
Stochastic Difference of Convex Algorithm and its Application to Training
Deep Boltzmann Machines

Atsushi Nitanda†‡

nitanda@msi.co.jp

Taiji Suzuki†⋆⋄

s-taiji@is.titech.ac.jp

† Tokyo Institute of Technology, Tokyo, Japan ‡ NTT DATA Mathematical Systems Inc., Tokyo, Japan
⋆ PRESTO, Japan Science and Technology Agency, Japan

⋄ Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

Abstract

Difference of convex functions (DC) program-

ming is an important approach to nonconvex op-

timization problems because these structures can

be encountered in several fields. Effective op-

timization methods, called DC algorithms, have

been developed in deterministic optimization lit-

erature. In machine learning, a lot of impor-

tant learning problems such as the Boltzmann

machines (BMs) can be formulated as DC pro-

gramming. However, there is no DC-like al-

gorithm guaranteed by convergence rate analy-

sis for stochastic problems that are more suit-

able settings for machine learning tasks. In

this paper, we propose a stochastic variant of

DC algorithm and give computational com-

plexities to converge to a stationary point un-

der several situations. Moreover, we show

our method includes expectation-maximization

(EM) and Monte Carlo EM (MCEM) algorithm

as special cases on training BMs. In other words,

we extend EM/MCEM algorithm to more effec-

tive methods from DC viewpoint with theoretical

convergence guarantees. Experimental results in-

dicate that our method performs well for training

binary restricted Boltzmann machines and deep

Boltzmann machines without pre-training.

1 Introduction

There is a strong need to develop better optimization meth-

ods for nonconvex problems because many scientific prob-

lems are nonconvex. Generally speaking, a nonconvex

Proceedings of the 20
th International Conference on Artificial

Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale,
Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by
the author(s).

problem is hard to solve. However, several important prob-

lems possess a special structure (quadratic, finite sums,

etc.), and it is expected that we can build effective algo-

rithms by making full use of the special structure. In par-

ticular, a wide range of problems are reduced to difference

of convex functions (DC) programming [1] which takes the

the following form:

minimize
x∈Rd

f(x)
def
= g(x)− h(x), (1)

where g and h are differentiable convex functions from R
d

to R.

In fact, DC structures can be encountered in several fields,

e.g., in economics, finance, operations research, and bi-

ology. In machine learning, multiple kernel learning [2]

and feature selection in support vector machines [3] are

formulated as DC programs. Moreover, it is shown that:

(i) any continuous function over a compact set can be ap-

proximated by a DC function by Stone-Weierstrass theo-

rem and DC decomposition of polynomials [4, 5, 6]; (ii)

any C2-function f whose eigenvalues of Hessian are lower

bounded can be decomposed as a DC function; there ex-

ists a convex function h such that f = g − h is DC, where

g = f + h.

To solve optimization problem (1), practical methods are

variants of DC algorithms (DCAs) [1] that generate a se-

quence by solving sub-problems that consist of the sum of

the convex part g and the linear approximation of the con-

cave part −h at the current iterate. Due to their simplicity,

efficiency, and robustness, DCAs have been widely applied

to many fields.

Important applications of DC programming are Boltzmann

machines (BMs) which are energy-based generative mod-

els over binary observations and binary hidden units. Re-

stricted Boltzmann machines (RBMs) and deep Boltzmann

machines (DBMs) [7] are special forms of BMs. These

models are used for unsupervised learning, dimension re-

duction, feature extraction, and pre-training or initializa-

Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines

Table 1: Complexities of SPD

General case Smooth concave Polyak-Łojasiewicz

Outer Iteration Complexity O(Lg/ǫ) O(min{Lg, Lh}/ǫ) O(CLg log
1
ǫ
)

Total Complexity (general) O(Lg/ǫ
2) O(Lg/ǫ

2) O
(

CLg

ǫ
log 1

ǫ

)

Total Complexity (variance growth condition) O
(

Lg(1+β)
ǫ

log 1
ǫ

)

O
(

Lg(1+β)
ǫ

log
Lg

ǫLh

)

O
(

CLg(1 + β)(log 1
ǫ
)2
)

tion of multi-layer perceptrons. RBMs and DBMs learn-

ing are easier than more general Boltzmann machine learn-

ing; however, it is still quite difficult. In fact, in recent

years, several studies have exploited optimization methods

[7, 8, 9]. The log-likelihood of a BM is the subtraction of

two composite functions of linear mapping and a log-sum-

exp function. That is, BM learning is DC programming.

However, there is still no DC-like algorithm with any con-

vergence rate analysis to solve stochastic problems that are

more suitable settings for training BMs.

In this paper, we propose a stochastic proximal DC algo-

rithm (SPD). Our method works effectively not only under

a deterministic setting but also under a stochastic setting,

where only stochastic gradients are available for the con-

vex part and sometimes for the concave part. Optimization

methods built under this setting can be applied to a wider

class of problems, including training BMs. Furthermore,

we show that Expectation-maximization (EM) and Monte

Carlo EM (MCEM) algorithms, which are heavily used for

latent variable models, are recognized as special cases of

our SPD algorithm, and our algorithm is even more effec-

tive than these algorithms.

In addition, we give convergence complexities: the num-

ber of iterations of SPD to obtain an ǫ-accurate solution in

expectation (i.e., E‖∇f(x)‖22 < ǫ) under several settings:

Lipschitz smoothness of g, h and Polyak-Łojasiewicz con-

dition on objective function f , whose definitions will be

described in Section 4.

SPD requires only approximate solutions of sub-problems

in expectation. To solve the sub-problems we can em-

ploy stochastic optimization methods for convex problems,

which is a very active research area. Moreover, since a

sub-problem becomes strongly convex, effective stochastic

gradient-based methods [10, 11, 12, 13] can be used as un-

derlying solvers to achieve fast convergence, and we give

the total complexity analyses that include the complexity

of such a method.

Table 1 shows the complexities of our method in general

case (g : Lg-smooth), smooth concave case (g, h : Lg, Lh-

smooth), and Polyak-Łojasiewicz case. The middle row of

Table 1 lists the total complexities without additional struc-

tures for the sub-problem. RSG [14] is a stochastic opti-

mization method for solving Lipschitz smooth non-convex

problems, and in this case, we can obtain the same com-

plexity O(Lg/ǫ
2) as SPD by slight modification of their

proof. However, SPD has better practical performance than

suggested by the theory because our analyses for the total

complexities do not take into account the warm starting for

sub-problems solved in SPD repeatedly. An intuition for

the practical performance of SPD is described in Section 4.

Moreover, if the convex sub-problems have additional spe-

cial structures such as 2nd-order derivative, noise condi-

tion, finite sums, it is possible to show much better conver-

gence by utilizing this information for the convex optimiza-

tion method used in the inner loop. Especially, we focus on

a variance growth condition [13, 15], defined in Section 4

and we show that this condition strictly improves the total

complexities as shown in the last row of Table 1.

Related Works

The stochastic majorization-minimization method and the

online DCA were proposed in [16] for non-convex prob-

lems. Although SPD is also a type of majorization-

minimization methods, it differs from their methods in sev-

eral respects. The surrogate function used in [16] is more

stochastic and is quadratically approximated, and can be

solved exactly. On the other hand, the convex part is not

approximated in SPD and it is relatively difficult to solve

our surrogate function exactly; SPD only requires an ap-

proximation to the solution in expectation. Moreover, al-

though they gave convergence analyses, convergence rates

for the non-convex problem were not provided.

The method proposed in [17] for deterministic nonconvex

problems is one of the methods which should be compared

with our method. Applying their analysis to our problem,

the complexity to obtain a gradient mapping of norm ǫ is

O(Lh/ǫ). However, the norm of a gradient and the norm of

a gradient mapping cannot be directly compared. Further-

more, while the coefficient of their order is always affected

by Lh, our method is free from it when Lh > Lg .

2 DC Algorithm

DCAs are optimization algorithms for solving DC prob-

lems. To obtain the next iterate that linearly approximates

the concave part −h at the current iterate xk and solves the

resulting convex minimization problem:

min
x∈Rd
{g(x)− (h(xk) + 〈∇h(xk), x− xk〉)}

∼ min
x∈Rd
{g(x)− 〈∇h(xk), x〉}, (2)

Atsushi Nitanda, Taiji Suzuki

where 〈, 〉 denotes the Euclidean inner product. Sev-

eral studies have exploited the convergence properties and

shown the efficiency of a DCA under the assumption that

we can obtain an exact or deterministically approximate so-

lution of the sub-problem (2). However, there is no algo-

rithm with convergence rate analysis for stochastic prob-

lems frequently encountered in machine learning. Thus in

the next section, we propose a more suitable DCA for such

problems.

3 Stochastic Proximal DC Algorithm

In the remainder of this paper, we make the following

stochastic assumption.

Assumption 1 (Stochastic Assumption). To solve DC

problem (1), an optimization algorithm can use only the

stochastic gradients of g and h.

Note that although there are several problems such that a

deterministic gradient of h can be computed and we can

use ∇h, we also make stochastic assumption on h to han-

dle some specific problems including general BMs. Here,

we propose SPD, which is more suitable for this assump-

tion. Let Hk denote the d × d positive definite matrix and

‖ · ‖Hk
denote the Mahalanobis norm defined by Hk, i.e.,

for v ∈ R
d, ‖v‖Hk

=
√

〈v,Hkv〉. Let vh(x) denote an

unbiased estimator of ∇h(x) and σ2
h be an upper bound

on the variance of vh; E[vh(x)] = ∇h(x), E[‖vh(x) −
∇h(x)‖22] ≤ σ2

h. Let xk be the current iterate. To obtain

the next iterate xk+1, SPD solves the following proximal

sub-problem inexactly by a stochastic method:

SP (k) : min
x∈Rd
{φk(x)

def
= g(x) +

1

2
‖x− xk‖

2
Hk

−(h(xk) + 〈vh(xk), x− xk〉)}. (3)

The difference between sub-problems (2) and (3) is that the

latter problem is a stochastic approximation and includes

the proximal term 1
2‖x − xk‖

2
Hk

, which forces the solu-

tion to stay close to xk with respect to the norm ‖ · ‖Hk
.

Practical choices for the metric Hk and our motivations are

described in the next subsection. Since it is impractical to

obtain an exact or deterministic approximation to the solu-

tion, we employ the following condition on expectation of

a solution of the sub-problem:

E[φk(xk+1)|Fk] ≤ φ
∗
k + δ, (4)

where Fk is the filtration for all information up to iterate

xk, φ∗k is the optimal value of SP(k), and δ > 0. For

many stochastic algorithms, e.g., stochastic gradient de-

scent, the global convergence property in expectation is

shown for convex problems. Therefore, we can use such

algorithms as an underlying solver of SPD. Note that we

can warm start to solve sub-problems, i.e., by running a

stochastic algorithm from a previous solution xk with suf-

ficiently small learning rates, it is not particularly difficult

to satisfy the above condition empirically. In Section 4,

we demonstrate how condition (4) guarantees the conver-

gence of SPD with better convergence rates to obtain an

ǫ-accurate solution in expectation. Here, we briefly give a

connection between SPD and mirror descent method. Let

x∗k+1 = argminφk(x), ψk(x)
def
= g(x) + 1

2‖x‖
2
Hk

, and

assume vh(xk) = ∇h(xk), then we have

∇f(xk) = ∇ψk(xk)−∇ψk(x
∗
k+1). (5)

This equation means SPD can also be interpreted as an in-

exact variant of a stochastic mirror descent method using

distance generating functions ψk for DC programming.

SPD runs for R iterations, where R is chosen uniformly

at random from {1, 2, . . . ,M} for M ∈ Z+. This is a

standard technique for nonconvex analysis [14]. SPD is

described in Algorithm 1.

Algorithm 1 SPD (Stochastic proximal DC algorithm)

Input: initial point x1, the maximum number of iter-

ations M , underlying solver A for solving SP (k), the

number of iterations T for A

Randomly pick up R ∈ {1, 2, . . . ,M}
for k = 1 to R− 1 do

Update the metric Hk

Compute stochastic approximation vh(xk) of∇h(xk)
xk+1 ← Solve SP(k) by running A for T iterations

end for

Return xR

3.1 Metrics

There are two aims for including the proximal term 1
2‖x−

xk‖
2
Hk

of φk in sub-problems. The first is to keep the next

iterate xk+1 in a neighborhood of the current xk where the

linear approximation of the concave part −h is sufficiently

accurate. In the gradient-based optimization literature, it

is well studied theoretically and empirically that the prox-

imity induced by an appropriate metric at each iteration

improves the convergence behavior, e.g., Natural Gradient

[18] and AdaGrad [19]. The second is to enhance the effect

of strong convexity, which makes the sub-problem SP(k)

better conditioned and easier to solve.

Next, we give practical choices for the metric Hk. The

first choice is a scalar matrix, i.e., Hk = µId, µ > 0. As

will be discussed in Section 4, this choice with µ = Lg

or Lh, where Lg, Lh are smoothness parameters, gives a

better convergence complexity according to our analysis.

Second, when the concave part −h is twice differentiable,

we propose a diagonal approximation to the Hessian of h
[20]. In other words, we define Hk as follows:

Hk ←
∣

∣diag
(

∇2h(xk)
)∣

∣+ µId, (6)

where the absolute value operator | · | is applied element-

wise to the diagonal of the Hessian and µ is a positive value

Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines

that guarantees sufficiently strong convexity to improve the

conditioning of the curvature of h. This metric makes the

update take large steps in the direction of low curvature

compared to that of highly curved directions.

3.2 AdaSPD

Here, we derive a specific form of the SPD described by

Algorithm 1. For a metricHk, we use a scalar matrix or the

diagonal Hessian (6) as in the previous subsection. For an

underlying solver, due to the simplicity of implementation

and better empirical performance, we adopt AdaGrad using

the proximal term 1
2‖x− xk‖

2
Hk

as the regularization in its

update. Let yk,t and vk,t (t = 1, 2, . . .) denote an inner

iterate and a stochastic gradient of g at yk,t, respectively, in

outer iteration k. To adapt the step size to the geometry of

the objective function, AdaGrad computes diagonal matrix

Dk,t as follows:

Dk,t ←
√

λId + diag(
∑t

i=1 sk,is
⊤
k,i),

where λ is a damping parameter for numerical stability and

sk,i denotes vk,i − vh(xk). To obtain the next inner iterate

yk,t+1, we solve the following problem:

arg min
y∈Rd

{

〈sk,t, y〉+
1

2
‖y − xk‖

2
Hk

+
1

2η
‖y − yk,t‖

2
Dk,t

}

,

where η denotes the learning rate. Note that Dk,t can be

updated successively and yk,t+1 can be computed in closed

form. The algorithm AdaSPD is described in Algorithm 2.

4 Analysis

In this section, we give convergence analyses of SPD and

complexities to obtain an ǫ-accurate solution in expectation

under several situations. Note that all proofs can be found

in the supplement. For simplicity, we only consider the

scalar matrix µkId for Hk. We first give the definition of

Lipschitz smoothness needed for analyses.

Definition 1. A function φ is Lipschitz smooth if there ex-

ists Lφ > 0 such that ∀x, ∀y ∈ R
d,

‖∇φ(x)−∇φ(y)‖ ≤ Lφ‖x− y‖2.

4.1 General Case

The following proposition shows the expected square norm

of the gradient is upper-bounded by the expected reduction

of the objective function per iteration up to δ and σ2
h.

Proposition 1. Consider Algorithm 1 under stochastic as-

sumption 1. Suppose g is Lg-smooth and the expected con-

dition (4) holds. Then, it follows that for k = 1, 2, . . .

µk

4
E
[

‖xk+1 − xk‖
2
2|Fk

]

+
‖∇f(xk)‖

2
2

2(Lg + µk)

≤ δ +
σ2
h

µk

+ E[f(xk)− f(xk+1)|Fk].

Algorithm 2 AdaSPD

Input: initial point x1, the maximum number of itera-

tions M , (lower) scale µ of a metric Hk, the number of

iterations T for the inner loop, damping parameter λ of

Dk,t, learning rate η > 0, suffix averaging parameter

α ∈ (0, 1) (assuming αT is an integer)

Randomly pick a R ∈ {1, 2, . . . ,M}
for k = 1 to R− 1 do

scalar matrix option:

Hk ← µId
Diagonal Hessian option:

Hk ←
∣

∣diag
(

∇2h(xk)
)∣

∣+ µId
yk,1 ← xk
Sk,0 ← O
for t = 1 to T − 1 do

vk,t ← a stochastic gradient of g at yk,t
sk,t ← vk,t − vh(xk)
Sk,t ← Sk,t−1 + diag(sk,ts

⊤
k,t)

Dk,t ←
√

λId + Sk,t

yk,t+1 ← (ηHk + Dk,t)
−1(ηHkxk + Dk,tyk,t −

ηsk,t)
end for

xk+1 ←

∑T
t=(1−α)T+1 yk,t

αT
end for

Return xR

Using Proposition 1, we derive a convergence theorem.

Theorem 1. Make the same assumption as Proposition 1

and assume the optimal value f∗ of f is bounded from be-

low. Let µk = O(Lg) and (µk = Ω(Lg) or σh = 0). Then

it follows that

E[‖∇f(xR)‖
2
2] ≤ O

(

Lgδ + σ2
h +

Lg(f(x1)− f∗)

M

)

.

We immediately obtain the following corollary.

Corollary 1. Suppose the assumptions in Theorem 1 hold

and σ2
h = O(ǫ). Set δ = O(ǫ/Lg). Then, the complexityM

to obtain an ǫ-accurate solution in expectation is O(Lg/ǫ).

The readers might feel that the assumption σ2
h = O(ǫ) in

the above corollary is unrealistic because the variance σ2
h of

the stochastic gradient of h is assumed to be smaller than

the solution accuracy ǫ. However, this is reasonable be-

cause the total complexity is unchanged even if we spend

the same computational cost as that of solving SP (k) to

estimate ∇h and the variance σ2
h can be made sufficiently

small by using a comparable number of samples in the

mini-batch.

4.2 Smooth Concave Function

In this subsection, we give the convergence properties for

problems having Lipschitz smooth h. To establish a com-

Atsushi Nitanda, Taiji Suzuki

plexity analysis, we slightly modify the algorithm: we

choose R, the number of iterations of SPD, uniformly at

random from {2, 3, . . . ,M + 1} instead of {1, 2, . . . ,M}
as before forM ∈ Z+. Then, we have the following propo-

sition.

Proposition 2. Suppose that g, h are Lg, Lh-smooth, re-

spectively. Then, it follows that

E
[

‖∇f(xk+1)‖
2
2|Fk

]

≤ 8(Lg + µk)δ + 4σ2
h

+4(µ2
k + L2

h)E
[

‖xk+1 − xk‖
2
2|Fk

]

.

By combining Proposition 1 and 2, we have the following

proposition.

Proposition 3. Make the same assumption as Proposition

2. Let µk = O(Lh) and µk = Ω(Lh). Then, it follows that

E
[

‖∇f(xk+1)‖
2
2|Fk

]

≤ O((Lg + Lh)δ + σ2
h

+LhE [f(xk)− f(xk+1)|Fk]).

From Proposition 3, we can obtain the convergence theo-

rem that indicates that as Lh decrease, SPD has better con-

vergence.

Theorem 2. Make the same assumption as Proposition 3.

We assume Lh = O(Lg) and the optimal value f∗ of f is

bounded from below. Then it follows that

E[‖∇f(xR)‖
2
2] ≤ O

(

Lgδ + σ2
h +

Lh(f(x1)− f∗)

M

)

.

Theorem 2 implies the following complexity result which

is better than Corollary 1 because of Lh = O(Lg).

Corollary 2. Suppose the assumptions in Theorem 2 hold

and σ2
h = O(ǫ).We set δ = O(ǫ/Lg). Then, the complex-

ity M to obtain an ǫ-accurate solution in expectation is

O(Lh/ǫ).

4.3 Polyak-Łojasiewicz Condition

Here, we show a fast convergence of Double-loop SPD

described in Algorithm 3 under Polyak-Łojasiewicz con-

dition:

Definition 2. A function φ satisfies Polyak-Łojasiewicz

condition, i.e., ∃C > 0 such that ∀x ∈ R
d

φ(x)−minφ ≤ C‖∇φ(x)‖22. (7)

Note that Algorithm 1 and 3 are essentially the same up to

the returned point. Therefore, algorithm remain unchanged

in practical implementations.

Let δ = O(ǫ/Lg),M = O(CLg/2) and assume σ2
h =

O(ǫ). Using Theorem 1 and (7), we can easily show

E[‖∇f(yt+1)‖
2
2] ≤ ǫ+

E[‖∇f(yt)‖
2
2]

2
.

Algorithm 3 Double-loop SPD

Input: initial point y1, the maximum number of outer-

iterations N , the options for Algorithm 1 M,A, T

for t = 1 to N − 1 do

yt+1 ← Algorithm 1 (yt,M,A, T)

end for

Return yN

This recurrence relation immediately implies

E[‖∇f(yt+1)‖
2
2] ≤ 2ǫ + (12)

t‖∇f(y1)‖
2
2. This mean that

if we run Algorithm 3 forN = O(log 1/ǫ) outer-iterations,

we can obtain an ǫ-accurate solution. Thus, the following

theorem holds.

Theorem 3. Make the same assumption as Theorem 1 and

assume Polyak-Łojasiewicz condition holds. Let δ,M and

σh be as above. Then, the complexity including that of in-

ner SPD to obtain a solution is O(CLg log
1
ǫ
).

4.4 Total Complexity

We consider the total complexity that includes the com-

plexity of an underlying solver. In recent years, several

stochastic optimization methods that can solve the sub-

problem SP(k) have been developed. Note that the ob-

jective function of the sub-problem can be µk = O(Lg)
or O(Lh) strongly convex. Let us adopt SGD [10] as an

underlying solver. Noting that, SGD can solve the sub-

problem with a complexity of O
(

1
µkδ

)

, we obtain the to-

tal complexities as shown in the middle row of Table 1.

Although the complexity O(Lg/ǫ
2) is the same as that of

RSG method [14] for solving Lipschitz smooth non-convex

problems, SPD has better practical performance for several

reasons. Firstly, since we can warm start the underlying

solver of SPD at the previous solution, it is enough to per-

form fewer iterations than suggested by the theory. By the

strong convexity of the sub-problem, we get ‖∇f(xk)‖
2
2 ≥

2µk(φk(xk)− φ
∗
k), that is, as current iterate xk is closer to

a stationary point, initial objective gap of each sub-problem

SP(k) also becomes small. Let us assume µk are uniformly

upper and lower bounded by positive constants. Noting that

smoothnesses Lg+µk, strong convexities µk, and accuracy

δ of sub-problems are the same order among all iterations,

we find that as the initial objective gap of a sub-problem

is smaller, we can easily solve it empirically. Secondly, al-

though a performance of almost stochastic gradient based

algorithms is affected by its variance, SPD reduces this ef-

fect by fixing an estimate of ∇h(xk) in each inner loop.

Moreover, we can show improved convergence complex-

ities by using an additional structure of the convex sub-

problems such as a variance growth condition.

Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines

4.4.1 Variance Growth Condition

We first introduce the variance growth condition.

Definition 3. A function φ satisfies the variance growth

condition if there exist α, β > 0 such that ∀x ∈ R
d,

V[Φ(x, ξ)] ≤ α+ β‖∇φ(x)‖22,

where Φ(x, ξ) denotes a stochastic gradient of φ at x.

This condition can be found in [13, 15] and a stronger con-

dition called gradient growth condition is used in [21, 22].

Note that the variance growth condition with α = 0 is used

in [15] to establish a convergence analysis of stochastic op-

timization method for the learning discrete graphical mod-

els including RBMs and this condition is controllable by

mini-batching of gradient estimators.

Applying Theorem 4.6 in [13] to the sub-problem SP(k),

we immediately obtain a complexity to solve it as follows.

Proposition 4. Let us assume that the objective function

φk of SP(k) satisfies the variance growth condition with
α

(1+β)µk
≤ δ. Then, if we run SGD, with a constant learn-

ing rate η = O(1
Lg(1+β)), a δ-accurate solution of SP(k)

can be obtained with a complexity of

O

(

Lg(1 + β)

µk

log
φk(xk)− φ

∗
k

δ

)

.

Since φk(xk)−φ
∗
k ≤

1
2µk
‖∇f(xk)‖

2
2, if {‖∇f(xk)‖2}

M
k=1

are uniformly bounded and if we apply Proposition 4 with

the same µk, δ as in Corollary 1, 2, or Theorem 3, we can

find that the variance growth condition strictly improves the

total complexities as shown in the last row of Table1.

5 Boltzmann Machines

Although we are mainly concerned with RBMs or DBMs

rather than BMs, we describe an application to learn BMs

because BMs are the general form of these models. The

BM is a particular type of Markov random field with visi-

ble binary stochastic units v ∈ {0, 1}D and hidden binary

stochastic units h ∈ {0, 1}M . The negative energy of the

state {v, h} is

−E(v, h; Θ) = v⊤b+ h⊤c+ v⊤Uv + h⊤V h+ v⊤Wh,

where Θ = (b, c, U, V,W) are the model parameters, i.e.,

b ∈ R
D, c ∈ R

M , U ∈ R
D×D, V ∈ R

M×M , and

W ∈ R
D×M . The diagonal elements of U and V are

set to zeros. Note that special form of the Boltzmann ma-

chine with U = 0 and V = 0 is nothing else but RBMs.

The joint distribution of v, h is defined as proportional to

exp(−E(v, h; Θ)). Thus, the likelihood of BMs is

p(v|Θ) =
1

Z(Θ)

∑

h

exp(−E(v, h; Θ)),

Z(Θ) =
∑

v

∑

h

exp(−E(v, h; Θ)).

Learning the BM is achieved by minimizing the average

negative log-likelihood, i.e., for i.i.d. samples {vi}
N
i=1:

minimize
Θ∈Rd

f(Θ) = −
1

N

N
∑

i=1

log p(vi|Θ) = g(Θ)− h(Θ),

where g(Θ) = log
∑

v

∑

h

exp(−E(v, h; Θ)),

h(Θ) =
1

N

N
∑

i=1

log
∑

h

exp(−E(vi, h; Θ)).

Since a composite function of the convex log-sum-exp

function and linear mapping is convex, training the BM is

DC programming. The gradients of g and h are as follows:

for the parameter θ ∈ Θ,

∇θg(Θ) = −Ep(v,h;Θ) [∇θE(v, h; Θ)] ,

∇θh(Θ) = −Ep(h|v;Θ)p0(v) [∇θE(v, h; Θ)] ,

where p0(v) is the empirical distribution 1
N

∑n
i=1 δ(v =

vi). To run SPD with a diagonal Hessian approximation,

we give diag(∇2
θh(Θ)) based on the formulation:

∇2
θi
h(Θ) = ∇θih(Θ)− (∇θih(Θ))2,

whose derivation can be found in the supplement.

Although for RBMs the second expectation ∇θh(Θ) is

tractable, the first ∇θg(Θ) is not because the expectation

is taken with respect to v and h. Practically, contrastive

divergence (CD) [23] or persistent contrastive divergence

(PCD) [24] is used to obtain a stochastic approximation of

∇θg(Θ). Therefore, we can apply SPD with σ2
h = 0 to

training RBMs. Note that, in each iteration of SPD,∇h(Θ)
is computed at the cost of N evaluations; however, in prac-

tice, this cost is relatively small compared to that of CD /

PCD used in an underlying solver. In fact, previous work

[25] has shown that to obtain a good approximation of the

gradient, a sufficiently large number of Gibbs samples are

required in the CD method.

It is intractable to compute both expectations ∇θg(Θ) and

∇θh(Θ) for general BMs. Therefore, we stochastically

approximate these terms. We use persistent Gibbs sam-

pling [7] to compute the model expectation term ∇θg(Θ).
That is, we obtain new samples v, h in underlying solver by

Gibbs sampling with few steps, initialized at the previous

samples. This procedure is equivalent to PCD for RBMs.

To estimate the data expectation ∇θh(Θ), we adopt self-

normalized importance sampling using mean-field approx-

imation: q(h|µ) =
∏M

j=1 q(h
j), with q(hj = 1) = µj , to

the true distribution p(h|v,Θ). First, we perform following

fixed-point iterations until convergence and obtain q(h|µ),
where µ = (µ1, . . . , µM), as done in [7],

µj ← σ

(

cj +
∑

i

Wijv
i +
∑

k

Jkjµ
k

)

,

Atsushi Nitanda, Taiji Suzuki

where σ is the sigmoid function. Next we draw samples

{hs}
P
s=1 from q(h|µ) and approximate∇θh(Θ) as follows:

∇θh(Θ) ∼ Ep0(v)

[

∑P
s=1−∇θE(v, hs|Θ) · ωs

∑P
s=1 ωs

]

,

where ωs = exp(−E(v,hs;Θ))
q(hs|µ)

is a ratio between joint dis-

tribution and q(h), so that it is computable. This estimate

is asymptotically consistent [26]. Using these approxima-

tions, we can run SPD for learning BMs. For simplicity of

implementation, we may use P = 1 and the expectation

µ instead of a sample h1 to reduce the sampling variance,

even though it may have a relatively large bias, and so the

resulting approximation of ∇h is the same as the mean-

field approximation.

5.1 SPD as The Extension of EM/MCEM Algorithms

In the following we describe the connection between EM,

MCEM algorithms and SPD. Let Θ′ be a current parameter

of a BM, V = {vi}
N
i=1, andH = {hi}

N
i=1 be i.i.d data sam-

ples and corresponding hidden variables, respectively. At

the E-step of the EM algorithm we computes the following

expectation of the log-likelihood of the joint distribution:

Q(Θ,Θ′) =
1

N

∫

p(H|V,Θ′) log p(V,H|Θ)dH

= Ep0(v)p(h|v,Θ′)[−E(v, h; Θ)]− logZ.

In MCEM, the first term of the right hand side is approx-

imated by a Monte Carlo method. This term is a linear

mapping with respect to ∀θ ∈ Θ and its gradient is nothing

else but ∇θh(Θ
′). Combining the fact g(Θ) = logZ, we

conclude thatQ(Θ,Θ′) is the objective function of the sub-

problem of SPD with µ = 0 and the M-step in EM/MCEM

corresponds to solving this sub-problem. Therefore, SPD

can be recognized as an extension of the EM/MCEM algo-

rithm for training BMs with better convergence analyses.

Note that the proximal term of SPD with Lg or Lh convex-

ity does not affect the convergence rate by Theorem 1 and

2, while it facilitates the optimization of the sub-problems

by its strong convexity. Thus, SPD may be the more effi-

cient method than EM/MCEM algorithms.

6 Experiments

In this section, we demonstrate the effectiveness of

AdaSPD on training RBMs and DBMs with the weight de-

cay. Our implementation is done using Theano [27, 28].

We used the binarized MNIST [25] which has 60,000 train-

ing and 10,000 test images (28×28 pixels) of 10 hand-

written digits (0-9) and used CalTech101 Silhouettes [29]

which has 6,364 training and 2,307 test images (28×28 pix-

els) of 101 classes, representing object silhouettes.

Since computing the partition function of BMs is difficult

(except for small RBMs), we used the annealed importance

sampling (AIS) [25] to estimate it with the settings: (i)

for RBM, 500 temperatures spaced uniformly from 0 to

0.5, 4,000 temperatures spaced uniformly from 0.5 to 0.9,

10,000 temperatures spaced uniformly from 0.9 to 1, and

100 particles, (ii) for DBM, 20,000 temperatures spaced

uniformly, and 1,000 particles. Theoretically, AdaSPD

uses a random iteration count R to establish complexity

results to solve problems; however, we always evaluate the

model at the current iteration. The number of underlying

solver iterations T and the suffix averaging parameter α
were set as follows: T = ⌈N/b⌉, αT = ⌈T/2⌉, where N
is the number of data points and b is a mini-batch size. All

parameter settings of AdaSPD used in experiments can be

found in the supplement.

Restricted Boltzmann Machines

We compare AdaSPD to SGD and AdaGrad on RBMs with

15, 25, and 500 hidden units. For metric Hk of AdaSPD,

we tested the diagonal Hessian approximation and scalar

matrices with µ ∈ {10−1, 10−3, 10−5}.

The results are shown in Figure 1. The top row repre-

sents the result for binarized MNIST dataset and the bot-

tom row represents the result for CalTech101 Silhouettes.

The vertical axis is the average (estimated) log-likelihood

on training dataset. As can be seen in the figure, AdaSPDs

showed significantly fast convergence compared to the oth-

ers, although it tends to over-fitting, especially for the 500-

hidden RBM on CalTech101 Silhouettes dataset. For bina-

rized MNIST, the best training log-likelihood of the 500-

hidden RBM was -83.19 and test log-likelihood was -85.83

obtained by AdaSPD with the diagonal Hessian approxi-

mation. These results are comparable to those reported in

[9, 25]. For CalTech101 Silhouettes, the best training log-

likelihood of the 500-hidden RBM was -84.15 obtained by

AdaSPD with the scalar matrix (µ = 10−3) and test log-

likelihood was -109.95 obtained by AdaSPD with the scalar

matrix (µ = 10−1).

Deep Boltzmann Machines

Next, we train two DBMs: one has three-hidden layers

(500-500-1000 hidden units) and the other has four-hidden

layers (500-500-500-1000 hidden units). The results are

shown in Table 2. Stochastic approximation procedure

(SAP) [7] is the standard method for training DBMs. We

should point out that AdaSPD and SAP were run with-

out any sophisticated pre-training such as [7, 8]. Although

AdaSPD showed a little bit worse score than the method us-

ing the best pre-training strategy [8], it outperformed SAP

and was comparable to or better than the other pre-training

methods proposed in [7, 8]. Thus, our experiments showed

the possibility that no pre-training methods can lead to a

better BM model. Figure 2 shows the learning curves for

AdaSPD.

Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines

Training, 15 hidden units Training, 25 hidden units Training, 500 hidden units

MNIST

CalTech101

Silhouettes

Figure 1: Comparison of algorithms on training RBMs with 15, 25, and 500 hidden units. The vertical axis is the average

(estimated) log-likelihood on training dataset. Top row: MNIST, Bottom row: CalTech101 Silhouettes.

Table 2: Comparison of estimated variational lower bound on the log-likelihood of MNIST dataset.

Algorithms
3-hidden layers DBM 4-hidden layers DBM

Train Test Train Test

AdaSPD -82.28 -85.17 -82.85 -85.15

SAP [8] - -128.72 - -128.70

Two-stage pre-training+SAP [8] - -81.84 - -83.25

Pre-Training+SAP [7] -84.49 -85.10 - -

Figure 2: Learning curves for AdaSPD on DBMs.

7 Conclusion

We have proposed the SPD to solve DC programming un-

der the stochastic setting and have given theoretical conver-

gence analyses under several situations. Specifically, we

have shown faster convergence than vanilla stochastic gra-

dient methods when the variance growth condition is satis-

fied. Experiments have shown the effectiveness of AdaSPD

for training RBMs and DBMs without pre-training.

Acknowledgements

This work was partially supported by MEXT kak-

enhi (25730013, 25120012, 26280009, 15H01678 and

15H05707), JST-PRESTO and JST-CREST.

References

[1] T. Pham Dinh and E. B. Souad. Algorithms for

solving a class of nonconvex optimization problems:

Methods of subgradient. In Fermat Days 85: Math-

ematics for Optimization, volume 129 of North-

Holland Mathematics Studies, pages 249–271. Else-

vier, 1986.

[2] A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pon-

til. A DC-programming algorithm for kernel selec-

tion. In Proceedings of the 23rd International Con-

ference on Machine Learning, pages 41–48, 2006.

[3] H. A. Le Thi, L. H. Minh, N. V. Vinh, and T. Pham

Dinh. A DC programming approach for feature selec-

tion in support vector machines learning. Advances

Atsushi Nitanda, Taiji Suzuki

in Data Analysis and Classification, 2(3):259–278,

2008.

[4] A. Ferrer. Representation of a polynomial function as

a difference of convex polynomials, with an applica-

tion. Lectures Notes in Economics and Mathematical

Systems, 502:189–207, 2001.

[5] S. Wang, A. Schwing, and R. Urtasun. Efficient infer-

ence of continuous markov random fields with poly-

nomial potentials. In Advances in Neural Information

Processing Systems 25, pages 936–944. 2014.

[6] A. Ahmadi and G. Hall. Dc decomposition of noncon-

vex polynomials with algebraic techniques. Technical

report, arXiv:1510.01518, 2015.

[7] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann

machines. In Proceeding of The Twelfth International

Conference on Artificial Intelligence and Statistics,

pages 448–455, 2009.

[8] K. Cho, T. Raiko, A Ilin, and J Karhunent. A two-

stage pretraining algorithm for deep Boltzmann ma-

chines. Deep Learning and Unsupervised Feature

Learning NIPS 2012 Workshop, 2012.

[9] D. Carlson, V. Cevher, and L. Carin. Stochastic spec-

tral descent for restricted Boltzmann machines. In

Proceeding of The Eighteenth International Confer-

ence on Artificial Intelligence and Statistics, pages

111–119, 2015.

[10] A. Rakhlin, O. Shamir, and K. Sridharan. Making

gradient descent optimal for strongly convex stochas-

tic optimization. In Proceedings of the 29th Interna-

tional Conference on Machine Learning, pages 449–

456, 2012.

[11] X. Chen, Q. Lin, and J. Pena. Optimal regularized

dual averaging methods for stochastic optimization.

In Advances in Neural Information Processing Sys-

tems 25, pages 395–403. 2012.

[12] S. Ghadimi and G. Lan. Optimal stochastic ap-

proximation algorithms for strongly convex stochas-

tic composite optimization, ii: Shrinking procedures

and optimal algorithms. SIAM Journal on Optimiza-

tion, 23(4):2061–2089, 2013.

[13] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization

methods for large-scale machine learning. Technical

report, arXiv:1606.04838, 2016.

[14] S. Ghadimi and G. Lan. Stochastic first- and zeroth-

order methods for nonconvex stochastic program-

ming. SIAM Journal on Optimization, 23(4):2341–

2368, 2013.

[15] D. Carlson, Y. Hsieh, E. Collins, L. Carin, and

V. Cevher. Stochastic spectral descent for discrete

graphical models. IEEE Journal of Selected Topics

in Signal Processing, 10(2):296–311, 2016.

[16] J. Mairal. Stochastic majorization-minimization al-

gorithms for large-scale optimization. In Advances

in Neural Information Processing Systems 26, pages

2283–2291. 2013.

[17] Y. Nesterov. Gradient methods for minimizing

composite functions. Mathematical Programming,

140(1):125–161, 2013.

[18] S. Amari. Natural gradient works efficiently in learn-

ing. Neural Computation, 10(2):251–276, 1998.

[19] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-

dient methods for online learning and stochastic op-

timization. Journal of Machine Learning Research,

12:2121–2159, 2011.

[20] S. Becker and Y. LeCun. Improving the convergence

of back-propagation learning with second order meth-

ods. Technical report, Department of Computer Sci-

ence, University of Toronto, 1989.

[21] M. Schmidt and N. Le Roux. Fast convergence of

stochastic gradient descent under a strong growth

condition. Technical report, arXiv:1308.6370, 2013.

[22] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo.

A globally convergent incremental Newton method.

Mathematical Programming, 151(1):283–313, 2015.

[23] G. Hinton. Training products of experts by mini-

mizing contrastive divergence. Neural Computation,

14(8):1771–1800, 2002.

[24] T. Tieleman and G. Hinton. Using fast weights to im-

prove persistent contrastive divergence. In Proceed-

ings of the 26th International Conference on Machine

Learning, pages 1033–1040, 2009.

[25] R. Salakhutdinov and I. Murray. On the quantitative

analysis of deep belief networks. In Proceedings of

the 25th International Conference on Machine Learn-

ing, pages 872–879, 2008.

[26] A. B. Owen. Monte Carlo Theory, Methods and Ex-

amples. 2014.

[27] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,

R. Pascanu, G. Desjardins, J. Turian, D. Warde-

Farley, and Y. Bengio. Theano: a CPU and GPU math

expression compiler. In Proceedings of the Python for

Scientific Computing Conference (SciPy), 2010.

[28] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra,

I. Goodfellow, A. Bergeron, N. Bouchard, and

Y. Bengio. Theano: new features and speed im-

provements. Deep Learning and Unsupervised Fea-

ture Learning NIPS 2012 Workshop, 2012.

[29] B. M. Marlin, K. Swersky, B. Chen, and N de Fre-

itas. Inductive principles for restricted Boltzmann

machine learning. In Proceeding of The Thirteenth In-

ternational Conference on Artificial Intelligence and

Statistics, pages 509–516, 2010.

	Introduction
	DC Algorithm
	Stochastic Proximal DC Algorithm
	Metrics
	AdaSPD

	Analysis
	General Case
	Smooth Concave Function
	Polyak-Łojasiewicz Condition
	Total Complexity
	Variance Growth Condition

	Boltzmann Machines
	SPD as The Extension of EM/MCEM Algorithms

	Experiments
	Conclusion

