
A Sub-Quadratic Exact Medoid Algorithm

SM-A On the difficulty of the medoid problem

We construct an example showing that no general purpose algorithm exists to solve the medoid problem in
o(N2). Consider an almost fully connected graph containing N = 2m + 1 nodes, where the graph is exactly m
edges short of being fully connected: one node has 2m edges and the others have 2m− 1 edges. The graph has
2m2 edges. With the shortest path metric, it is easy to see that the node with 2m edges is the medoid, hence the
medoid problem is as difficult as finding the node with 2m edges. But, supposing that the edges are provided as
an unsorted adjacency list, it is clearly an O(m2) task to determine which node has 2m edges as one must look
at all edges until a node with 2m edges is found. Thus determining the medoid is O(m2) which is O(N2).

SM-B KMEDS pseudocode

Alg. 2 presents the KMEDS algorithm of Park and Jun (2009), with the novel initialisation of KMEDS on line 1.
KMEDS is essentially lloyd, with medoids instead of means.

Algorithm 2 KMEDS for clustering data {x(1), . . . , x(N)} around K medoids

1: Set all distances D(i, j)← ‖x(i)− x(j)‖ and sums S(i)←
∑
j∈{1,...,N}D(i, j)

2: Initialise medoid indices as K indices minimising f(i) =
∑
j∈{1,...,N}D(i, j)/S(j)

3: while Some convergence criterion has not been met do
4: Assign each element to the cluster whose medoid is nearest to the element
5: Update cluster medoids according to assignments made above
6: end while

SM-C RAND, TOPRANK and TOPRANK2 pseudocode

We present pseudocode for the RAND, TOPRANK and TOPRANK2 algorithms of Okamoto et al. (2008), and discuss
the explicit and implicit constants.

SM-C.1 On the number of anchor elements in TOPRANK : the constant in Θ(N
2
3 (logN)

1
3)

Note that the number of anchor points used in TOPRANK does not affect the result that the medoid is w.h.p.

returned. However, Okamoto et al. (2008) show that by choosing the size of the anchor set to be q (logN)
1
3 for

any q, the run time is guaranteed to be Õ(N5/3). They do not suggest a specific q, the optimal q being dataset
dependant. We choose q = 1.

Consider Figure 3 in Section 5.1 for example, where q = 1. Had q be chosen to be less than 1, the line
ncomputed = N2/3 log1/3N to which TOPRANK runs parallel for large N would be shifted up or down by log q,
however the N at which the transition from ncomputed = N2/3 log1/3N to ncomputed = N2/3 log1/3N takes
place would also change.

SM-C.2 On the parameter α′ in TOPRANK and TOPRANK2

The threshold τ in (2) is proportional to the parameter α′. In Okamoto et al. (2008), it is stated that α′ should
be some value greater than 1. Note that the smaller α′ is, the lower the threshold is, and hence fewer the number
of computed points is, thus α′ = 1.00001 would be a fair choice. We use α′ = 1 in our experiments, and observe
that the correct medoid is returned in all experiments.

Personal correspondence with the authors of Okamoto et al. (2008) has brought into doubt the proof of the
result that the medoid is w.h.p. returned for any α′ where α′ > 1. In our most recent correspondence, the
authors suggest that the w.h.p. result can be proven with the more conservative bound of α′ >

√
1.5. Moreover,

we show in SM-D that α′ > 1 is good enough to return the medoid with probability N−(α′−1), a probability
which still tends to 0 as N grows large, but not a w.h.p. result. Please refer to SM-D for further details on our
correspondence with the authors.

James Newling, François Fleuret

SM-C.3 On the parameters specific to TOPRANK2

In addition to α′, TOPRANK2 requires two parameters to be set. The first is l0, the starting anchor set size, and
the second is q, the amount by which l should be incremented at each iteration. Okamoto et al. (2008) suggest
taking l0 to be the number of top ranked nodes required, which in our case would be l0 = k = 1. However, in
our experience this is too small as all nodes lie well within the threshold and thus when l increases there is no
change to number below threshold, which makes the algorithm break out of the search for the optimal l too early.
Indeed, l0 needs to be chosen so that at least some points have energies greater than the threshold, which in our
experiments is already quite large. We choose l0 =

√
N , as any value larger than N2/3 would make TOPRANK2

redundant to TOPRANK. The parameter q we take to be logN as suggested by Okamoto et al. (2008).

Algorithm 3 RAND for estimating energies of elements of set S (Eppstein and Wang, 2004).

I ← random uniform sample from {1, . . . , N}
// Compute all distances from anchor elements (I), using Dijkstra’s algorithm on graphs
for i ∈ I do

for j ∈ {1, . . . , N} do
d(i, j)← ‖x(i)− x(j)‖,

end for
end for
// Estimate energies as mean distances to anchor elements
for j ∈ {1, . . . , N} do
Ê(j)← N

|I|(N−1)

∑
i∈I d(i, j)

end for
return Ê

Algorithm 4 TOPRANK for obtaining top k ranked elements of S (Okamoto et al., 2008).

l← N
2
3 (logN)

1
3 // Okamoto et al. (2008) state that l should be Θ((logN)

1
3), the choice of 1 as the constant

is arbitrary (see comments in the text of Section SM-C.1).
Run RAND with uniform random I of size l to get Ê(i) for i ∈ {1, . . . , N}.
Sort Ê so that Ê[1] ≤ Ê[2] ≤ . . . ≤ Ê[N]
∆̂← 2 mini∈I maxj∈{1,...,N} ‖x(i)− x(j)‖ // where ‖x(i)− x(j)‖ computed in RAND

Q←
{
i ∈ {1, . . . , N} | Ê(i) ≤ Ê[k] + 2α′∆

√
log(n)
l

}
.

Compute exact energies of all elements in Q and return the element with the lowest energy.

SM-D On the proof that TOPRANK returns the medoid with high probability

Through correspondence with the authors of Okamoto et al. (2008), we have located a small problem in the
proof that the medoid is returned w.h.p. for α′ > 1, the problem lying in the second inequality of Lemma 1. To
arrive at this inequality, the authors have used the fact that for all i,

P(E(i) ≥ Ê(i) + f(l) ·∆) ≥ 1− 1

2N2
, (8)

which is a simple consequence of the Hoeffding inequality as shown in Eppstein and Wang (2004). Essentially (8)
says that, for a fixed node i, from which the mean distance to other nodes is E(i), if one uniformly samples l
distances to i and computes the mean Ê(i), the probability that Ê(i) is less than E(i) + f(l) is greater than
1− 1

2N2 .

The inequality (8) is true for a fixed node i. However, it no longer holds if i is selected to be the node with the
lowest Ê(i). To illustrate this, suppose that E(i) = 1 for all i, and compute Ê(i) for all i. Let Ê∗ = arg mini Ê(i).
Now, we have a strong prior on Ê∗ being significantly less than 1, and (8) no longer holds as a statement made
about Ê∗.

In personal correspondence, the authors show that the problem can be fixed by the use of an additional layer
of union bounding, with a correction to be published (if not already done so at time of writing). However, the

A Sub-Quadratic Exact Medoid Algorithm

Algorithm 5 TOPRANK2 for obtaining top k ranked elements of S (Okamoto et al., 2008).

// In Okamoto et al. (2008), it is suggested that l0 be taken as k, which in the case of the medoid problem is
1. We have experimented with several choices for l0, as discussed in the text.
l← l0
Run RAND with uniform random I of size l to get Ê(i) for i ∈ {1, . . . , N}.
∆̂← 2 mini∈I maxj∈{1,...,N} ‖x(i)− x(j)‖ // where ‖x(i)− x(j)‖ computed in RAND

Sort Ê so that Ê[1] ≤ Ê[2] ≤ . . . ≤ Ê[N]

Q←
{
i ∈ {1, . . . , N} | Ê(i) ≤ Ê[k] + 2α′∆

√
log(n)
l

}
.

g ← 1
while g is 1 do
p← |Q|
// The recommendation for q in Okamoto et al. (2008) is log(n), we follow the suggestion
Increment I with q new anchor points
Update Ê for all data according to new anchor points
l← |I|
∆̂← 2 mini∈I maxj∈{1,...,N} ‖x(i)− x(j)‖
Sort Ê so that Ê[1] ≤ Ê[2] ≤ . . . ≤ Ê[N]

Q←
{
i ∈ {1, . . . , N} | Ê(i) ≤ Ê[k] + 2α′∆

√
log(n)
l

}
p′ ← |Q|
if p− p′ < log (n) then
g ← 0

end if
end while
Compute exact energies of all elements in Q and return the element with the lowest energy

additional layer of union bound requires a more conservative constraint on α′, which is α′ > 2, although the
authors propose that the w.h.p. result can be proven with α′ >

√
1.5 for N sufficiently large. We now present

a small proof proving the w.h.p. result for α′ >
√

2 for N sufficiently large, with at the same time α′ > 1
guaranteeing that the medoid is returned with probability O(Nα′−1).

SM-D.1 That the medoid is returned with high probability holds for α′ >
√

2 and that with
vanishing probability it is returned for α′ > 1

Recall that we have N nodes with energies E(1), . . . , E(n). We wish to find the k lowest energy nodes (the
original setting of Okamoto et al. (2008)). From Hoeffding’s inequality we have,

P(|E(i)− Ê(i)| ≥ ε∆) ≤ 2 exp
(
−lε2

)
. (9)

Set the probability on the right hand side of 9 to be 2/N1+β , that is,

2 exp
(
−lε2

)
= 2/N1+β ,

which corresponds to

ε =

√(
1 + β

l

)
log (N) := f̃(l).

Clearly
√

1 + β corresponds to α′. With this notation we have,

P(|E(i)− Ê(i)| ≥ f̃(l)∆) ≤ 2

N1+β
. (10)

Applying the union bound to (10) we have,

P
(
¬
(
∧i∈{1,...,N}|E(i)− Ê(i)| ≤ f̃(l)∆

))
≤ 2

Nβ
. (11)

James Newling, François Fleuret

K = 10 K =
⌈√

N
⌉

K =
⌈
N
10

⌉
Dataset N d µu/µpark σu/µpark µu/µpark σu/µpark µu/µpark σu/µpark

gassensor 256 128 1.09 0.08 0.90 0.03 0.83 0.01
house16H 1927 17 1.01 0.02 0.97 0.01 0.93 0.01

S1 5000 2 1.05 0.05 0.75 0.01 0.32 0.01
S2 5000 2 1.04 0.07 0.68 0.01 0.34 0.00
S3 5000 2 1.03 0.05 0.76 0.01 0.35 0.00
S4 5000 2 1.02 0.03 0.75 0.01 0.41 0.01
A1 3000 2 0.82 0.03 0.43 0.01 0.19 0.00
A2 5250 2 0.98 0.03 0.47 0.01 0.25 0.00
A3 7500 2 0.96 0.02 0.42 0.02 0.22 0.00

thyroid 215 5 0.95 0.08 0.97 0.04 0.93 0.04
yeast 1484 8 1.00 0.02 0.96 0.02 0.91 0.02
wine 178 14 1.01 0.02 1.02 0.01 0.98 0.02

breast 699 9 0.79 0.03 0.77 0.02 0.68 0.02
spiral 312 3 1.03 0.03 0.99 0.02 0.82 0.03

Table 3: Comparing the initialisation scheme proposed in Park and Jun (2009) with random uniform initialisation
for the KMEDS algorithm. The final energy using the deterministic scheme proposed in Park and Jun (2009) is
µpark. The mean over 10 random uniform initialisations is µu, and the corresponding standard deviation is σu.
For small K (K = 10), the performances using the two schemes are comparable, while for larger K, it is clear
that uniform initialisation performs much better on the majority of datasets.

Recall that we wish to obtain the k nodes with lowest energy. Denote by r(j) the index of the node with the
j’th lowest energy, so that

E(r(1)) ≤ . . . ≤ E(r(j)) ≤ . . . ≤ E(r(N)).

Denote by r̂(j) the index of the node with the j’th lowest estimated energy, so that

Ê(r̂(1)) ≤ . . . ≤ Ê(r̂(j)) ≤ . . . ≤ Ê(r̂(N)).

Now assume that for all i, it is true that |E(i)− Ê(i)| ≤ f̃(l). Then consider, for j ≤ k,

Ê(r̂(k))− Ê(r(j)) =
(
Ê(r̂(k))− E(r(k))

)
︸ ︷︷ ︸

≥−f̃(l)∆

+
(
E(r(k))− E(r(j))

)
︸ ︷︷ ︸

≥0

+
(
E(r(j))− Ê(r(j))

)
︸ ︷︷ ︸

≥−f̃(l)∆

, (12)

≥ −2f̃(l)∆.

The first bound in (12) is obtained by considering the most extreme case possible under the assumption, which
is Ê(i) = a(E)− f̃(l) for all i. The second bound follows from j ≤ k, and the third bound follows directly from
the assumption. We thus have that, under the assumption,

Ê(r(j)) ≤ Ê(r̂(k)) + 2f̃(l)∆,

which says that all nodes of rank less than or equal to k have approximate energy less than Ê(r̂(k)) + 2f̃(l)∆.
As the assumption holds with probability greater than 1− 2/Nβ by (11), we are done. Take β = 1 if you want
the statement with high probability, that is

ε =

√
2 log(n)

l
,

but for any β > 0, which corresponds to α′ > 1, the probability of failing to return the k lowest energy nodes
tends to 0 as N grows.

SM-E On the initialisation of Park and Jun (2009)

In Table 3 we present the full results of the 48 experiments comparing the initialisation proposed in Park and
Jun (2009) with simple uniform initialisation. The 14 datasets are all available from https://cs.joensuu.fi/

sipu/datasets/.

A Sub-Quadratic Exact Medoid Algorithm

0.0 0.2 0.4 0.6 0.8 1.0 1.2
N 1e6

0.0

0.5

1.0

1.5

2.0

2.5
n
u
m

b
e
r

o
f

p
o
in

ts
 c

o
m

p
u
te

d 1e4

7.8
√
N

10.6
√
N

15.5
√
N

22.3
√
N

d=2
d=3
d=4
d=5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
N 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.21e4

3.7
√
N

5.0
√
N

7.1
√
N

11.2
√
N

Figure 4: Number of points computed on simulated data. Points are drawn from Bd(0, 1), for d ∈ {2, 3, 4, 5}.
On the left, points are drawn uniformly, while on the right, the density in Bd(0, (1/2)1/d) is 19× lower that
in Ad(0, (1/2)1/2, 1), where recall that Ad(x, r1, r2) denotes an annulus centred at x of inner radius r1 and
outer radius r2. We observe a near perfect fit of the number of computed points to ξ

√
N where the constant

ξ depends on the dimension and the distribution (left and right). The number of computed points increases
with dimension. The strong convexity constant of the distribution on the right is larger, corresponding to fewer
distance calculations as predicted by Theorem 3.2.

SM-F Scaling with α, N , and dimension d

We perform more experiments to provide further validation of Theorem 3.2. In particular, we check how the
number of computed elements scales with N , d and α. We generate data from a unit ball in various dimensions,
according to two density functions with different strong convexity constants α. The first density function is
uniform, so that the density everywhere in the ball is uniform. To sample from this distribution, we generate
two random variables, X1 ∼ Nd(0, 1) and X2 ∼ U(0, 1) and use

X3 = X1/‖X1‖ ·X
1
d
2 , (13)

as a sample from the unit ball Bd(0, 1) with uniform distribution. The second distribution we consider has a
higher density beyond radius (1/2)1/d. Specifically, within this radius the density is 19× lower than beyond this
radius. To sample from this distribution, we sample X3 according to (13), and then points lying within radius
(1/2)1/d are with probability 1/10 re-sampled uniformly beyond this radius.

The second distribution has a larger strong convexity constant α. To see this, note that the strong convexity
constant at the center of the ball depends only on the density of the ball on its surface, that is at radius 1, as can
be shown using an argument based on cancelling energies of internal points. As the density at the surface under
distribution 2 is approximately twice that of under distribution 1, the change in energy caused by a small shift
in the medoid is twice as large under distribution 2. Thus, according to Theorem 3.2, we expect the number of
computed points to be larger under distribution 1 than under distribution 2. This is what we observe, as shown
in Figure 4, where distribution 1 is on the left and distribution 2 is on the right.

In Figure 4 we observe a near perfect N1/2 scaling of number of computed points. Dashed curves are exact N1/2

relationships, while the coloured points are the observed number of computed points.

SM-G Proof of Theorem 3.2 (See page 5)

Theorem 3.2. Let S = {x(1), . . . , x(N)} be a set of N elements in Rd, drawn independently from probability
distribution function fX . Let the medoid of S be x(m∗), and let E(m∗) = E∗. Suppose that there exist strictly
positive constants ρ, δ0 and δ1 such that for any set size N with probability 1−O(1/N)

x ∈ Bd(x(m∗), ρ) =⇒ δ0 ≤ fX(x) ≤ δ1, (6)

James Newling, François Fleuret

where Bd(x, r) = {x′ ∈ Rd : ‖x′−x‖ ≤ r}. Let α > 0 be a constant (independent of N) such that with probability
1−O(1/N) all i ∈ {1, . . . , N} satisfy,

x(i) ∈ Bd(x(m∗), ρ) =⇒ (7)

E(i)− E∗ ≥ α‖x(i)− x(m∗)‖2.

Then, the expected number of elements computed by trimed is O
((
Vd[1]δ1 + d

(
4
α

)d)
N

1
2

)
, where Vd[1] =

π
d
2 /(Γ(d2 + 1)) is the volume of Bd(0, 1).

Proof. We show that the assumptions made in Th. 3.2 validate the assumptions required in Thm SM-G.1.
Firstly, if e(i) > ρ then e(i) ≥ αρ2e(i) > ρ, which follows from the convexity of the loss function and. Secondly,
the existance of β follows from continuity of the gradient of the distance, combined with the existence of δ1
(non-exploding).

Theorem SM-G.1 (Main Theorem Expanded). Let S = {x(1), . . . , x(N)} ⊂ Rd have medoid x(m∗) with min-
imum energy E(m∗) = E∗, where elements in S are drawn independently from probability distribution function
fX . Let e(i) = ‖x(i) − x(m∗)‖. Suppose that for fX there exist strictly positive constants α, β, ρ, δ0 and δ1
satisfying,

x ∈ Bd(x(m∗), ρ) =⇒ δ0 ≤ fX(x) ≤ δ1, (14)

where Bd(x, r) = {x′ ∈ Rd : ‖x′ − x‖ ≤ r}, and that for any set size N , w.h.p. all i ∈ {1, . . . , N} satisfy,

E(i)− E∗ ≥

{
αe(i)2 if e(i) ≤ ρ,
αρ2 if e(i) > ρ,

(15)

and,

E(i)− E∗ ≤ βe(i)2 if e(i) ≤ ρ. (16)

Then the expected number of elements computed, which is to say not eliminated on line 4 of trimed, is

O
((
Vd[1]δ1 + d

(
4
α

)d)
N

1
2

)
, where Vd[1] = π

d
2 /(Γ(d2 + 1)) is the volume of Bd(0, 1).

x(m∗)

E − E∗

Figure 5: A sum of uniformly distributed cones is approximately quadratic.

Proof. We first show that the expected number of computed elements in Bd(x(m∗), N−
1
2d) is O(Vd[1]δ1N

1
2).

When N is sufficiently large, fX(x) ≤ δ1 within Bd(x(m∗), N−
1
2d). The expected number of samples in

Bd(x(m∗), N−
1
2d) is thus upper bounded by δ1 multiplied by the volume of the ball. But the volume of a

ball of radius N−
1
2d in Rd is Vd[1]N−

1
2 .

In Lemma SM-G.2 we use a packing argument to show that the number of computed elements in the annulus

Ad(x(m∗), N−
1
2d ,∞) is O

(
d
(

4
α

)d
N

1
2

)
, but we there assume that the medoid index m∗ is the first element in

shuffle({1, . . . , N}) on line 3 of trimed and thus that the medoid energy is known from the first iteration
(Ecl = E∗). We now extend Lemma SM-G.2 to the case where the medoid is not the first element processed. We

do this by showing that w.h.p. an element with energy very close to E∗ has been computed after N−
1
2 iterations

of trimed, and thus that the bounds on numbers of computed elements obtained using the packing arguments
underlying Lemma SM-G.2 are all correct to within some small factor after N−

1
2 iterations.

A Sub-Quadratic Exact Medoid Algorithm

0.4 −ρ 0.0 ρ 0.4

‖x(i)− x(m∗)‖

αρ2

0.06

0.12

E
(i

)
−
E
∗

Figure 6: Illustrating the parameters α, β and ρ of Theorem 3.2. Here we draw N = 101 samples uniformly from
[−1, 1] and compute their energies, plotted here as the series of points. Theorem 3.2 states that their exists α,
β and ρ such that irrespective of N , all energies (points) will lie in the envelope (non-hatched region).

The probability of a sample lying within radius N−
2
3d of x(m∗) is Ω(δ0N

− 2
3), and so the probability that none

of the first N
1
2 samples lies within radius N−

2
3d is O((1 − δ0N−

2
3d)N

1
2) which is O(1

N). Thus w.h.p. after N
1
2

iterations of trimed, Ecl is within βN−
4
3d of E∗, which means that the radii of the balls used in the packing

argument are overestimated by at most a factor N−
1
3d . Thus w.h.p. the upper bounds obtained with the packing

argument are correct to within a factor 1 + N−
1
3 . The remaining O(1

N) cases do not affect the expectation, as
we know that no more than N elements can be computed.

Lemma SM-G.2 (Packing beyond the vanishing radius). If we assume (15) from Theorem 3.2 and that
the medoid index m∗ is the first element processed by trimed, then the number of elements computed in

Ad(x(m∗), N−
1
2d ,∞) is O

(
d
(

4
α

)d
N

1
2

)
.

Proof. Follows from Lemmas SM-G.3 and SM-G.4.

Lemma SM-G.3 (Packing from the vanishing radius N−
1
d to ρ). If we assume (15) from Theorem 3.2 and

that the medoid index m∗ is the first element processed in trimed, then the number of computed elements in

A(x(m∗), N−
1
2d , ρ) is O(d

(
4
α

)d
N

1
2).

Proof. According to Assumption 15, an element at radius r < ρ has surplus energy at least αr2. This means
that, assuming that the medoid has already been computed, an element computed at radius r will be surrounded
by an exclusion zone of radius αr2 in which no element will subsequently be computed. We will use this fact
to upper bound the number of computed elements in A(x(m∗), N−

1
2d , ρ), firstly by bounding the number in an

annulus of inner radius r and width αr2, that is the annulus Ad(x(m∗), r, r + αr2), and then summing over

concentric rings of this form which cover A(x(m∗), N−
1
2d , ρ). Recall that the number of computed elements in

Ad(x(m∗), r, r + αr2) is denoted by Nc(x(m∗), r, r + αr2).

James Newling, François Fleuret

We use Lemma SM-G.5 to bound Nc(x(m∗), r, r + αr2),

Nc(x(m∗), r, r + αr2) ≤ (d+ 1)2

(
4√
3

)d
αr2(r + αr2)d−1

(αr2)
d

≤ (d+ 1)2

(
4√
3

)d(
1 +

1

αr

)d−1

≤ (d+ 1)2

(
4√
3

)d(
max

(
2,

2

αr

))d−1

≤ (d+ 1)2

(
4√
3

)d(
max

(
2d−1,

(
2

αr

)d−1
))

≤ (d+ 1)2

(
4√
3

)d(
2d−1 +

(
2

αr

)d−1
)

≤ (d+ 1)2

(
8√
3

)d
+ (d+ 1)2

(
8√
3

)d(
1

αr

)d−1

Let r0 = N−
1
2d and ri+1 = ri + αr2

i , and let T be the smallest index i such that ri ≤ ρ. With this notation in
hand, we have

Nc(x(m∗), N−
1
2d , ρ) ≤

T∑
i=0

Nc(x(m∗), ri, αri + r2
i).

The summation on the right-hand side can be upper-bounded by an integral. Using that the difference between
ri and ri+1 is αr2

i , we need to divide terms in the sum by αr2
i when converting to an integral. Doing this, we

obtain,

Nc(x(m∗), N−
1
2d , ρ) ≤

∫ ρ+αρ2

N−
1
2d

Nc(x(m∗), r, αr2)dr

≤ const + (d+ 1)2

(
8√
3

)d(
1

α

)d ∫ ∞
N−

1
2d

r−(1+d)dr

≤ const + (d+ 1)

(
4

α

)d
N

1
2 .

This completes the proof, and provides the hidden constant of complexity as (d + 1)
(

4
α

)d
. Thus larger values

for α should result in fewer computed elements in the annulus Ad(x(m∗), r, r + αr2), which makes sense given
that large values of α imply larger surplus energies and thus larger elimination zones.

Lemma SM-G.4 (Packing beyond ρ). If we assume (15) from Theorem 3.2 and that the medoid index m∗ is
the first element processed by trimed, then the number of computed elements in Ad(x(m∗), ρ,∞) is less than
(1 + 4E∗/(αρ2))d.

Proof. Recall that we at assuming m∗ = 1, that is that the medoid is the first element processed in trimed. All
elements beyond radius 2E∗ are eliminated by type 1 eliminations (Figure 1), which provides the first inequality
below. Then, as the excess energy is at least ε = αρ2 for all elements beyond radius ρ of x(m∗), we apply
Lemma SM-G.8 with ε = αρ2/2 to obtain the second inequality below,

Nc(m(x), ρ,∞) ≤ Nc(m(x), ρ, 2E∗)

≤
(2E∗ + 1

2αρ
2)d

(1
2αρ

2)d

≤
(

1 +
4E∗

αρ2

)d
.

A Sub-Quadratic Exact Medoid Algorithm

Lemma SM-G.5 (Annulus packing). For 0 ≤ r and 0 < ε ≤ w. If

X ⊂ Ad(0, r, r + w),

where

∀x ∈ X ,Bd(x, ε) ∪ X = {x}, (17)

then,

|X | ≤ (d+ 1)
2

(
4√
3

)d
w (r + w)

d−1

εd
.

Proof. The condition (17) implies,

∀x, x′ ∈ X × X ,B
(
x,
ε

2

)
∪ B

(
x′,

ε

2

)
= ∅. (18)

Using that ε ∈ (0, w] and Lemma SM-G.6, one can show that for all x ∈ A(0, r, r + w),

volume
(
B
(
x,
ε

2

)
∩ A(0, r, r + w)

)
>

1

d+ 1

(
3

4

) d
2

Vd

[ε
2

]
(19)

Combining (18) with (19) we have,

volume

(⋃
x∈X
B
(
x,
ε

2

)
∩ A(0, r, r + w)

)
>
Vd [1]

d+ 1

(√
3

4

)d
|X |εd. (20)

Letting Sd [ε] denote the surface area of a B(0, ε), it is easy to see that

volume (A(0, r, r + w)) < Sd [1]w (r + w)
d−1

. (21)

Combining (20) with (21) we get,

Vd [1]

d+ 1

(√
3

4

)d
|X |εd < Sd [1]w (r + w)

d−1
.

which combined with the fact that

Sd [1]

Vd [1]
=

(
dVd

dr

Vd

)
r=1

= d,

provides us with,

|X | ≤ (d+ 1)
2

(
4√
3

)d
w (r + w)

d−1

εd
.

Lemma SM-G.6 (Volume of ball intersection). For x0, x1 ∈ Rd with ‖x0 − x1‖ = 1,

volume (Bd (x0, 1) ∩ Bd (x1, 1))

volume (Bd (x0, 1))
≥ 1

d+ 1

(
3

4

) d
2

.

James Newling, François Fleuret

Proof. Let Vd [r] denote the volume of Bd(0, r). It is easy to see that,

volume (Bd (x0, 1) ∩ Bd (x1, 1)) = 2

∫ 1
2

0

Vd−1

[√
x(2− x)

]
dx

≥ 2

∫ 1
2

0

Vd−1

[√
3

2
x

]
dx

≥ 2Vd−1 [1]

∫ 1
2

0

(
3

2
x

) d−1
2

dx

≥ 2Vd−1 [1]

(
3

2

) d−1
2
(

2

d+ 1

)(
1

2

) d+1
2

≥ Vd−1 [1]

(
3

2

) d−1
2
(

2

d+ 1

)(
1

2

) d−1
2

≥ Vd−1 [1]

(
3

4

) d−1
2
(

2

d+ 1

)
.

Using that
Vd−1 [1]

Vd [1]
>

1√
π

, we divide the intersection volume through by Vd [1] to obtain,

volume (Bd (x0, 1) ∩ Bd (x1, 1))

volume (Bd (x0, 1))
≥
(

3

4

) d−1
2
(

2√
π(d+ 1)

)
≥ 1

d+ 1

(
3

4

) d
2

Lemma SM-G.7 (Packing balls in a ball). The number of non-intersecting balls of radius ε which can be packed

into a ball of radius r in Rd is less than
(
r
ε

)d
Proof. The technique used here is a loose version of that used in proving Lemma SM-G.5. The volume of Bd(0, ε)
is a factor (r/ε)

d
smaller than that of Bd(0, r). As the balls of radius ε are non-overlapping, the volume of their

union is simply the sum of their volumes. The result follow from the fact that the union of the balls of radius ε
is contained within the ball of radius r.

Lemma SM-G.8 (Packing points in a ball). Given X ⊂ Bd(0, r) such that no two elements of X lie within a

distance of ε of each other, |X | <
(

2r+ε
ε

)d
.

Proof. As no two elements lie within distance ε of each other, balls of radius ε/2 centred at elements are non-
intersecting. As each of the balls of radius ε/2 centred at elements of X lies entirely within Bd(0, r + ε/2), we
can apply Lemma (SM-G.7), arriving at the result.

SM-H Pseudocode for trikmeds

In Alg. (6) we present trikmeds. It is decomposed into algorithms for initialisation (7), updating medoids (8),
assigning data to clusters (9) and updating bounds on the trimed derived bounds (10). Table 4 summarised all
of the variables used in trikmeds.

When there are no distance bounds, the location of the bottleneck in terms of distance calculations depends on
N/K2. If N/K � K, the bottleneck lies in updating medoids, which can be improved through the strategy
used in trimed. If N/K � K, the bottleneck lies in assigning elements to clusters, which is effectively handled
through the approach of Elkan (2003).

A Sub-Quadratic Exact Medoid Algorithm

Algorithm 6 trikmeds

initialise()
while not converged do
update-medoids()
assign-to-clusters()
update-sum-bounds()

end while

Algorithm 7 initialise

// Initialise medoid indices, uniform random sample without replacement (or otherwise)
{m(1), . . . ,m(K)} ← uniform-no-replacement({1, . . . , N})
for k = 1 : K do

// Initialise medoid and set cluster count to zero
c(k)← x(m(k))
v(k)← 0
// Set sum of in-cluster distances to medoid to zero
s(k)← 0

end for
for i = 1 : N do

for k = 1 : K do
// Tightly initialise lower bounds on data-to-medoid distances
lc(i, k)← ‖x(i)− c(k)‖

end for
// Set assignments and distances to nearest (assigned) medoid
a(i)← arg mink∈{1,...,K} lc(i, k)
d(i)← lc(i, a(i))
// Update cluster count
v(a(i))← v(a(i)) + 1
// Update sum of distances to medoid
s(a(i))← s(a(i)) + d(i)
// Initialise lower bound on sum of in-cluster distances to x(i) to zero
ls(i)← 0

end for
V (0)← 0
for k = 1 : K do

// Set cumulative cluster count
V (k)← V (k − 1) + v(k)
// Initialise lower bound on in-cluster sum of distances to be tight for medoids
ls(m(k))← s(k)

end for
// Make clusters contiguous
contiguate()

James Newling, François Fleuret

Algorithm 8 update-medoids

for k = 1 : K do
for i = V (k − 1) : V (k)− 1 do

// If the bound test cannot exclude i as m(k)
if ls(i) < s(k) then

// Make ls(i) tight by computing and cumulating all in-cluster distances to x(i),
ls(i)← 0
for i′ = V (k − 1) : V (k)− 1 do
d̃(i′)← ‖x(i)− x(i′)‖
ls(i)← ls(i) + d̃(i′)

end for
// Re-perform the test for i as candidate for m(k), now with exact sums. If i is the new best candidate,
update some cluster information
if ls(i) < s(k) then
s(k)← ls(i)
m(k)← i
for i′ = V (k − 1) : V (k)− 1 do
d(i′)← ‖x(i)− x(i′)‖

end for
end if
// Use computed distances to i to improve lower bounds on sums for all samples in cluster k (see Figure
X)
for i′ = V (k − 1) : V (k)− 1 do
ls(i
′)← max (ls(i

′), |d̃(i′)v(k)− ls(i)|)
end for

end if
end for
// If the medoid of cluster k has changed, update cluster information
if m(k) 6= V (k − 1) then
p(k)← ‖c(k)− x(m(k))‖
c(k)← x(m(k))

end if
end for

A Sub-Quadratic Exact Medoid Algorithm

Algorithm 9 assign-to-clusters

// Reset variables monitoring cluster fluxes,
for k = 1 : K do

// the number of arrivals to cluster k,
∆n−in(k)← 0
// the number of departures from cluster k,
∆n−out(k)← 0
// the sum of distances to medoid k of samples which leave cluster k
∆s−out(k)← 0
// the sum of distances to medoid k of samples which arrive in cluster k
∆s−in(k)← 0

end for
for i = 1 : N do

// Update lower bounds on distances to medoids based on distances moved by medoids
for k = 1 : K do
l(i, k) = l(i, k)− p(k)

end for
// Use the exact distance of current assignment to keep bound tight (might save future calcs)
l(i, a(i)) = d(i)
// Record current assignment and distance
aold = a(i)
dold = d(i)
// Determine nearest medoid, using bounds to eliminate distance calculations
for k = 1 : K do

if l(i, k) < d(i) then
l(i, k)← ‖x(i)− c(k)‖
if l(i, k) < d(i) then
a(i) = k
d(i) = l(i, k)

end if
end if

end for
// If the assignment has changed, update statistics
if aold 6= a(i) then
v(aold) = v(aold)− 1
v(a(i)) = v(a(i)) + 1
ls(i) = 0
∆n−in(a(i)) = ∆n−in(a(i)) + 1
∆n−out(aold) = ∆n−out(aold) + 1
∆s−in(a(i)) = ∆s−in(a(i)) + d(i)
∆s−out(aold) = ∆s−out(aold) + dold

end if
end for
// Update cumulative cluster counts
for k = 1 : K do
V (k)← V (k − 1) + v(k)

end for
contiguate()

James Newling, François Fleuret

Table 4: Table Of Notation For trikmeds

N : number of training samples
i : index of a sample, i ∈ {1, . . . , N}

x(i) : sample i
K : number of clusters
k : index of a cluster, k ∈ {1, . . . ,K}

m(k) : index of current medoid of cluster k, m(k) ∈ {1, . . . , N}
c(k) : current medoid of cluster k, that is c(k) = x(m(k))
n1(i) : cluster index of centroid nearest to x(i)
a(i) : cluster to which x(i) is currently assigned
d(i) : distance from x(i) to c(a(i))
v(k) : number of samples assigned to cluster k
V (k) : number of samples assigned to a cluster of index less than k + 1

lc(i, k) : lowerbound on distance from x(i) to m(k)
ls(i) : lowerbound on

∑
i′:a(i′)=a(i) ‖x(i′)− x(i)‖

p(k) : distance moved (teleported) by m(k) in last update
s(k) : sum of distances of samples in cluster k to medoid k

Algorithm 10 update-sum-bounds

for k = 1 : K do
// Obtain absolute and net fluxes of energy and count, for cluster k
J abss (k) = ∆s−in(k) + ∆s−out(k)
J nets (k) = ∆s−in(k)−∆s−out(k)
J absn (k) = ∆n−in(k) + ∆n−out(k)
J netn (k) = ∆n−in(k)−∆n−out(k)
for i = V (k − 1) : V (k)− 1 do

// Update the lower bound on the sum of distances
ls(i)← ls(i)−min(J abss (k)− J netn (k)d(i),J absn (k)d(i)− J nets (k))

end for
end for

SM-I Datasets

• Birch1, Birch2 : Synthetic 2-D datasets available from https://cs.joensuu.fi/sipu/datasets/

• Europe : Border map of Europe available from https://cs.joensuu.fi/sipu/datasets/

• U-Sensor Net : Undirected 2-D graph data. Points drawn uniformly from unit square, with an undirected
edge connecting points when the distance between them is less than 1.25

√
N

• D-Sensor Net : Directed 2-D graph data. Points drawn uniformly from unit square, with directed edge
connecting points when the distance between them is less than 1.45

√
N , direction chosen at random.

• Europe rail : The European rail network, the shapefile is available at http://www.mapcruzin.com/

free-europe-arcgis-maps-shapefiles.htm. We extracted edges from the shapefile using networkx avail-
able at https://networkx.github.io/.

Algorithm 11 contiguate

// This function performs an in place rearrangement over of variables a, d, l, x and m
// The permutation applied to a, d, l and x has as result a sorting by cluster,
// a(i) = k if i ∈ {V (k − 1), V (k)} for k ∈ {1, . . . ,K}
// and moreover that the first element of each cluster is the medoid,
// m(k) = V (k − 1) for k ∈ {1, . . . ,K}

A Sub-Quadratic Exact Medoid Algorithm

• Pennsylvania road The road network of Pennsylvania, the edge list is available directly from https://snap.

stanford.edu/data/

• Gnutella Peer-to-peer network data, available from https://snap.stanford.edu/data/

• MNIST (0) The ‘0’s in the MNIST training dataset.

• Conflong The conflongdemo data is available from https://cs.joensuu.fi/sipu/datasets/

• Colormo The colormoments data is available at http://archive.ics.uci.edu/ml/datasets/Corel+

Image+Features

• MNIST50 The MNIST dataset, projected into 50-dimensions using a random projection matrix where each
of the 784× 50 elements in the matrix is i.i.d. N (0, 1).

• S1, S2, S3, S4, A1, A2, A3 All of these synthetic datasets are available from https://cs.joensuu.fi/

sipu/datasets/.

• thyroid, yeast, wine, breast, spiral All of these real world datasets are available from https://cs.joensuu.

fi/sipu/datasets/.

SM-J Scaling with dimension of TOPRANK and TOPRANK2

Recall the assumption (3) made for the TOPRANK and TOPRANK2 algorithms. The assumption states that as one
approaches the minimum energy E∗ from above, the density of elements decreases. In other words, the lowest
energy elements stand out from the rest and are not bunched up with very similar energies.

Consider the case where elements are points in Rd. Suppose that the density fX of points around the medoid
is bounded by 0 < ρ0 ≤ fX ≤ ρ1, and that the energy grows quadratically in radius about the medoid. Then,
as the number of points at radius ε is O(εd−1), the density (by energy) of points at radius ε is O(εd−2). Thus
for d = 1 the assumption for TOPRANK and TOPRANK does not hold, which results in poor performance for d = 1.
For d = 2, the assumption holds, as the density (by energy) of points is constant. For d ≥ 2, as d increases the
energy distribution becomes more and more favourable for TOPRANK and TOPRANK2, as the low ranking elements
become more and more distinct with low energies becoming less probable. This explains the observation that
TOPRANK scales well with dimension in Figure 3.

SM-K Example where geometric median is a poor approximation of medoid

There is no guarantee that the geometric median is close to the set medoid. Moreover, the element in S
which is nearest to g(S) is not necessarily the medoid, as illustrated in the following example. Suppose S =
{x(1), . . . , x(20)} ⊂ R2, with x(i) = (0, 1) for i ∈ {1, . . . , 9}, x(i) = (0,−1) for i ∈ {10, . . . , 18}, x(19) = (1/2, 0)
and x(20) = (−1/2, 0). The geometric median is (0, 0) and the nearest points to the geometric median, x(19)
and x(20) have energy 1 + 18

√
3/2 ≈ 16.6. However, points {x(1), . . . , x(18)} have energy 2

√
3/2 + 9 = 10.7.

Thus by choosing a point in S which is nearest to the geometric median, one is choosing the element with the
highest energy, the opposite of the medoid.

Note the above example appears to violate the assumptions required for O(N3/2) convergence of trimed, as it
requires that the probability density function vanishes at the distribution median. Indeed, in Rd it is the case
that if the O(N3/2) assumptions are satisfied, the set medoid converges to the geometric median, and so the
geomteric median is a good approximation. We stress however that the geometric median is only relevant in
vector spaces.

SM-L Miscellaneous

Figure 7 illustrates the idea behind algorithm trimed, comments in the caption.

James Newling, François Fleuret

-1

0

1
N = 1

medoid
computed
excluded

N = 4 N = 16 N = 64 N = 256

0 50 100 150 200 250
N

Figure 7: Eliminating samples as potential medoids using only type 1 elimination, where we assume that the
medoid and its energy E∗ are known, and so the radius of the exclusion ball of an element x is E(x) − E∗.
Uniformly sampling from [−1, 1] × [−1, 1], energies are computed only if the sample drawn does not lie in the
exclusion zone (union of balls). If the energy at x is computed, the exclusion zone is augmented by adding
Bd(x,E(x)−E∗). Top left to right: the distribution of samples which are computed and excluded. Bottom: the

times at which samples are computed. We prove that probability of computation at time n is O(n−
1
2).

