.

A related extension would consider the problem of con-
ditional density estimation directly. Using a similar
form,

q̂h(x, y) =

∑n
i=1K1((yi − y)/h)K2((x− xi)/h)∑n

i=1K2((x− xi)/h)

estimates the conditional density q(Y |X). If X ∈ Rd,
this estimator has been shown to converge at a rate
of O(n−β/(2β+1+d)) under appropriate smoothness as-
sumptions (see, e.g. Hall et al., 2004).

Our results also suggest some open questions. Wavelet
density estimators and projection estimators are
known to be rate-minimax for d fixed in that upper
bounds match those of kernels in n, though constants
may be larger or smaller. Whether these methods
also match for increasing d remains to be seen (the
class of densities examined is usually slightly differ-
ent). Histograms are also useful density estimators,
and for fixed d, they are minimax over Lipschitz den-
sities with a slower rate than that for kernels, again
because the class of allowable densities is different. Up-
per bounds under the triangular array with a similar
form to those presented here were shown in (McDonald
et al., 2011, 2015), but deriving minimax lower bounds
for this class remains an open problem. Extending our
results to the manifold setting (as mentioned in §1) is
the most obvious path toward fast rates for large d and
is left as future work.
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Bühlmann, P., and van de Geer, S. (2011), Statis-
tics for high-dimensional data: Methods, theory and
applications, Springer, New York.

Bullmore, E., and Sporns, O. (2009), “Complex
brain networks: graph theoretical analysis of struc-
tural and functional systems,” Nature Reviews Neu-
roscience, 10(3), 186–198.

Devroye, L., and Györfi, L. (1985), Nonparamet-
ric Density Estimation: The L1 View, John Wiley
& Sons, Inc., New York.

Donoho, D. L. (2000), “High-dimensional data anal-
ysis: The curses and blessings of dimensionality,”
in AMS Conference on Math Challenges of the 21st
Century.

Genovese, C., Perone-Pacifico, M.,
Verdinelli, I., and Wasserman, L. (2012a),
“Minimax manifold estimation,” Journal of Ma-
chine Learning Research, 13, 1263–1291.

Genovese, C. R., Perone-Pacifico, M.,
Verdinelli, I., and Wasserman, L. (2012b),
“Manifold estimation and singular deconvolution
under Hausdorff loss,” The Annals of Statistics,
40(2), 941–963.

Goldenshluger, A., and Lepski, O. (2011),
“Bandwidth selection in kernel density estimation:
Oracle inequalities and adaptive minimax optimal-
ity,” The Annals of Statistics, 39(3), 1608–1632.

Goldenshluger, A., and Lepski, O. (2014), “On
adaptive minimax density estimation on Rd,” Prob-
ability Theory and Related Fields, 159(3), 479–543.

Greenshtein, E., and Ritov, Y. (2004), “Persis-
tence in high-dimensional linear predictor selection

and the virtue of overparametrization,” Bernoulli,
10(6), 971–988.

Hall, P., Racine, J., and Li, Q. (2004), “Cross-
validation and the estimation of conditional proba-
bility densities,” Journal of the American Statistical
Association, 99(468), 1015–1026.

Hasminskii, R., and Ibragimov, I. (1990), “On
density estimation in the view of Kolmogorov’s ideas
in approximation theory,” The Annals of Statistics,
18(3), 999–1010.

Hendriks, H. (1990), “Nonparametric estimation of a
probability density on a riemannian manifold using
fourier expansions,” The Annals of Statistics, 18,
832–849.

Juditsky, A., and Lambert-Lacroix, S. (2004),
“On minimax density estimation on R,” Bernoulli,
10(2), 187–220.

Kerkyacharian, G., Picard, D., and Tri-
bouley, K. (1996), “Lp adaptive density estima-
tion,” Bernoulli, 2(3), 229–247.

Marton, K., and Shields, P. C. (1994), “Entropy
and the consistent estimation of joint distributions,”
Annals of Probability, 22, 960–977.

Masaon, D. M. (2009), “Risk bounds for kernel den-
sity estimators,” Journal of Mathematical Sciences,
163(3), 238–261.

McDonald, D. J., Shalizi, C. R., and Schervish,
M. (2011), “Estimating β-mixing coefficients,” in
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, eds.
G. Gordon, D. Dunson, and M. Dud́ık, vol. 15,
JMLR W&CP.

McDonald, D. J., Shalizi, C. R., and Schervish,
M. (2015), “Estimating beta-mixing coefficients via
histograms,” Electronic Journal of Statistics, 9,
2855–2883.

Meinshausen, N. (2007), “Relaxed lasso,” Computa-
tional Statistics & Data Analysis, 52(1), 374–393.

Nardi, Y., and Rinaldo, A. (2008), “On the
asymptotic properties of the group lasso estimator
for linear models,” Electronic Journal of Statistics,
2, 605–633.

Pelletier, B. (2005), “Kernel density estimation on
riemannian manifolds,” Statistics & Probability Let-
ters, 73(3), 297–304.

Ravikumar, P., Liu, H., Lafferty, J., and
Wasserman, L. (2008), “Spam: Sparse addi-
tive models,” in Advances in Neural Information
Processing Systems 20, eds. J. Platt, D. Koller,
Y. Singer, and S. Roweis, pp. 1201–1208, MIT Press,
Cambridge, MA.



Minimax density estimation for growing dimension

Ravikumar, P., Lafferty, J., Liu, H., and
Wasserman, L. (2009), “Sparse additive models,”
Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 71(5), 1009–1030.

Steif, J. E. (1997), “Consistent estimation of joint
distributions for sufficiently mixing random fields,”
Annals of Statistics, 25, 293–304.

Talwalkar, A., Kumar, S., and Rowley, H.
(2008), “Large-scale manifold learning,” in IEEE
Conference on Computer Vision and Pattern Recog-
nition, 2008, IEEE.

Tsybakov, A. (2009), Introduction to Nonparametric
Estimation, Springer Verlag.

Ye, F., and Zhang, C. (2010), “Rate minimaxity of
the lasso and dantzig selector for the `q loss in `r
balls,” The Journal of Machine Learning Research,
11, 3519–3540.

Yuan, M., and Zhou, D.-X. (2015), “Minimax opti-
mal rates of estimation in high dimensional additive
models: Universal phase transition,” .


	INTRODUCTION
	The Minimax Framework
	Model and Notation
	Parzen-Rosenblatt Kernel Estimator
	Related Work

	MAIN RESULTS
	LOWER BOUND FOR DENSITY ESTIMATION
	UPPER BOUND FOR KERNELS
	DISCUSSION

