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Abstract

We present a new algorithm trimed for ob-
taining the medoid of a set, that is the el-
ement of the set which minimises the mean
distance to all other elements. The algorithm
is shown to have, under certain assumptions,
expected run time O(N2) in R? where N is
the set size, making it the first sub-quadratic
exact medoid algorithm for d > 1. Experi-
ments show that it performs very well on spa-
tial network data, frequently requiring two
orders of magnitude fewer distance calcula-
tions than state-of-the-art approximate al-
gorithms. As an application, we show how
trimed can be used as a component in an
accelerated K-medoids algorithm, and then
how it can be relaxed to obtain further com-
putational gains with only a minor loss in
cluster quality.

1 Introduction

A popular measure of the centrality of an element of
a set is its mean distance to all other elements. In
network analysis, this measure is referred to as close-
ness centrality, we will refer to it as energy. Given
aset & = {z(1),...,2(N)} the energy of element
i€{1,...,N} is thus given by,

: dist(a(i), ().
JE{L,....,N}\{i}

An element in § with minimum energy is referred to
as a I-median or a medoid. Without loss of general-
ity, we will assume that S contains a unique medoid.
The problem of determining the medoid of a set arises
in the contexts of clustering, operations research, and
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network analysis. In clustering, the Voronoi iteration
K-medoids algorithm (Hastie et al., 2001; Park and
Jun, 2009) requires determining the medoid of each of
K clusters at each iteration. In operations research,
the facility location problem requires placing one or
several facilities so as to minimise the cost of connect-
ing to clients. In network analysis, the medoid may
represent an influential person in a social network, or
the most central station in a rail network.

1.1 Medoid algorithms and our contribution

A simple algorithm for obtaining the medoid of a set
of N elements computes the energy of all elements and
selects the one with minimum energy, requiring ©(N?)
time. In certain settings ©(N) algorithms exist, such
as in 1-D where the problem is solved by Quickse-
lect (Hoare, 1961), and more generally on trees. How-
ever, no general purpose o(N?) algorithm exists. An
example illustrating the impossibility of such an algo-
rithm is presented in Supplementary Material B (SM-
A). Related to finding the medoid of a set is finding
the geometric median, which in vector spaces is de-
fined as the point in the vector space with minimum
energy. The relationship between the two problems is
discussed in Section 2.1.

Much work has been done to develop approximate al-
gorithms in the context of network analysis. The RAND
algorithm of Eppstein and Wang (2004) can be used to
estimate the energy of all nodes in a graph. The accu-
racy of RAND depends on the diameter of the network,
which motivated Cohen et al. (2014) to use pivoting
to make RAND more effective for large diameter net-
works. The work most closely related to ours is that
of Okamoto et al. (2008), where RAND is adapted to
the task of finding the k lowest energy nodes, k = 1
corresponding to the medoid problem. The result-
ing TOPRANK algorithm of Okamoto et al. (2008) has
run time O(N°/3) under certain assumptions, and re-
turns the medoid with probability 1 — O(1/N), that
is with high probability (w.h.p.). Note that only their
run time result requires any assumption, obtaining the
medoid w.h.p. is guaranteed. TOPRANK is discussed in
Section 2.2.
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In this paper we present an algorithm which has ex-
pected run time O(N?3/2) under certain assumptions
and always returns the medoid. In other words, we
present an exact medoid algorithm with improved
complexity over the state-of-the-art approximate al-
gorithm, TOPRANK. We show through experiments that
the new algorithm works well for low-dimensional data
in R? and for spatial network data. Our new medoid
algorithm, which we call trimed, uses the triangle in-
equality to quickly eliminate elements which cannot be
the medoid. The O(N3/2) run time follows from the
surprising result that all but O(N'/?) elements can be
eliminated in this way.

The complexity bound on expected run time which we
derive contains a term which grows exponentially in
dimension d, and experiments show that in very high
dimensions trimed often ends up computing O(N?)
distances.

1.2 K-medoids algorithms and our
contribution

The K-medoids problem is to partition a set into K
clusters, so as to minimise the sum over elements of
dissimilarites with their nearest medoids. That is, to
choose M = {m(1),...,m(K)} C {1,...,N} to min-
imise,

N
L(M) = min

2 ety diss(z(7), z(m(k))).

We focus on the special case where the dissimilarity
is a distance (diss = dist), which is still more general
than K-means which only applies to vector spaces. K-
medoids is used in bioinformatics where elements are
genetic sequences or gene expression levels (Chipman
et al., 2003) and has been applied to clustering on
graphs (Rattigan et al., 2007). In machine vision, K-
medoids is often preferred, as a medoid is more easily
interpretable than a mean (Frahm et al., 2010).

The K-medoids problem is NP-hard, but there exist
approximation algorithms. The Voronoi iteration al-
gorithm, appearing in Hastie et al. (2001) and later
in Park and Jun (2009), consists of alternating be-
tween updating medoids and assignments, much in the
same way as Lloyd’s algorithm works for the K-means
problem. We will refer to it as KMEDS, and to Lloyd’s
K-means algorithm as 11loyd.

One significant difference between KMEDS and 1loyd is
that the computation of a medoid is quadratic in the
number of elements per cluster whereas the computa-
tion of a mean is linear. By incorporating our new
medoid algorithm into KMEDS, we break the quadratic
dependency of KMEDS, bringing it closer in performance

to 1loyd. We also show how ideas for accelerating
1loyd presented in Elkan (2003) can be used in KMEDS.

It should be noted that algorithms other than KMEDS
have been proposed for finding approximate solutions
to the K-medoids problem, and have been shown to be
very effective in Newling and Fleuret (2016b). These
include PAM and CLARA of Kaufman and Rousseeuw
(1990), and CLARANS of Ng et al. (2005). In this pa-
per we do not compare cluster qualities of previous
algorithms, but focus on accelerating the 11oyd equiv-
alent for K-medoids as a test setting for our medoid
algorithm trimed.

2 Previous works

2.1 A related problem: the geometric median

A problem closely related to the medoid problem is the
geometric median problem. In the vector space R? the
geometric median, assuming it is unique, is defined as,

9(8) =argmin | > oyl | . (1)

VeV yeS

While the medoid of a set is defined in any space with a
distance measure, the geometric median is specific to
vector spaces, where addition and scalar multiplica-
tion are defined. The convexity of the objective func-
tion being minimised in (1) has enabled the develop-
ment of fast algorithms. In particular, Cohen et al.
(2016) present an algorithm which obtains an estimate
for the geometric median with relative error 1 4+ O(e)
with complexity O(nd log?’(%)). In R?, one may hope
that such an algorithm can be converted into an exact
medoid algorithm, but it is not clear how to do this.

Thus, while it may be possible that fast geometric me-
dian algorithms can provide inspiration in the devel-
opment of medoid algorithms, they do not work out
of the box. Moreover, geometric median algorithms
cannot be used for network data as they only work
in vector spaces, thus they are useless for the spatial
network datasets which we consider in Section 5.

2.2 Medoid Algorithms :
TOPRANK2

TOPRANK and

In Eppstein and Wang (2004), the RAND algorithm
for estimating the energy of all elements of a set
S ={z(1),...,z(N)} is presented. While RAND is pre-
sented in the context of graphs, where the N elements
are nodes of an undirected graph and the metric is
shortest path length, it can equally well be applied to
any set endowed with a distance. The simple idea of
RAND is to estimate the energy of each element from a
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sample of anchor nodes I, so that for j € {1,..., N},

B(j) = ﬁ S dist(# (), 2(1))-

iel

An elegant feature of RAND in the context of sparse
graphs is that Dijkstra’s algorithm needs only be run
from anchor nodes ¢ € I, and not from every node.
The key result of Eppstein and Wang (2004) is the
following. Suppose that S has diameter A, that is

A= max

dist(x(7), z(4)),
(3,9)€{1,...,N}? ((i), 2(5))

and let € > 0 be some error tolerance. If I is of size
Q(log(N)/e), then P(|E(j) — E(j)| > €A) is O ()
for all j € {1,...,N}. Using the union bound, this
means there is a O (%) probability that at least one
energy estimate is off by more than €A, and so we say
that with high probability (w.h.p.) all errors are less
than eA.

RAND forms the basis of the TOPRANK algorithm
of Okamoto et al. (2008). Whereas RAND w.h.p. re-
turns an element which has energy within e of the
minimum, TOPRANK is designed to w.h.p. return the
true medoid. In motivating TOPRANK, Okamoto et al.
(2008) observe that the expected difference between
consecutively ranked energies is O(A/N), and so if one
wishes to correctly rank all nodes, one needs to distin-
guish between energies at a scale e = A/N, for which
the result of Eppstein and Wang (2004) dictates that
O(Nlog N) anchor elements are required with RAND,
which is more elements than S contains. However, to
obtain just the highest ranked node should require less
information than obtaining a full ranking of nodes, and
it is to this task that TOPRANK is adapted.

The idea behind TOPRANK is to accurately estimate
only the energies of promising elements. The algo-
rithm proceeds in two passes, where in the first pass
promising elements are earmarked. Specifically, the
first pass runs RAND with N2/3log'/3(N) anchor el-
ements to obtain E(i) for i € {1,...,N}, and then
discards elements whose E(i) lies below threshold 7
given by,

1

. o 1 3

7= argmin E(j)+2Aa’<°g"> . (2
je{l,...,N} n

where A is an upper bound on A obtained from the
anchor nodes, and o’ is some constant satisfying o’ >
1. The second pass computes the true energy of the
undiscarded elements, returning the one with lowest
true energy. Note that a smaller o’ value results in a
lower (better) threshold, we discuss this point further
in SM-C.

To obtain run time guarantees, TOPRANK requires that
the distribution of node energies is non-decreasing near
to the minimum, denoted by E*. More precisely, let-
ting fg be the probability distribution of energies, the
algorithms require the existence of € > 0 such that,

E*<é<e<E"+e¢e = fg(e) < fele). (3)

If assumption 3 holds, then the run time is O(N3). A
second algorithm presented in Okamoto et al. (2008)
is TOPRANK2, where the anchor set [ is grown incre-
mentally until some heuristic criterion is met. There
is no runtime guarantee for TOPRANK2, although it has
the potential to run much faster than TOPRANK under
favourable conditions. Pseudocode for RAND, TOPRANK
and TOPRANK2 is presented in SM-C.

2.3 K-medoids algorithm : KMEDS

The Voronoi iteration algorithm, which we refer to as
KMEDS, is similar to 1loyd, the main difference being
that cluster medoids are computed instead of cluster
means. It has been desribed in the literature at least
twice, once in Hastie et al. (2001) and then in Park
and Jun (2009), where a novel initialisation scheme is
developed. Pseudocode is presented in SM-B.

All N2 distances are computed and stored upfront with
KMEDS. Then, at each iteration, K N comparisons are
made during assignment and Q(N?/K) additions are
made during medoid update. The initialisation scheme
of KMEDS requires all N? distances. Each iteration of
KMEDS requires retrieving at least max (KN, N?/K)
distinct distances, as can be shown by assuming bal-
anced clusters.

As an alternative to computing all distances upfront,
one could store per-cluster distance matrices which get
updated on-the fly when assignments change. Using
such an approach, the best one could hope for would be
max (KN, N?/K) distance calculations and ©(N?/K)
memory. If one were to completely forego storing dis-
tances in memory and calculate distances only when
needed, the number of distance calculations would be
at least 7(KN + N?/K), where r is the number of
iterations.

The initialisation scheme of Park and Jun (2009) se-
lects K well centered elements as initial medoids. This
goes against the general wisdom for K-means initial-
isation, where centroids are initialised to be well sep-
arated (Arthur and Vassilvitskii, 2007). While their
new scheme of Park and Jun (2009) performs well on
a limited number of small 2-D datasets, we show in
Section 5.2 that in general uniform initialisation per-
forms as well or better.
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3 Our new medoid algorithm : trimed
We present our new algorithm, trimed, for determin-
ing the medoid of set S = {z(1),...,2(N)}. Whereas
the approach with TOPRANK is to empirically estimate
E(i) for i € {1,...,N}, the approach with trimed,
presented as Alg. 1, is to bound E(i). When trimed
terminates, an index m* € {1,..., N} has been de-
termined, along with lower bounds i(i) for all ¢ €
{1,..., N}, such that E(m*) < (i) < E(i), and thus
x(m*) is the medoid. The bounding approach uses the
triangle inequality, as depicted in Figure 1.

Algorithm 1 The trimed algorithm for computing
the medoid of {z(1),...,2(N)}.
1: I+ 0y // lower bounds on energies, maintained
such that [(:) < E(i) and initialised as [(i) = 0.
2: m® E + —1,00 // index of best medoid can-
didate found so far, and its energy.

3: for i € shuffle ({1,...,N}) do

4:  if I(i) < E° then

5: for je{l,...,N} do

6 d(j) e dist((i), 2(7)

T end for

8: (i) < w5 Zj 1d(F) ]/ set (i) to be tight,

that is (i) = E(7).

9: if [(i) < B then

10: m, B < i,1(4)

11: end if

12: for je{l,...,N} do

13: 1(j) < max(i(j), |I(z) — d(j)]) // vsing
E(i) and dist(z(i),2z(j)) to possibly im-
prove bound on E(j).

14: end for

15:  end if

16: end for

17: m*, E* < m¢, E
18: return z(m*)

The algorithm trimed iterates through the N elements
of §. Each time a new element with energy lower than
the current lowest energy (E°) is found, the index
of the current best medoid (m®) is updated (line 10).
Lower bounds on energies are used to quickly eliminate
poor medoid candidates (line 4). Specifically, if lower
bound [(i) on the energy of element i is greater than
or equal to E, then i is eliminated. If the bound test
fails to eliminate element 7, then it is computed, that is,
all distances to element i are computed (line 6). The
computed distances are used to potentially improve
lower bounds for all elements (line 13). Theorem 3.1
states that trimed finds the medoid. The proof relies
on showing that lower bounds remain consistent when
updated (line 13).

The algorithm is very straightforward to implement,

Figure 1: Using the inequality E(j) > |E(i) —
dist(z(i), (7)) | to eliminate x(j) as a medoid candi-
date. Computed element z(i) with energy E(i) > E°!
is used as a pivot to lower bound E(j). The two
cases where the inequality is effective are when (case
1, above) dist(z(i),z(j)) — E(i) > E and (case 2,
below) E(i) — dist(z(i),z(j)) > E, as both lead to
E(j) > E° which eliminates z(j) as a medoid candi-
date.

and requires only two additional floating point values
per datapoint: for sample 4, one for [(i) and one for
d(i). Computing either all or no distances from a sam-
ple makes particularly good sense for network data,
where computing all distances to a single node is effi-
ciently performed using Dijkstra’s algorithm.

Theorem 3.1. trimed returns the medoid of set S.

Proof. We need to prove that I(j) < E(j) for all j €
{1,..., N} at all iterations of the algorithm. Clearly,
as [(j) = 0 at initialisation, we have I(j) < E(j) at ini-
tialisation. F(j) does not change, and the only time
that I(j) may change is on line 13, where we need to
check that |I(i) — d(j)| < E(j). At line 13, (i) = E(4)
from line 8, and d(j) = dist(x(i), x(4)), so at line 13 we
are effectively checking that |E () — dist(x (), z(j))| <
E(j). But this is a simple consequence of the trian-
gle inequality, as we now show. Using the definition,
E(j) = ﬁzl]il dist(z(1), (j)), we have on the one
hand,

I \%

ifjdlst (1)) — dist(x(3), ()
N =1

EG) - dist(a(3), 2(3)), (1)
and on the other hand,

N

i) #(7) ~ dis(0),(0)

S (e(0). )  E(), (5)

Combining (4) and (5) we obtain the required inequal-
ity |E(i) — dist(z(2), 2(j))| < E(j). O

Y

v
& =l

Y
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The bound test (line 4) becomes more effective at later
iterations, for two reasons. Firstly, whenever an ele-
ment is computed, the lower bounds of other samples
may increase. Secondly, E¢ will decrease whenever a
better medoid candidate is found. The main result of
this paper, presented as Theorem 3.2, is that in R¢
the expected number of computed elements is O(N %)
under some weak assumptions. We show in Section 5
that the O(N2) result holds even in settings where
the assumptions are not valid or relevent, such as for
network data.

The shuffle on line 3 is performed to avoid w.h.p.
pathological orderings, such as when elements are or-
dered in descending order of energy which would result
in all N elements being computed.

Theorem 3.2. Let S = {z(1),...,2(N)} be a set of
N elements in R?, drawn independently from probabil-
ity distribution function fx. Let the medoid of S be
z(m*), and let E(m*) = E*. Suppose that there ex-
ist strictly positive constants p,dg and 61 such that for
any set size N with probability 1 — O(1/N)

x € Bg(x(m”),p) = 6o < fx(x) <61,  (6)

where By(z,7) = {2’ € R? |l — z|| < r}. Let
a > 0 be a constant (independent of N ) such that with
probability 1 — O(1/N) alli € {1,..., N} satisfy,

(i) € Ba(x(m®),p) = (7)
E(i) - B* = afz(i) — z(m")|*.

Then, the expected number of elements computed by
trimed is O ((Vd[1]51 +d (é)d) N%), where Vy[1] =
ﬂ%/(f‘(g +1)) is the volume of B4(0,1).

3.1 On the assumptions in Theorem 3.2

The assumption of constants p, dg and 6; made in The-
orem 3.2 is weak, and only pathological distributions
might fail it, as we now discuss. For the assumptions to
fail requires that fx vanishes or diverges at the distri-
bution medoid. Any reasonably behaved distribution
does not have this behaviour, as illustrated in Figure 2.
The constant « is a strong convexity constant. The ex-
istence of a > 0 is guaranteed by the existence of p, dgy
and ¢1, as the mean of a sum of uniformly spaced cones
converges to a quadratic function. This is illustrated
in 1-D in Figure 5 in SM-G, but holds true in any
dimension.

Note that the assumptions made are on the distribu-
tion fx, and not on the data itself. This must be so
in order to prove complexity results in N.

T
el
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x(m*) z(m*) +p

Figure 2: Illustration in 1-D of the constants used in
Theorem 3.2. Above, §p and d; bound the probability
density function in a region containing the distribution
medoid. Below, the energy of samples grows quadrati-
cally around the medoid z(m*). The energy F is a sum
of cones centered on samples, which is approximately
quadratic unless fx vanishes or explodes, guarantee-
ing the existence of a > 0 required in Theorem 3.2.

3.2 Sketch of proof of Theorem 3.2

We now sketch the proof of Theorem 3.2, showing
how (6) and (7) are used. A full proof is presented
in SM-G. Firstly, let the index of the first element
after the shuffle on line 3 be ¢'. Then, no elements
beyond radius 2E(i") of z(i') will subsequently be
computed, due to type 1 eliminations (see Figure 1).
Therefore, all computed elements are contained within
Ba(a(i'), 2E(1)).

Next, notice that once an element (i) has been
computed in trimed, no elements in the ball
Ba(z(i), E(i) — E) will subsequently be computed,
due to type 2 eliminations (see Figure 1). We refer to
such a ball as an exclusion ball. By upper bounding the
number of exclusion balls contained in By (z(i'), 2E('))
using a volumetric argument, we can obtain a bound
on the number of computed elements, but obtaining
such an upper bound requires that the radii of exclu-
sion ball E(i)—E° be bounded below by a strictly pos-
itive value. However, by using a volumetric argument
only beyond a certain positive radius of the medoid
(a radius N~1/24) we have a > 0 in (15) which pro-
vides a lower bound on exclusion ball radii, assuming
E° ~ E*. Using 0y and §; we can show that E°
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approaches E* sufficiently fast to validate the approx-
imation E¢ ~ E*.

It then remains to count the number of computed
elements within radius N~1/2¢ of the medoid. One
cannot find a strict upper bound here, but using the
boundedness of fx provided by d;, we have w.h.p. that
the number of elements computed within N—1/2¢ ig
O(6,N'/?), as the volume of a sphere scales as the dth
power of its radius.

4 Our accelerated K-medoids
algorithm : trikmeds

We adapt our new medoid algorithm trimed and bor-
row ideas from Elkan (2003) to show how KMEDS can
be accelerated. We abandon the initial N? distance
calculations, and only compute distances when neces-
sary. The accelerated version of 11oyd of Elkan (2003)
maintains KN bounds on distances between points
and centroids, allowing a large proportion of distance
calculations to be eliminated. We use this approach to
accelerate assignment in trikmeds, incurring a mem-
ory cost O(KN). By adopting the algorithm of Newl-
ing and Fleuret (2016a) or that of Hamerly (2010), the
memory can be reduced to O(N). We accelerate the
medoid update step by adapting trimed, reusing lower
bounds between iterations, so that trimed is only run
from scratch once at the start. Details and pseudocode
are presented in SM-H.

One can relax the bound test in trimed so that for
€ > 0 element 7 is computed if [(i)(1 +¢) < E°, guar-
anteeing that an element with energy within a factor
14 e of E* is found. It is also possible to relax the
bound tests in the assignment step of trikmeds, such
that the distance to an assigned cluster’s medoid is al-
ways within a factor 14¢€ of the distance to the nearest
medoid. We denote by trikmeds-e¢ the trikmeds al-
gorithm where the update and assignment steps are
relaxed as just discussed, with trikmeds-0 being ex-
actly trikmeds. The motivation behind such a relax-
ation is that, at all but the final few iterations, it is
probably a waste of computation obtaining medoids
and assignments at high resolution, as in subsequent
iterations they may change.

5 Results

We first compare the performance of the medoid algo-
rithms TOPRANK, TOPRANK2 and trimed. We then com-
pare the K-medoids algorithms, KMEDS and trikmeds.
Our C++ implementations and Python binding will
be made available under a free open source license.

5.1 Medoid algorithm results

We compare our new exact medoid algorithm trimed
with state-of-the-art approximate algorithms TOPRANK
and TOPRANK2. Recall, Okamoto et al. (2008) prove
that the approximate algorithms return w.h.p. the true
medoid. We confirm that this is the case in all our ex-
periments, where the approximate algorithms return
the same element as trimed, which we know to be
correct by Theorem 3.1. We now focus on compar-
ing computational costs, which are proportional to the
number of computed points.

Results on artificial datasets are presented in Figure 3,
where our two main observations relate to scaling in
N and dimension d. The artificial data are (left)
uniformly drawn from [0,1]¢ and (right) drawn from
B4(0,1) with probability of lying within radius 1/2/¢
of 1/200, as opposed to 1/2 as would be the case under
uniform density. Details about sampling from this dis-
tribution can be found in SM-F. Results on a mix of
publicly available real and artificial datasets are pre-
sented in Table 1 and discussed in Section 5.1.2.

5.1.1 Scaling with N and d on artificial
datasets

In Figure 3 we observe that the number of points com-
puted by trimed is O(N'/?), as predicted by Theo-
rem 3.2. This is illustrated (right) by the close fit of
the number of computed points to exact square root
curves at sufficiently large N for d € {2,6}.

Recall that TOPRANK consists of two passes, a first
where N2/31og!/? N anchor points are computed, and
a second where all sub-threshold points are computed.
We observe that for small N TOPRANK computes all
N points, which corresponds to all points lying be-
low threshold. At sufficiently large N the threshold
becomes low enough for all points to be eliminated af-
ter the first pass. The effect is particularly dramatic
in high dimensions (d = 6 on right), where a phase
transition is observed between all and no points being
computed in the second pass.

Dimension d appears in Theorem 3.2 through a factor
d(4/a)?, where a is the strong convexity of the energy
at the medoid. In Figure 3, we observe that the num-
ber of computed points increases with d for fixed N,
corresponding to a relatively small a. The effect of «
on the number of computed elements is considered in
greater detail in SM-F.

In contrast to the above observation that the number
of computed points increases as dimension increases
for trimed, TOPRANK appears to scale favourably with
dimension. This observation can be explained in terms
of the distribution of energies, with energies close to E*
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Figure 3: Comparison of TOPRANK and our algorithm trimed on simulated data. On the left, points are drawn
uniformly from [0,1]? for d € {2,...,6}, and on the right they are drawn from B,;(0,1) for d € {2,6}, with an
increased density near the edge of the ball. Fewer points (elements) are computed by trimed than by TOPRANK
in all scenarios. For small N, TOPRANK computes O(N) points, before transitioning to O(N?/3) computed points
for large V. trimed computes O(Nl/z) points. Note that trimed performs better in low-d than in high-d, with
the reverse trend being true for TOPRANK. These observations are discussed in further detail in the text.

being less common in higher dimensions, as discussed

in SM-J.

5.1.2 Results on publicly available real and
simulated datasets

We present the datasets used here in detail in SM-I.
For all datasets, algorithms TOPRANK, TOPRANK2 and
trimed were run 10 times with a distinct seed, and
the mean number of iterations () over the 10 runs
was computed. We observe that our algorithm trimed
is the best performing algorithm on all datasets, al-
though in high-dimensions (MNIST-0) and on social
network data (Gnutella) no algorithm computes sig-
nificantly fewer than N elements. The failure in
high-dimensions (MNIST-0) of trimed is in agree-
ment with Theorem 3.2, where dimension appears as
the exponent of a constant term. The small world
network data, Gnutella, can be embedded in a high-
dimensional Euclidean space, and thus the failure on
this dataset can also be considered as being due to
high-dimensions. For low-dimensional real and spatial
network data, trimed consistently computes O(N'/?)
elements.

5.1.3 But who needs the exact medoid
anyway?

A valid criticism that could be raised at this stage
would be that for large datasets, finding the exact
medoid is probably overkill, as any point with en-
ergy reasonably close to E* suffices for most appli-
cations. But consider, the RAND algorithm requires
computing log N/e? elements to confidently return an

element with energy within eE* of E*. For N = 10°
and e = 0.05, this is 4600, already more than trimed
requires to obtain the exact medoid on low-d datasets
of comparable size.

5.2 K-medoids algorithm results

With N elements to cluster, KMEDS is ©(N?) in mem-
ory, rendering it unusable on even moderately large
datasets. To compare the initialisation scheme pro-
posed in Park and Jun (2009) to random initialisation,
we have performed experiments on 14 small datasets,
with K € {10,[N'/2],[N/10]}. For each of these 42
experimental set-ups, we run the deterministic KMEDS
initialisation once, and then uniform random initial-
isation, 10 times. Comparing the mean final energy
of the two initialisation schemes, in only 9 of 42 cases
does KMEDS initialisation result in a lower mean final
energy. A Table containing all results from these ex-
periments in presented in SM-E.

Having demonstrated that random uniform initiali-
sation performs at least as well as the initialisation
scheme of KMEDS, and noting that trikmeds-0 returns
exactly the same clustering as would KMEDS with uni-
form random initialisation, we turn our attention to
the computational performance of trikmeds. Table 2
presents results on 4 datasets, each described in SM-
I. The first numerical column is the relative number
of distance calculations using trikmeds-0 and KMEDS,
where large savings in distance calculations, especially
in low-dimensions, are observed. Columns ¢. and ¢g
are the number of distance calculations and energies
respectively, using ¢ € {0.01,0.1}, relative to € = 0.
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TOPRANK | TOPRANK2 ‘ trimed

dataset type n n ‘ n
Birch 1 2-d  1.0x10° [ 57944 100180 2180
Birch 2 2-d 1.0 x 10° | 66062 100180 2208
Europe 2-d 1.6 x 10° | 176095 169535 2862
U-Sensor Net u-graph 3.6 x 10° | 113838 327216 1593
D-Sensor Net d-graph 3.6 x 105 | 99896 176967 1372
Pennsylvania road u-graph 1.1 x 10% | 216390  time-out 2633
Europe rail u-graph 4.6 x 10* | 35913 47041 518
Gnutella d-graph 6.3 x 103 7043 6407 6328
MNIST 784-d 6.7 x 103 7472 6799 6514

Table 1: Comparison of TOPRANK, TOPRANK2 and our algorithm trimed on publicly available real and simulated

datasets.

Column 2 provides the type of the dataset, where ‘z-d’ denotes x-dimensional vector data, while

‘d-graph’ and ‘u-graph’ denote directed and undirected graphs respectively. Column 7 gives the mean number
of elements computed over 10 runs. Our proposed trimed algorithm obtains the true medoid with far fewer
computed points in low dimensions and on spatial network data. On the social network dataset (Gnutella) and
the very high-d dataset (MNIST), all algorithms fail to provide speed-up, computing approximately N elements.

We observe large reductions in the number of distance
computations with only minor increases in energy.

6 Conclusion and future work

We have presented our new trimed algorithm for com-
puting the medoid of a set, and provided strong the-
oretical guarantees about its performance in R?. In
low-dimensions, it outperforms the state-of-the-art ap-
proximate algorithm on a large selection of datasets.
The algorithm is very simple to implement, and can
easily be extended to the general ranking problem.
In the future, we propose to explore the idea of us-
ing more complex triangle inequality bounds involving
several points, with as goal to improve on the O(N'/2)
number of computed points.

We have demonstrated how trimed, when combined
with the approach of Elkan (2003), can greatly reduce
the number of distance calculations required by the
Voronoi iteration K-medoids algorithm of Park and
Jun (2009). In the future we would like to replace the
strategy of Elkan (2003) with that of Hamerly (2010),
which will be better adapted to graph clustering as
either all or no distances are computed with it, making
it more amenable to Dijkstra’s algorithm.
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