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S1 Gaussian Process Regression

Gaussian Process regression (Rasmussen 2006) adopts a prior under which fpxp1qq, . . . , fpxpnqq follow multivariate
Gaussian distribution Npm

n

,K

n,n

q for any collection txpiqun
i“1

. The model is specified by a prior mean function
m : Rd Ñ R and positive-definite covariance function k : Rd ˆ Rd Ñ R which encodes our prior belief regarding
properties of the underlying relationship between X and Y (such as smoothness or periodicity). Here, the vector
m

n

P Rn denotes the evaluation of function m at each point txpiqun
i“1

, and K

n,n

denotes the matrix whose

i, j

th component is kpxpiq
, x

pjqq. Given test input points xp1q
˚ , . . . , x

pn˚q
˚ P Rd in addition to training data D

n

, we

additionally define: f˚ :“ rfpxp1q
˚ q, . . . , fpxpn˚q

˚ qs, y
n

“ ryp1q
, . . . , y

pnqs, matrix K

n,˚ with i, j

th entry kpxpiq
, x

pjq
˚ q

(where x

piq is the i

th training input), and matrix K˚,˚ which contains pairwise covariances between test inputs.

Assuming the noise " „ Np0,�2) is independently sampled for each observation, the posterior for f at the test
inputs, f˚ | D

n

, follows Npµ
n˚,⌃n˚q distribution with the following mean vector and covariance matrix:

µ

n˚ “ m˚ ` pK
n,n

` �

2

Iq´1py
n

´ m

n

q, ⌃

n˚ “ K˚,˚ ´ K˚,n

pK
n,n

` �

2

Iq´1

K

n,˚

Note that our intervention-optimization framework is not specific to this GP model, but can be combined with
any algorithm that learns a reasonable posterior for f . While employing a more powerful model should improve
the results of our approach, comparing various regressors is not our focus. Thus, all practical results of our
methodology are presented using only the standard GP regression model, under which the posterior distribution
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over f is given by the above expressions. In each application presented here, our GP uses the Automatic-
Relevance-Determination (ARD) covariance function, a popular choice for multi-dimensional data (Rasmussen
2006):

kpx, x1q “ �

2

0

¨ exp
«

´1

2

dÿ

s“1

ˆ
x

s

´ x

1
s

l

s

˙
2

�
(12)

The ARD kernel relies on length-scale hyperparameters l

1

, . . . , l

d

which determine how much f can depend
on each dimension of the feature-space. All hyperparameters of our GP regression model (covariance-kernel
parameters l

1

. . . , l

d

and �

0

(the output variance) as well as the variance of the noise �2) are empirically selected
via marginal-likelihood maximization (Rasmussen 2006). In each application, we employ the 0.05th posterior-
quantile (↵ “ 0.05) in our method to ensure that with high probability, the intervention it infers to be optimal
induces a nonnegative change in expected outcomes.

S2 Algorithmic Details

To find an optimal transformation of our regularized objective J
�

in (13), we employ the proximal gradient method
described in §4. When � “ 0 and there is no penalty, we instead use Sequential Least Squares Programming
(Kraft 1988). However, the intervention objective J

�

may be highly nonconcave. To deal with local optima in
acquisition functions, Bayesian optimization methods employ heuristics like combining the results of many local
optimizers or operating over a fine partitioning of the feature space (Shahriari et al. 2016, Lizotte 2008). We
instead propose a continuation technique that solves a series of optimization problems, each of which operates
on our objective under a smoothed posterior (and the amount of additional smoothing is gradually decreased
to zero). Excessive smoothing of the posterior is achieved by simply considering GP models whose kernels are
given overly large length-scale parameters. Each time the amount of smoothing is tapered, we initialize our local
optimizer using the solution found at the previously greater smoothing level. Intuitively, the highly smoothed
GP model is primarily influenced by the global structure in the data, and thus our optimization with respect to
the posterior of this model is far less susceptible to low-quality local maxima. Analysis of a similar homotopy
strategy under radial basis kernels has been conducted by Mobahi et al. (2012).

S2.1 Sparse Shift Intervention

Here, we provide an explanatory description of the Sparse Shift Algorithm from §4. To find the best k-sparse
population shift intervention, we resort to `

1

relaxation. As the `
1

-norm provides the closest convex relaxation to
the `

0

norm, this is a a commonly adopted strategy to avoid combinatorial search in feature selection (Bach et al.
2012). First, we compute the regularization path over di↵erent settings of the penalty � ° 0 for the following
regularized objective:

J

�

p�q :“ F

´1

G

n

p�qp↵q ´ �||�||
1

(13)

which is maximized over the feasible set C
�

:“ t� P Rd : x ` � P C
x

for all x P Rdu
(recall we write G

n

p�q :“ G

n

pT q when T pxq “ x ` �).

Subsequently, we identify the regularization penalty which produces a shift of desired cardinality and select our
intervention set I as the covariates which receive nonzero shift. Finally, we optimize the original unregularized
objective (� “ 0) with respect to only the selected covariates in I to remove bias induced by the regularizer.
Each inner maximization in both the Sparse Shift/Covariate-fixing algorithms is performed via the proximal
gradient methods combined with our continuation approach introduced in §S2.

S2.2 Sparse Covariate-fixing Intervention

Another goal is to identify the optimal covariate-fixing intervention which sets k of the covariates to particular
fixed constants uniformly across all individuals from the population. We employ the forward step-wise selection
algorithm described below, as the form of the optimization in this case is not amenable to `

1

-relaxation. Recall
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I Ñ t1, . . . , du denotes the subset of covariates which are intervened upon, and the covariate-fixing intervention
produces vector TI�z

pxq P Rd such that TI�z

pxq
s

“ x

s

if s R I, otherwise TI�z

pxq
s

“ z

s

which is a constant
chosen by the policy-maker. This same transformation is applied to each individual in the population, creating
a more homogeneous group which share the same value for the covariates in I. For a given I, the objective
function to find the best constants is:

J

unif

I
`
tz

s

u
sPI

˘
:“ F

´1

G

n

pTI�z

qp↵q (14)

with G

n

pTI�z

q “ 1

n

nÿ

i“1

“
fpzpiqq ´ fpxpiqq

‰
| D

n

where z

piq
s

“
#
x

piq if s R I
z

s

otherwise

which is maximized over the constraints: z
s

P C
s

Ñ R for s P I.

Sparse Covariate-fixing Algorithm: Identifies best k-sparse covariate-fixing intervention.

Input: Dataset D
n

“ tpxpiq
, y

piqqun
i“1

, Posterior f | D
n

Parameters: k P t1, . . . , du specifies the maximal number of covariates which may be set by the covariate-fixing
intervention, C

1

, . . . , C
d

Ñ R are sets of feasible settings for each covariate.

1: Initialize I – ?, U – t1, . . . , du, J

˚ – 0

2: While |I| † k:

3: Set J˚
s

– max
C
r

:rPIYtsu
J

unif

IYtsu
`
tz

r

u
rPIYtsu

˘
for each s P U

4: Find s

˚ – argmax
sPU

 
J

˚
s

(

5: If J

˚
s

˚ ° J

˚: J

˚ – J

˚
s

˚ , I – I Y ts˚u, U – Uzs˚

6: Else: break

7: Return: tz˚
s

u
sPI – argmaxC

s

:sPI J

unif

I
`
tz

s

u
sPI

˘

S3 Simulations

Over the simulated data summarized in Figure S1, we apply our basic personalized intervention method (↵ “
0.05) with purely local optimization (standard) and our continuation technique (smoothed), which significantly
improves results. For each of the 100 datasets, we randomly sampled a new point (from the same underlying
distribution) to receive a personalized intervention. The magnitude of each intervention is bounded by 1, except
for in data from the quadratic relationship. We also infer sparse interventions (with a cardinality constraint
of 2 for the linear and quadratic relationships, 1 for the product relationship). When Y “ X

1

¨ X
2

` ", the
optimal (constrained) intervention may drastically vary depending upon the individual’s covariate-values, and
our algorithm is able to correctly infer this behavior (Simulation C). Finally, we also apply a variant of our
method which entirely ignores uncertainty (↵ “ 0.5). While this approach is on average better for larger sample
sizes, highly harmful interventions are occasionally proposed, whereas our uncertainty-adverse method (↵ “ 0.05)
is much less prone to producing damaging interventions (preferring to abstain by returning T pxq “ x instead).
This is an invaluable characteristic since interventions generally require e↵ort and are only worth conducting
when they are likely to produce a substantial benefit.

Figure S2 displays the behavior of both the population shift intervention in the linear setting, and the population
covariate-fixing intervention under the quadratic relationship. The population intervention is notably safer than
the individually tailored variants, producing no negative changes in our experiments.
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(A) Linear: fpXq “ 0.3X
1

` 0.7X
2

(B) Quadratic: fpXq “ 1 ´ X

2

1

´ X

2

2

(C) Product: fpXq “ X

1

¨ X
2

Figure S1: The mean (solid) and 0.05th quantile (dashed) expected outcome change produced under personalized
interventions suggested by various methods, over 100 datasets of each sample size. Each dataset contains 10-
dimensional covariates, with X

i

„ Unifr´1, 1s, and Y is determined by the indicated relationships and additive
Gaussian noise (� “ 0.2). The black lines indicate the best possible expected outcome change (when the best
change depends on which individual received the intervention, the black solid/dashed lines indicates the mean
and 0.05th quantile over our 100 trials).

(A) Linear: fpXq “ 0.3X
1

` 0.7X
2

(B) Quadratic: Y “ 1 ´ X

2

1

´ X

2

2

Figure S2: The mean (solid) and 0.05th quantile (dashed) expected outcome change produced by our population
intervention method, over 100 datasets for each sample size (same setting as in Figure §S1). The black line
indicates the best possible expected outcome improvement.
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S3.1 Linear SEM Analysis

Here, we suppose that a desired transformation upon variable s P t1, . . . , du cannot be enacted exactly and the
Y which arises post-treatment is distributed according to dopX

s

“ ErX
s

s ` �q, where ErX
s

s is the mean of
the pre-treatment marginal distribution of the sth covariate. In this case, do-e↵ects can propagate to other
covariates which are descendants of s in the DAG because the values of descendant variables are redrawn from
the do-distribution which arises as a result of shifting ErX

s

s. Because all relationships are linear in our SEMs, the
actual expected outcome change resulting from a particular shift (resulting from the corresponding do-operation)
is easily obtained in closed form.

Our GP framework is applied to the data to infer an optimal 1-sparse shift population intervention (only in-
terventions on a single variable are allowed). The maximal allowed magnitude of the shift is constrained to
ensure the optimum is well-defined (to ˘1 times the standard deviation of each variable in the underlying SEM
distribution). An alternative approach to improve outcomes in contrast to our black-box approach is to apply
a causal inference method like LinGAM (Shimizu et al. 2006) to estimate the SEM from the data, and then
identify the optimal single-variable shift �˚

s

in the LinGAM-inferred SEM (since all inferred relationships are
also linear, the optimal single-variable shift will be either 0 or the lower/upper allowed shift and we simply search
over these possibilities). We compare our approach against LinGAM by evaluating the actual expected outcome
change produced by the shift �˚

s

proposed by each method (where the actual expected outcome change is found
by analytically performing the dopX

s

“ x

s

` �˚
s

q operation in the true underlying SEM) .

In our experiment, two underlying SEM models are considered which were used by Shimizu et al. (2006) to
demonstrate the utility of their LinGAM method (albeit with impractically large sample size = 10,000). SEM

A

is used to refer to the model depicted in Figure 3 of Shimizu et al. (2006), where we define Y as x6 (a sink node
in the causal DAG). SEM

B

denotes the underlying model of Figure 4 in the same paper (Y is defined as sink
node x7). The remainder of the variables in each SEM are adopted as our observed covariates X.

This experiment represents an application of our method in a highly misspecified setting. The true data-
generating mechanism di↵ers significantly from assumptions of our GP regressor (output noise is now fairly
non-Gaussian, the underlying relationships are all linear while we use an ARD kernel). Furthermore, an in-
tervention to transform a single covariate incurs a multitude of unintentional o↵-target e↵ects resulting from
the do-e↵ects propagating to downstream covariates in the SEM, whereas our method believes only the chosen
covariate is changed. In contrast, this data exactly follows the special assumptions required by LinGAM, and
we properly account for inferred downstream do-operation e↵ects when identifying the best inferred interven-
tion under LinGAM. The only disadvantage of the LinGAM method is that it does not know the direction of
the causal relationship X Ñ Y (although we found it always estimated this direction correctly except on rare
occasions with tiny sample sizes of n “ 20).

Since LinGAM only estimates linear relations, the best inferred shift-intervention found by this approach will
always be 0 or the minimal/maximal shift allowed for a particular covariate. Searching over these three values
for each covariate ensures the actual optimal shift will be recovered if the LinGAM SEM-estimate were correct.
However, under our approach, identifying the optimal population shift-intervention requires solving an optimiza-
tion problem. Even if the GP regression posterior were to exactly reflect the true data-generating mechanism,
our approach might get stuck in a suboptimal local maximum or avoid the minimal/maximal allowed shift due
to too much uncertainty about f in the resulting region of feature-space. In practice, these potential di�culties
do not pose much of an issue for our approach.

S4 Gene Knockout Interventions

The data set used for this analysis contains gene expression levels for a set of wild type (ie. ‘observational’)
samples, D

obs

pn “ 161q, as well as for a set of ‘interventional’ samples, D
int

, in which each individual gene was
serially knocked out. In our analysis, we search for potential interventions for a↵ecting the expression of a desired
target gene by training our GP regressor on D

obs

and determining which knockout produces the best value of
our empirical covariate-fixing population intervention objective (for down-regulating the target). Subsequently,
we use D

int

to evaluate the actual e↵ectiveness of proposed interventions in the knockout experiments. We only
search for interventions present in D

int

(single gene knockouts) rather than optimizing to infer optimal covariate
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transformations.

As candidate genes for this analysis we used only the 700 genes that Kemmeren et al. (2014) classified as
responsive mutants (at least four transcripts show robust changes in response to the knockout). Furthermore,
we omitted genes whose expression over the 161 observational samples had standard deviation † 0.1. Out of the
transcription factors present in the remaining set of genes, we defined the top 10 factors as our feature set X,
after ranking the transcription factors by the di↵erence between their expression when they were knocked out in
the interventional data and their 0.1th quantile expression level in the observational data. This was to ensure that
our model would be trained on data that at least resembled the experimental data D

int

. The set of genes to down-
regulate was simply chosen to be those classified by Kemmeren et al. (2014) as small molecule metabolism genes
that met the minimum standard deviation requirement in their observational expression marginal distribution.
The resulting set was 16 target genes, and the (negative) expression of each of was treated as an outcome Y in
our analyses.

Each method evaluated in this analysis was to propose an intervention (single gene knockout) to down-regulate
the expression of each target gene (separately). Once a gene to knock out was proposed, this intervention
was evaluated by comparing the resulting expression of the target when the proposed knockout was actually
performed in the experimental data D

int

. This expression level could then be compared to the ‘optimal’ choice
of gene from X to intervene upon (the gene in X whose knockout produced the largest down-regulation of the
target in D

int

).

We compared our approach against two methods popularly used to draw conclusions about a↵ecting outcomes in
the sciences. First, we applied a multivariate regression analysis in which a linear regression model was fit to the
observations of pX,Y q in D

obs

. The best gene to knockout was inferred on the basis of the regression coe�cients
and expression values (if no beneficial regression coe�cient was found significant at the 0.05 level under the
standard t-test, then no intervention was proposed). Second, we performed a marginal analysis in which separate
univariate linear regression models were fit to pX

1

, Y q, . . . , pX
d

, Y q, and the best knockout was again inferred
on the basis of the regression coe�cients and expression values (again, no intervention was recommended if
there was no statistically significant beneficial regression coe�cient at the 0.05 level, after correcting for multiple
testing via the False Discovery Rate).

Figure 2 compares the results produced by these methods to the optimal intervention over X for down-regulating
each Y , as found in the experimental data D

int

. Of the 16 small molecule metabolism target genes tested, in
three cases our method proposed an intervention which was found to be optimal or near optimal in D

int

, while
in the remaining cases, the model uncertainty causes the method not to recommend any intervention (except for
one very minorly harmful intervention for target SAM3 ). On the other hand, neither form of linear regression
proposed e↵ective interventions for any target other than FKS1, and in some cases, the linear regressors proposed
counterproductive interventions that up-regulated the target. This highlights the importance of a model that
properly accounts uncertainty when evaluating potential interventions.

S5 Interventions to Improve Article Popularity

We demonstrate our personalized intervention methodology in a setting with rich nonlinear underlying relation-
ships. The data consist of 39,000 news articles published by Mashable around 2013-15 (Fernandes et al. 2015).
Each article is annotated with the number of shares it received in social networks (which we use as our outcome
variable after log-transform and rescaling). A multitude of features have been extracted from each article (eg.
word count, the category such as “tech” or “lifestyle”, keyword properties), many of which Fernandes et al.
(2015) produced using natural language processing algorithms (eg. subjectivity, polarity, alignment with topics
found by Latent Dirichlet Allocation). After removing many highly redundant covariates, we center and rescale
all variables to unit-variance (see Table S2 for a complete description of the 29 covariates used in this analysis).

We randomly partition the articles into 3 disjoint groups: a training set (5,000 articles on which scaling-factors
are computed and our GP regressor is trained), an improvement set (300 articles we find interventions for), and a
held-out set (over 34,000 articles used for evaluation). A large group is left out for validation to ensure there are
many near-neighbors for any given article, so we can reasonably estimate the true expected popularity given any
setting of the article-covariates. Subsequently, a basic GP regression model is fitted to the training set. As the
predictive power of our GP regressor did not measurably benefit from ARD feature-weighting, we simply use the
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squared exponential kernel. Over the held-out articles, the Pearson correlation between the observed popularity
and the GP (posterior mean) predictions is 0.35. Furthermore, there is a highly significant (p † 8 ¨10´41) positive
correlation of 0.07 between the model’s predictive variance and the actual squared errors of GP predictions over
this held-out set. Our model is thus able to make reasonable predictions of popularity based on the available
covariates, and its uncertainty estimates tend to be larger in areas of the feature-space where the posterior mean
lies further from actual popularity values.

In this analysis, we compare our personalized intervention methodology which rejects uncertainty (using ↵ “ 0.05)
with a variant of the this approach that ignores uncertainty (using the same objective function with ↵ “ 0.5).
Both methods share the same GP regressor, optimization procedure, and set of constraints. For the 300 articles in
the intervention set (not part of the training data) we allow intervening upon all covariates except for the article
category which presumably is fixed from an author’s perspective. All covariate-transformations are constrained
to lie within [-2,2] of the original (rescaled) covariate value, and we impose a sparsity constraint that at most 10
covariates can be intervened upon for a given article.

Unfortunately, no pre-and-post-intervention articles are available for us to ascertain a ground truth evaluation.
To crudely measure performance, we estimate the underlying expected popularity of a given covariate-setting
using benchmark popularity : the (weighted) average observed popularity amongst 100 nearest neighbors (in the
feature-space) from the set of held-out articles (with weights based on inverse Euclidean distance). Over our
improvement set, the Pearson correlation between articles’ observed popularity and benchmark popularity is 0.28
(highly significant: p § 2 ¨10´10). This approach thus appears to be, on average, a reasonable way to benchmark
performance (even though nearest-neighbor held-out articles can individually di↵er from the text of a particular
pre/post-intervention article despite sharing similar values of our 29 measured covariates).

Figure S3 depicts the results of our personalized intervention for each article in our intervention set. The
expected improvement produced by a particular intervention is estimated as the di↵erence between the benchmark
popularity of the post-intervention covariate-settings and the original covariate-settings of the article receiving
the personalized intervention. Table S1 summarizes these results. A paired-sample t-test suggests our method
is significantly superior on average (p † 2 ¨ 10´6).

Figure S3: Benchmark popularity
changes produced by the personalized
interventions for 300 articles suggested
by our method with ↵ “ 0.05 (Reject-
ing Uncertainty) vs. ↵ “ 0.5 (Ignor-
ing Uncertainty). The points (ie. arti-
cles) are colored according to the value
of our personalized intervention objec-
tive with ↵ “ 0.05. Using ↵ “ 0.05
outperforms ↵ “ 0.5 in this analysis
in 177/300 articles in the improvement
set.

Method Mean Median 0.05

th

Quantile Num. Negative

Rejecting Uncertainty 0.586 0.578 0.126 2

Ignoring Uncertainty 0.552 0.555 0.105 4

Table S1: Summary statistics for the benchmark popularity change produced by each method over the 300
articles of the intervention set. The last column counts the number of harmful interventions (with change † 0).
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To provide concrete examples, we present some articles of the Business and Entertainment categories (taken from
our improvement set). For this business article: http://mashable.com/2014/07/30/how-to-beat-the-heat/,
our method proposes shifting the following 10 covariates (see Table S2 for feature descriptions):

num hrefs: +2, num self hrefs: -1.25, average token length: -1.771, kw avg min: +1.71, kw avg avg:
+2, self reference min shares: +2, self reference max shares: +1.68, self reference avg sharess: +2,
global subjectivity: +1.57, global sentiment polarity: -2

For this entertainment article: http://mashable.com/2014/07/30/how-to-beat-the-heat/, our method pro-
poses shifting the following 10 covariates:

average token length: -1.55, kw avg min: + 1.63, kw avg avg: +2, self reference min shares: +2
self reference max shares: +1.85, self reference avg shares: +2.0, LDA 00: +1.63, LDA 01: -2, LDA 04: +0.82,
global subjectivity: +1.62

Indi↵erent to uncertainty, the method with ↵ “ 0.5 advocates shifting all these covariates by the ˘2 maximal
allowed amounts, which leads to a 0.04 worse improvement in benchmark popularity compared with the covariate-
changes specified above for this article.

Feature Description

n tokens title Number of words in the title

n tokens content Number of words in the content

n unique tokens Rate of unique words in the content

n non stop words Rate of non-stop words in the content

num hrefs Number of links

num self hrefs Number of links to other articles published by Mashable

average token length Average length of the words in the content

num keywords Number of keywords in the metadata

data channel is lifestyle Is the article category “Lifestyle”?

data channel is entertainment Is the article category “Entertainment”?

data channel is bus Is the article category “Business”?

data channel is socmed Is the article category “Social Media”?

data channel is tech Is the article category “Tech”?

data channel is world Is the article category “World”?

kw avg min Avg. shares of articles with the least popular keyword used for this article

kw avg max Avg. shares of articles with the most popular keyword used for this article

kw avg avg Avg. shares of the average-popularity keywords used for this article

self reference min shares Min. shares of referenced articles in Mashable

self reference max shares Max. shares of referenced articles in Mashable

self reference avg shares Avg. shares of referenced articles in Mashable

LDA 00 Closeness to first LDA topic

LDA 01 Closeness to second LDA topic

LDA 02 Closeness to third LDA topic

LDA 03 Closeness to fourth LDA topic

LDA 04 Closeness to fifth LDA topic

global subjectivity Subjectivity score of the text

global sentiment polarity Sentiment polarity of the text

title subjectivity Subjectivity score of title

title sentiment polarity Sentiment polarity of title

Table S2: The 29 covariates of each article (dimensions of X in this analysis). Features involving the share-counts
of other articles and LDA were based only on data known before the publication date.

http://mashable.com/2014/07/30/how-to-beat-the-heat/
http://mashable.com/2014/07/30/how-to-beat-the-heat/
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S6 Proofs and additional Theoretical Results

Notation and Definitions

All points x P Rd lie in convex and compact domain C Ä Rd.

C denotes constants whose value may change from line to line.

All occurrences of f are implicitly referring to f | D
n

.

µ

n

p¨q, �2

n

p¨q, and �

n

p¨, ¨q respectively denote the mean, variance, and covariance function of our posterior for
f | D

n

under the GP
`
0, kpx, x1q

˘
prior.

F

´1

Z

p↵q denotes the ↵

th quantile of random variable Z.

�´1p¨q denotes the Np0, 1q quantile function.

|| ¨ ||
k

denotes the norm of reproducing kernel Hilbert space H
k

.

B
�

pxq Ä Rd denotes the ball of radius � centered at x P C.
I Ñ t1, . . . , du represents the set of variables which are intervened upon in sparse settings.

papY q denotes the set of variables which are parents of Y in a causal directed acyclic graph (DAG) (Pearl 2000)

descpIq is the set of variables which are descendants of at least one variable in I according to the causal DAG.

A

C denotes the complement of set A.

The squared exponential kernel (with length-scale parameter l ° 0) is defined:

kpx, x1q “ exp
´

´ 1

2l2
||x ´ x

1||2
¯

The Matérn kernel (with another parameter ⌫ ° 0 controlling smoothness of sample paths) is defined:

kpx, x1q “ 21´⌫

�p⌫q r
⌫

B

⌫

prq where r “
?
2⌫

l

||x ´ x

1||, B
⌫

is a modified Bessel function

Random variables "p1q
, . . . , "

pnq form a martingale di↵erence sequence which is uniformly bounded by � if Er"piq |
"

pi´1q
, . . . , "

p1qs “ 0 and "

piq § � @i P N.

A function f is Lipshitz continuous with constant L if: |fpxq ´ fpx1q| § L|x ´ x

1| for every x, x

1 P C.
Suppose ⇢ ° 0 is expressed as ⇢ “ m ` ⌘ for nonnegative integer m and 0 † ⌘ § 1.
The Hölder space C

⇢r0, 1sd is the space of functions with existing partial derivatives of orders pk
1

, . . . , k

d

q for all
integers k

1

, . . . , k

d

• 0 satisfying k

1

` ¨ ¨ ¨ `k

d

§ m. Additionally, each function’s highest order partial derivative
must form a function h that satisfies: |hpxq ´ hpyq| § C|x ´ y|⌘ for any x, y.

Theorem 5 (van der Vaart & van Zanten (2011)). Under the assumptions of Theorem 1:

ED
n

ª ª

C
rfpxq ´ f

˚pxqs2p
X

pxqdx d⇧
n

pf | D
n

q § C ¨ 
f

˚ pnq

where  ´1

f

˚ pnq is defined as in §5. See van der Vaart & van Zanten (2011) for a detailed discussion about this
function.

Proof of Theorem 1

Proof. Recall G
x

pT q :“ fpT pxqq ´ fpxq | D
n

depends on f . We fix x

0

, T px
0

q P C and adapt the bound provided
by Theorem 5 to show our result. Let B

�

pxq Ä C denote the ball of radius 0 † � † 1

2

centered at x P C. We first
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establish the bound:
ª

C

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
p

X

pxq dx

•
ª

B
�

px0q

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
p

X

pxq dx `
ª

B
�

pT px0qq

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
p

X

pxq dx

•a ¨ VolpB
�

q
”

min
xPB

�

px0q

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
` min

xPB
�

pT px0qq

ˇ̌
fpxq ´ f

˚pxq
ˇ̌ı

•a ¨ VolpB
�

q ¨
”ˇ̌
ˇfpT px

0

qq ´ fpx
0

q ´
“
f

˚pT px
0

qq ´ f

˚px
0

q
‰ˇ̌
ˇ ´ 8�L

ı

•a ¨ VolpB
�

q ¨
”ˇ̌
ˇG

x0pT q ´ G

˚
x0

pT q
ˇ̌
ˇ ´ 8�L

ı
(15)

where VolpB
�

q “ Op�dq. Theorem 5 implies the following inequality (ignoring constant factors):

rC¨ 
f

˚ pnqs1{2

•
«
ED

n

ª ª

C
rfpxq ´ f

˚pxqs2p
X

pxq dx d⇧
n

pf | D
n

q
�
1{2

•ED
n

ª ª

C

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
p

X

pxq dx d⇧
n

pf | D
n

q by Jensen’s inequality

•a�

d ¨ ED
n

ª ˇ̌
G

x0pT q ´ G

˚
x0

pT q
ˇ̌
´ �L d⇧

n

pf | D
n

q via the bound from (15)

“ ´ aL�

d`1 ` a�

d ¨ ED
n

ª 8

0

Pr
´ˇ̌
G

x0pT q ´ G

˚
x0

pT q
ˇ̌

• r

¯
dr

“ ´ aL�

d`1 ` a�

d ¨ ED
n

ª
1

0

F

´1

|G
x0 pT q´G

x̊0 pT q|pr↵q dr↵

• ´ aL�

d`1 ` a�

d ¨ ED
n

ª
1

↵

F

´1

G

x0 pT qpr↵q ´ G

˚
x0

pT q dr↵

• ´ aL�

d`1 ` ap1 ´ ↵q�d ¨ ED
n

”
F

´1

G

x0 pT qp↵q ´ G

˚
x0

pT q
ı

(16)

We can similarly bound G

˚
x0

pT q ´ F

´1

G

x0 pT qp↵q:

´ aL�

d`1 ` a�

d ¨ ED
n

ª
1

0

F

´1

|G
x̊0 pT q´G

x0 pT q|pr↵q dr↵

• ´ aL�

d`1 ` a�

d ¨ ED
n

ª
↵

0

G

˚
x0

pT q ´ F

´1

G

x0 pT qpr↵q dr↵

• ´ aL�

d`1 ` a↵�

d ¨ ED
n

”
G

˚
x0

pT q ´ F

´1

G

x0 pT qp↵q
ı

(17)

Choosing � :“ r 
f

˚ pnqs 1
2pd`1q and combining (16) and (17) produces the desired result, since assuming ↵ † 0.5

implies ↵ † 1 ´ ↵.

Proof of Theorem 2

Proof. Combining the results of Lemmas 1 and 2 below, we obtain the desired upper bound through a
straightforward application of the triangle inequality. Note that we’ve simplified the bound using the identity
´ logp1 ´ ↵q † 1{↵ for ↵ † 0.5.
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Lemma 1. Under the assumptions of Theorem 2, for any x, T pxq P C:

ED
n

ˇ̌
ˇF´1

G

n

pT qp↵q ´ F

´1

G

X

pT qp↵q
ˇ̌
ˇ § C ¨

”´L

2

d

n

logp1 ´ ↵q
ı
1{2

Proof of Lemma 1. Define random variables Z
i

:“ fpT pxpiqq ´ fpxpiqq | D
n

for i “ 1, . . . , n.
Note that these variables all share the same expectation: E

X

rZs :“ E
X

rZ
i

s “ G

X

pT q and G

n

pT q “ 1

n

∞
n

i“1

Z

i

.

The Lipschitz continuity of f combined with the fact that C “ r0, 1sd implies: Z
i

P r´L

?
d, L

?
ds for all i. Thus,

Hoe↵ding’s inequality ensures:

Pr

˜ˇ̌
ˇ̌
ˇGn

pT q ´ G

X

pT q
ˇ̌
ˇ̌
ˇ • t

¸
§ 2 exp

˜
´nt

2

2L2

d

¸

ñ F

´1ˇ̌
G

n

pT q´G

X

pT q
ˇ̌p↵q § C ¨

”´L

2

d

n

logp1 ´ ↵q
ı
1{2

Because posteriors G
n

pT q, G
X

pT q follow a Gaussian distribution:

F

´1

G

n

pT qp↵q ´ F

´1

G

X

pT qp↵q § F

´1ˇ̌
G

n

pT q´G

X

pT q
ˇ̌p↵q

and F

´1

G

X

pT qp↵q ´ F

´1

G

n

pT qp↵q § F

´1ˇ̌
G

n

pT q´G

X

pT q
ˇ̌p↵q

Lemma 2. Under the assumptions of Theorem 2, for any x, T pxq P C:

ED
n

ˇ̌
ˇF´1

G

X

pT qp↵q ´ G

˚
X

pT q
ˇ̌
ˇ § C

↵

¨
´
L ` 1

a

¯
¨ r 

f

˚ pnqs1{r2pd`1qs

Proof of Lemma 2. A similar argument as the proof of Theorem 1 applies here. We again first bound:
ª

C

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
p

X

pxq dx

•a ¨ VolpB
�

q ¨
« ª

C

ˇ̌
fpxq ´ f

˚pxq
ˇ̌
p

X

pxq dx `
ª

C

ˇ̌
fpT pxqq ´ f

˚pT pxqq
ˇ̌
p

X

pxq dx ´ 8�L

�

•a ¨ VolpB
�

q ¨
«ˇ̌

ˇE
X

rfpxq ´ f

˚pxqs ` E
X

rfpT pxqq ´ f

˚pT pxqqs
ˇ̌
ˇ ´ 8�L

�

Following the same reasoning as in the proof of Theorem 1, we obtain (up to constant factors):

´aL�

d`1 ` a↵�

d ¨ ED
n

”
G

˚
X

pT q ´ F

´1

G

X

pT qp↵q
ı

§ rC ¨ 
f

˚ pnqs1{2

and we can use the same argument to similarly bound

ED
n

”
F

´1

G

X

pT qp↵q ´ G

˚
X

pT q
ı

Proof of Theorem 3

Here, we employ subscripts to index particular covariates of X. The notation ra
R

, a

S

s “ a P Rd is used to
denote a vector assembled from disjoint subsets of dimensions R,S Ñ t1, . . . , du. Regardless of the ordering of
these partitions in our notation, we assume they are correctly arranged in the assembled vector based on their
subscript-indices (ie. a “ ra

R

, a

S

s “ ra
S

, a

R

s).
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Proof.

E
dopXI“zIq

“
f

˚pxq
‰

“
ª
f

˚`
rxIC , zIs

˘
p

`
xIC | dopXI “ zIq

˘
dxIC

“
ª ª

f

˚`
rx

papY qzI , zIXpapY q, aICzpapY qs
˘

¨ p
`
xICzpapY q | x

papY qzI , dopXI “ zIq
˘

¨ p
`
x

papY qzI | dopXI “ zIq
˘
dxICzpapY q dx

papY qzI
where covariate-subset aICzpapY q can take arbitrary values since f

˚ is constant along covariates R papY q

“
ª
f

˚`
rx

papY qzI , zIXpapY q, aICzpapY qs
˘
p

`
x

papY qzI | dopXI “ zIq
˘
dx

papY qzI

“
ª
f

˚`
rx

papY qzI , zIXpapY q, aICzpapY qs
˘
p

`
x

papY qzI
˘
dx

papY qzI

since the marginal distribution over X
papY qzI equals the do-distribution by assumption (A7)

“
ª ª

f

˚`
rx

papY qzI , zIXpapY q, xICzpapY qs
˘
p

`
xICzpapY q | x

papY qzI
˘
p

`
x

papY qzI
˘
dxICzpapY q dx

papY qzI

“E
X

”
f

˚pTI�z

pxqq
ı

Proof of Theorem 4

Recall we defined:

I˚ :“ argmin
!

|I 1| s.t. D TI1�z

P argmax
TI�z

:|I|§k

E
X

“
f

˚pTI�z

pxqq ´ f

˚pxq
‰)

(18)

as the intervention set corresponding to the optimal sparse covariate-fixing transformation (taken to be the set
of minimal cardinality in cases with multiple maxima).

Proof. Since E
X

rf˚pTI�z

pxqqs does not change when z

j

:“ rTI�z

pxqs
j

is altered for any j R papY q, including
variables outside of the parent set in I does not improve this quantity. Thus, either papY q Ñ I˚, or I˚ Ä papY q.
The first case immediately implies (A7). When I˚ Ä papY q: our assumption that no variable in papY q is a
descendant of other parents implies the other parents must belong the complement of descpI˚q, since this is a
subset of desc

`
papY q

˘
.

Theorem 6 and Proof

Theorem 6. Suppose we adopt a GP
`
0, kpx, x1q

˘
prior and, in addition to the assumptions outlined in §5, the

following conditions hold: (A9) f˚ P H
k

pCq which is the RKHS induced by our covariance function k with norm
|| ¨ ||

k

(cf. Rasmussen (2006) §6.1), (A10) noise variables "

piq form a uniformly bounded martingale di↵erence
sequence "

piq § � for i “ 1, . . . , n.

Then, for any x, T pxq P C : F

´1

G

x

pT qp↵q § G

˚
x

pT q

with probability (over the noise) greater than 1 ´ Cpn ` 1q ¨ exp
ˆ

´r�´1p↵qs2 ´ 2||f˚||2
k

�

n

˙

In Theorem 6, �
n

:“ max
AÄC:|A|“n

1

2
log

ˇ̌
I ` �

´2

K

A

ˇ̌
is a kernel-dependent quantity (K

A

:“ rkpx, x1qs
x,x

1PA) which,

in the Gaussian setting, is the mutual information between f and observations of Y at the most informative
choice of n points. When the kernel satisfies kpx, x1q § 1, the following bounds are known (Srinivas et al.
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2010): �

n

“ Opd log nq for the linear kernel, �
n

“ Opplog nqd`1q for the squared exponential kernel, and �

n

“
Opndpd`1q{p2⌫`dpd`1qqplog nqq for the Matérn kernel with smoothness parameter ⌫.

Note that while f

˚ is not required to be drawn from our prior and " may be non-Gaussian, this result assumes
the kernel k and noise-level � are correctly set. Our proof relies on the following statement:

Theorem 7 (Srinivas et al. (2010)). Assume conditions (A9) - (A10), fix � P p0, 1q, and define:

�

n

:“ 2||f˚||2
k

` 300�
n

rlogpn{�qs3

Then: Pr
”
@x P C : |µ

n

pxq ´ f

˚pxq| §
a
�

n`1

�

n

pxq
ı

• 1 ´ �

Proof of Theorem 6. Fix x, T pxq P C, and define � :“ pn ` 1q ¨ exp
ˆ

´r�´1p↵qs2 ´ 2||f˚||2
k

300�
n

˙
.

In this case, ´
a
�

n`1

“ �´1p↵q (see definition in previous theorem).

Theorem 7 implies that with probability • 1 ´ �:
|µ

n

pxq ´ f

˚pxq| § ´�´1p↵q ¨ �
n

pxq and |µ
n

pT pxqq ´ f

˚pT pxqq| § ´�´1p↵q ¨ �
n

pT pxqq

Since our posterior is Gaussian:

F

´1

G

x

pT qp↵q “ µ

n

pT pxqq ´ µ

n

pxq ` �´1p↵q
„
�

2

n

pT pxqq ` �

2

n

pxq ´ 2�
n

px, T pxqq
⇢
1{2

Therefore:

f

˚pT pxqq ´ f

˚pxq ´ F

´1

G

x

pT qp↵q

“f

˚pT pxqq ´ µ

n

pT pxqq ` µ

n

pxq ´ f

˚pxq ´ �´1p↵q
„
�

2

n

pT pxqq ` �

2

n

pxq ´ 2�
n

px, T pxqq
⇢
1{2

§f

˚pT pxqq ´ µ

n

pT pxqq ` µ

n

pxq ´ f

˚pxq ´ �´1p↵q
„
�

2

n

pT pxqq ` �

2

n

pxq ` 2
a
�

2

n

pxq�2

n

pT pxqq
⇢
1{2

since we assume ↵ § 0.5 ñ �´1p↵q § 0, and
ˇ̌
�

n

px, T pxqq
ˇ̌

§
a
�

2

n

pxq�2

n

pT pxqq

“f

˚pT pxqq ´ µ

n

pT pxqq ` µ

n

pxq ´ f

˚pxq ´ �´1p↵q
„
�

n

pT pxqq ` �

n

pxq
⇢

“
“
f

˚pT pxqq ´ µ

n

pT pxqq ´ �´1p↵q�
n

pT pxqq
‰

`
“
µ

n

pxq ´ f

˚pxq ´ �´1p↵q�
n

pxq
‰

which is less than 0 with probability at most �.
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