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Abstract

Coordinate descent methods employ random
partial updates of decision variables in order
to solve huge-scale convex optimization prob-
lems. In this work, we introduce new adap-
tive rules for the random selection of their
updates. By adaptive, we mean that our se-
lection rules are based on the dual residual or
the primal-dual gap estimates and can change
at each iteration. We theoretically character-
ize the performance of our selection rules and
demonstrate improvements over the state-
of-the-art, and extend our theory and algo-
rithms to general convex objectives. Numer-
ical evidence with hinge-loss support vector
machines and Lasso confirm that the practice
follows the theory.

1 Introduction

Coordinate descent methods rely on random partial
updates of decision variables for scalability. Indeed,
due to their space and computational efficiency as well
as their ease of implementation, these methods are the
state-of-the-art for a wide selection of standard ma-
chine learning and signal processing applications [Fu,
1998, Hsieh et al., 2008, Wright, 2015].

Basic coordinate descent methods sample an active co-
ordinate set for optimization uniformly at random, cf.,
Stochastic Dual Coordinate Ascent (SDCA) [Shalev-
Shwartz and Zhang, 2013] and other variants [Fried-
man et al., 2007, 2010, Shalev-Shwartz and Tewari,
2011]. However, recent results suggest that by employ-
ing an appropriately defined non-uniform fixed sam-
pling strategy, the convergence can be improved both
in the theory as well as in practice [Zhao and Zhang,
2014, Necorara et al., 2012, Nesterov, 2012].

In this work, we show that we can surpass the ex-
isting convergence rates by exploiting adaptive sam-
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pling strategies that change the sampling probability
distribution during each iteration. For this purpose,
we adopt the primal-dual framework of Dünner et al.
[2016]. In contast, however, we also handle convex op-
timization problems with general convex regularizers
without assuming strong convexity of the regularizer.

In particular, we consider an adaptive coordinate-wise
duality gap based sampling. Hence, our work can be
viewed as a natural continuation of the work of Csiba
et al. [2015], where the authors introduce an adaptive
version of SDCA for the smoothed hinge-loss support
vector machine (SVM). However, our work generalizes
the gap-based adaptive criterion of [Osokin et al., 2016]
in a nontrivial way to a broader convex optimization
template of the following form:

min
α∈Rn

f(Aα) +
∑
i

gi(αi), (1)

where A is the data matrix, f is a smooth convex func-
tion, and each gi is a general convex function.

The template problem class in (1) includes not only
smoothed hinge-loss SVM, but also Lasso, Ridge Re-
gression, (the dual formulation of the) original hinge-
loss SVM, Logistic Regression, etc. As a result, our
theoretical results for adaptive sampling can also re-
cover the existing results for fixed non-uniform [Zhao
and Zhang, 2014] and uniform [Dünner et al., 2016]
sampling as special cases.

Contributions. Our contributions are as follows:

• We introduce new adaptive and fixed non-uniform
sampling schemes for random coordinate descent
for problems for the template (1).

• To our knowledge, we provide the first conver-
gence rate analysis of coordinate descent methods
with adaptive sampling for problems with general
convex regularizer (i.e., the class in (1)).

• We derive convergence guarantees with arbitrary
sampling distributions for both strongly convex
and the general convex cases, and identify new
convergence improvements.

• We support the theory with numerical evidence
(i.e., Lasso and hinge-loss SVM) and illustrate sig-
nificant performance improvements in practice.
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Outline: Section 2 provides basic theoretical prelimi-
naries. Section 3 describes our theoretical results and
introduces new sampling schemes. Section 4 discusses
the application of our theory to machine learning, and
compares the computational complexity of proposed
sampling methods. Section 5 provides numerical ev-
idence for the new methods. Section 6 discusses our
contributions in the light of existing work.

2 Preliminaries

We recall some concepts from convex optimization
used in the sequel. The convex conjugate of a function
f : Rn → R is defined as f∗(v) := supu∈Rn v>u−f(u).

Definition 2.1. A function f : Rn → R ∪ {+∞} has
B-bounded support if its domain is bounded by B:

f(u) < +∞→ ‖u‖ ≤ B.

Lemma 2.2 (Duality between Lipschitzness and
L-Bounded Support, [Dünner et al., 2016]). Given a
proper convex function g, it holds that g has L-bounded
support if and only if g∗ is L-Lipschitz.

2.1 Our primal-dual setup

In this paper, we develop coordinate descent methods
for the following primal-dual optimization pair:

min
α∈Rn

[
OA(α) := f(Aα) +

∑
i

gi(αi)
]
, (A)

min
w∈Rd

[
OB(w) := f∗(w) +

∑
i

g∗i (−a>i w)
]
, (B)

where we have A = [a1, . . . ,an].

Our primal-dual template generalizes the standard
primal-dual SDCA setup in [Shalev-Shwartz and
Zhang, 2013]. As a result, we can provide gap certifi-
cates for the quality of the numerical solutions while
being applicable to broader set of problems.

Optimality conditions. The first-order optimality
conditions for the problems (A) and (B) are given by

w ∈ ∂f(Aα), −a>i w ∈ ∂gi(αi) ∀i ∈ [n]

Aα ∈ ∂f∗(w), αi ∈ ∂g∗i (−a>i w) ∀i ∈ [n]
(2)

For a proof, see [Bauschke and Combettes, 2011].

Duality gap. The duality gap is the difference be-
tween primal and dual solutions:

G(α,w) := OA(α)− (−OB(w)), (3)

which provides a certificate on the approximation ac-
curacy both the primal and dual objective values.

While always non-negative, under strong duality the
gap reaches zero only in an optimal pair (α?,w?).
When f is differentiable the optimality conditions (2)
write as w? = w(α?) = ∇f(Aα?). We will rely on
the following relationship in our applications:

w = w(α) := ∇f(Aα) .

Choosing this mapping allows for running existing al-
gorithms based on α alone, without the algorithm
needing to take care of w. Nevertheless, the map-
ping allows us to express the gap purely in terms
of the original variable α, at any time: We define
G(α) := G(α,w(α)) = OA(α)− (−OB(w(α))).

Coordinate-wise duality gaps. For our problem
structure of partially separable problems (A) and (B),
it is not hard to show that the duality gap can be
written as a sum of coordinate-wise gaps:

G(α) =
∑
i

Gi(αi) :=
∑
i

(
g∗i (−a>i w)+gi(αi)+αia

>
i w
)

(4)
The relation holds since our mapping w = ∇f(Aα)
invokes the Fenchel-Young inequality for f with an
equality. Moreover, the Fenchel-Young inequality for
gi implies that all Gi(αi)’s are non-negative.

2.2 Dual residuals

We base our fixed non-uniform and adaptive schemes
on the concept of “dual residual,” i.e., a measure of
progress to the optimum of the dual variables α. Here
we assume that w = ∇f(Aα).

Definition 2.3 (Dual Residual. A generalization of
[Csiba et al., 2015]). Consider the primal-dual setting
(A)-(B). Let each gi be µi-strongly convex with con-
vexity parameter µi ≥ 0 ∀i ∈ [n]. For the case µi = 0
we require gi to have a bounded support. Then, given
α, the i-th dual residue on iteration t is given by:

κ
(t)
i := min

u∈∂g∗i (−a>i w(t))
|u− α(t)

i |.

Remark 2.4. Note that for u to be well defined, i.e.,
the subgradient in (6) not to be empty, we need the
domain of g∗ to be the whole space. For µ > 0 this is
given by strong convexity of gi, while for µi = 0 this
follows from the bounded support assumption on gi.

Definition 2.5 (Coherent probability vector, [Csiba
et al., 2015]). We say that probability vector p(t) ∈ Rn
is coherent with the dual residue vector κ(t) if for all

i ∈ [n], we have κ
(t)
i 6= 0 ⇒ p

(t)
i > 0.

Definition 2.6 (t-support set). We call the set

It := {i ∈ [n] : κ
(t)
i 6= 0} ⊆ [n]

a t-support set.
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Lemma 2.7. Suppose that for each i, g∗i is Li-
Lipschitz. Then, ∀i : |κi| ≤ 2Li.

Proof. By Lemma 2.2, the Li-Lipschitzness g∗i implies
Li-bounded support of gi(αi) and therefore |αi| ≤
Li. By writing Lipschitzness as bounded subgradient,
|ui| ≤ Li, and |κi| = |αi − ui| ≤ |αi|+ |ui| ≤ 2Li.

2.3 Coordinate Descent

Algorithm 1 describes the Coordinate Descent (CD)
method in the primal-dual setting (A) and (B). The
method has 3 major steps: Coordinate selection, line-
search along the chosen coordinate, and primal-dual
parameter updates. While the standard CD methods
chooses the coordinates at random with fixed distibu-
tions, we develop adaptive strategies in the sequel that
change the sampling distribution per iteration. The
other steps remain essentially the same.

Algorithm 1 Coordinate Descent

1: Let α(0) := 0 ∈ Rn,w(0) := w(α(0))
2: for t = 0, 1, ..., T do
3: Sample i ∈ [n] randomly according to p(t)

4: Find ∆αi minimizing OA(α(t) + ei∆αi)
5: α(t+1) := α(t) + ei∆αi
6: w(t+1) := w(α(t+1))
7: end for

3 Adaptive Sampling-based CD

Our goal is to find a εB-suboptimal parameterw or εA-
suboptimal parameter α, i.e., OA(α) − OA(α?) ≤ εA
or OB(w) − OB(w?) ≤ εB , for the following pair of
dual optimization problems (A) and (B).

3.1 Key lemma

This subsection introduces a lemma that characterizes
the relationship between any sampling distribution for
the coordinates, denoted as p, and the convergence
rate of the CD method. For this purpose, we build
upon the [Csiba et al., 2015, Lemma 3] to relax the
strong-convexity restrictions on gi’s. That is, we derive
a convergence result for the general convex gi with
coordinate-dependent strong convexity constants µi.
In contrast to [Csiba et al., 2015, Lemma 3], we can
have µi = 0 when gi has bounded support.

Lemma 3.1. Let f be 1/β-smooth and each gi be
µi-strongly convex with convexity parameter µi ≥ 0
∀i ∈ [n]. For the case µi = 0, we require gi to have a
bounded support. Then for any iteration t, any sam-
pling distribution p(t) and any arbitrary si ∈ [0, 1]

∀i ∈ [n], the iterates of the CD method satisfy

E[OA(α(t+1)) |α(t)] ≤ OA(α(t))−
∑
i

sip
(t)
i Gi(α

(t))

−
∑
i

p
(t)
i

(µi(si − s2
i )

2
− s2

i ‖ai‖2

2β

)
|κ(t)
i |

2
,

(5)

here κ
(t)
i is i-th dual residual (see Def. 2.3).

The proof is provided in Appendix A.

Remark 3.2. If in addition to the conditions of
Lemma 3.1 we require p(t) to be coherent with κ(t),

then for any θ ∈ [0,mini∈It p
(t)
i ] it holds that

E[OA(α(t+1)) |α(t)] ≤ OA(α(t))−θG(α(t))+
θ2n2

2
F (t),

(6)

F (t) :=
1

n2βθ

∑
i∈It

(θ(µiβ + ‖ai‖2)

p
(t)
i

− µiβ
)
|κ(t)
i |

2
.

Proof. Since si in Lemma 3.1 is an arbitrary number ∈
[0, 1], we take si = θ

p
(t)
i

for points with i ∈ It and si = 0

for all other points, here θ ∈ [0,mini p
(t)
i ]. Then, (5)

becomes the following, finalizing the proof:

E[OA(α(t+1)) |α(t)] ≤ OA(α(t))− θ
∑
i∈It

Gi(α
(t))

−
∑
i∈It

(µiθ
2
− θ2

p
(t)
i

µiβ + ‖ai‖2

2β

)
|κ(t)
i |

2

= OA(α(t))− θG(α(t))

− θ

2β

∑
i∈It

(
µiβ −

θ(µiβ + ‖ai‖2)

p
(t)
i

)
|κ(t)
i |

2

3.2 Why is the generalization important?

Consider the key lemma with µi = 0. Then, Re-
mark 3.2 implies the following:

E[OA(α(t+1)) |α(t)] ≤ OA(α(t))−θG(α(t))+
θ2n2

2
F (t),

(7)
where

F (t) :=
1

n2β

∑
i∈It

( |κ(t)
i |

2‖ai‖2

p
(t)
i

)
. (8)

Contrary to the strongly convex case, F (t) is positive.
Hence, the sampling distributions derived in [Csiba
et al., 2015] with strongly convex gi are not optimal.

The following theorem generalizes [Zhao and Zhang,
2014, Theorem 5], and [Dünner et al., 2016, Theorem
9] to allow adaptive sampling:
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Theorem 3.3. Assume f is a 1
β -smooth function.

Then, if g∗i is Li-Lipschitz for each i and p(t) is co-
herent with κ(t), then the CD iterates satisfy

E[ε
(t)
A ] ≤

2F ◦n2 +
2ε

(0)
A

pmin

2
pmin

+ t
. (9)

Moreover, we obtain a duality gap G(ᾱ) ≤ ε after an
overall number of iterations T whenever

T ≥ max

{
0,

1

pmin
log
( 2ε

(0)
A

n2pminF ◦

)}
+

5F ◦n2

ε
− 1

pmin
.

(10)

Moreover, when t ≥ T0 with

T0 := max

{
0,

1

pmin
log
( 2ε

(0)
A

n2pminF ◦

)}
+

4F ◦n2

ε
− 2

pmin

(11)
we have the suboptimality bound of E[OA(α(t)) −
OA(α?)] ≤ ε/2. Here ε

(0)
A is the initial dual subop-

timality and F ◦ is an upper bound on E[F (t)] taken
over the random choice of the sampled coordinate at
1, . . . , T0 algorithm iterations.

The proof is provided in Appendix A.

Remark 3.4. We recover [Dünner et al., 2016, The-
orem 9] as a special case of Theorem 3.3 by setting

p
(t)
i = 1

n . We recover [Zhao and Zhang, 2014, Theo-

rem 5] by setting p
(t)
i = Li∑

j Lj
.

3.2.1 Strategy I: Gap-wise sampling

Based on the results above, we first develop sampling
strategies for the CD method based on the decomposi-
bly of the duality gap, i.e., sampling each coordinate
according to its duality gap.

Definition 3.5 (Nonuniformity measure, [Osokin
et al., 2016]). The nonuniformity measure χ(x) of a
vector x ∈ Rn, is defined as:

χ(x) :=
√

1 + n2Var[p],

where p := x
‖x‖1 is the normalized probability vector.

Lemma 3.6. Let x ∈ Rn+. Then, it holds that

‖x‖2 =
χ(x)√
n
‖x‖1.

Proof. The proof follows from Def. 3.5 and

Var[p] = E[p2]− E[p]2 = 1
n‖p‖

2
2 − 1

n2 .

Theorem 3.7. Let f be a 1
β -smooth function. Then,

if g∗i is Li-Lipschitz for each i and p
(t)
i := Gi(α

(t))
G(α(t))

,

then the iterations of the CD method satisfies

E[ε
(t)
A ] ≤

2F ◦g n
2 + 2nε

(0)
A

t+ 2n
, (12)

where F ◦g is an upper bound on E
[
F

(t)
g

]
, where the ex-

pectation is taken over the random choice of the sam-
pled coordinate at iterations 1, . . . , t of the algorithm.

Here
−→
G and

−→
F are defined as follows:

−→
G := (Gi(α

(t)))ni=1,
−→
F := (‖ai‖2|κ(t)

i |
2
)ni=1,

and F
(t)
g is defined analogously to (8):

F (t)
g :=

χ(
−→
F )

nβ(χ(
−→
G))3

∑
i

‖ai‖2|κ(t)
i |

2
. (13)

The proof is provided in Appendix A.

Gap-wise vs. Uniform Sampling: Here we com-
pare the rates obtained by Theorem 3.7 for gap-wise
sampling and Theorem 3.3 for uniform sampling. Ac-
cording to the Theorem 3.3, the rate for any distribu-
tion can be written as follows

E[ε
(t)
A ] ≤

2F ◦n2 +
2ε

(0)
A

pmin

2
pmin

+ t
=

2
βE
[∑

i
|κ(t)

i |
2‖ai‖2

pti

]
+

2ε
(0)
A

pmin

2
pmin

+ t
.

For the uniform distribution (pi = 1/n), this yields

E[ε
(t)
A ] ≤

2n
β E
[∑

i|κ
(t)
i |

2‖ai‖2
]

+ 2nε
(0)
A

2n+ t
. (14)

The rate of gap-wise sampling depends on non-

uniformity measures χ(
−→
G) and χ(

−→
F ):

E[ε
(t)
A ] ≤

2n
β E
[

χ(
−→
F )

(χ(
−→
G))3

∑
i|κ

(t)
i |

2‖ai‖2
]

+ 2nε
(0)
A

2n+ t
.

In the best case for gap-wise sampling the variance in

(|κ(t)
i |

2‖ai‖2)ni=1 is 0, χ(
−→
F ) ≈ 1, and variance of gaps

is maximal χ(
−→
G) ≈

√
n. When this condition holds,

the convergence rate becomes the following:

E[ε
(t)
A ] ≤

2
β
√
n
E
[∑

i|κ
(t)
i |

2‖ai‖2
]

+ 2nε
(0)
A

2n+ t
.

In the worst case scenario, when variance is maximal

in (|κ(t)
i |

2‖ai‖2)ni=1, χ(
−→
F ) ≈

√
n, the rate of gap-wise

sampling is better than of uniform only when the gaps

are non-uniform enough i.e., χ(
−→
G) ≥ n 1

6 .

3.3 Strategy II: Adaptive & Uniform

Instead of minimizing (10), we here find an optimal
sampling distribution as to minimize our bound:

T ≥ 5F ◦n2

ε
+

5ε
(0)
A

εpmin
. (15)
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The number of iterations T is directly proportional to
F ◦ and 1/pmin. Therefore, the optimal distribution p
should minimize F ◦ and 1/pmin at the same time.

We denote the distribution minimizing 1/pmin as sup-
portSet uniform, which is the following rule:

p
(t)
i :=

{
1
mt
, if κ

(t)
i 6= 0

0, otherwise.
(16)

Above, mt is a cardinality of the support set on iter-
ation t. The distribution minimizing F ◦, called adap-
tive:

p
(t)
i :=

|κ(t)
i |‖ai‖∑

j |κ
(t)
j |‖aj‖

. (17)

The mix of the two aforementioned distributions bal-
ances two terms and gives a good suboptimal T in (15).
We define mixed distribution as:

p
(t)
i :=

 σ
mt

+ (1− σ)
|κ(t)

i |‖ai‖∑
j |κ

(t)
j |‖aj‖

, if κ
(t)
i 6= 0

0, otherwise
(18)

where σ ∈ [0, 1]. This distribution gives us the follow-
ing bounds on F ◦ and 1/pmin:

F ◦mix ≤
F ◦ada

1− σ
1

pmin
≤ m

σ
.

and bound on the number of iterations:

T ≥ 5F ◦adan
2

ε(1− σ)
+

5ε
(0)
A m

εσ
. (19)

Above m := maxtmt. Since the process of finding
F ◦ada is rather problematic, a good σ can be found by
replacing F ◦ada with its upper bound and minimizing
(18) w.r.t. σ. Another option is to use a “safe” choice
of σ = 0.5, and provide a balance between two distri-
butions. This strategy benefits from convergence guar-
antees in case of unknown F ◦ada. In the applications
section we use the latter option and call this sampling
variant ada-uniform sampling.

3.4 Variations along the theme

Based on the discussion above, we summarize our new
variants of sampling schemes for Algorithm 1:

• uniform - sample uniformly at random.

• supportSet uniform - sample uniformly at random
inside the support set, defined in (16). The dis-
tribution is recomputed every iteration.

• adaptive - sample adaptively based on dual resid-
ual, defined in (17). The distribution is recom-
puted every iteration.

• ada-uniform - sample based on a mixture between
supportSet uniform and adaptive, defined in (18).
The distribution is recomputed every iteration.

• importance - sample with a fixed non-uniform

variant of adaptive obtained by bounding κ
(t)
i

with 2Li (Lemma 2.7): pi := Li‖ai‖∑
j Lj‖aj‖ . The

distribution is computed only once. When the
data is normalized, this sampling variant coin-
cides with ”importance sampling” of [Zhao and
Zhang, 2014].

• ada-gap - sample randomly based on coordinate-
wise duality gaps, defined in Section 3.2.1. The
distribution is recomputed every iteration.

• gap-per-epoch - Use ada-gap but with updates
per-epoch. The gap-based distribution is only
recomputed at the beginning of each epoch and
stays fixed during each epoch.

Full descriptions of the variants are in Appendix B.

4 Applications

4.1 Lasso and Sparse Logistic Regression

The Lasso and L1-regularized Logistic Regression are
quintessential problems with a general convex regu-
larizer. Given a data matrix A = [a1, . . . ,an] and a
vector y ∈ Rd, the Lasso is stated as:

min
α∈Rn

‖Aα− y‖22 + λ‖α‖1. (20)

Both problems can easily be reformulated in our
primal-dual setting (A)-(B), by choosing gi(αi) :=
λ|αi|. We have f(Aα) := ‖Aα − y‖22 for Lasso, and
f(Aα) is the logistic loss for classification respectively.
To our knowledge, there is no importance sampling or
adaptive sampling techniques for CD in this setting.

Lipschitzing trick. In order to have duality gap
convergence guarantees (Theorem 3.3) we need g∗i to
be Lipschitz continuous, which however is not the case
for gi = |.| being the absolute value function. We
modify the function gi without affecting the iterate
sequence of CD using the “Lipschitzing trick” from
[Dünner et al., 2016], as follows.

According to Lemma 2.2, a proper convex function gi
has bounded support if and only if g∗i is Lipschitz con-
tinuous. We modify gi(αi) = λ|αi| by restricting its
support to the interval with radius B := 1

λ (f(Aα(0))+

λ‖α(0)‖1). Since Algorithm 1 is monotone, we can
choose B big enough to guarantee that α(t) will stay
inside the ball during optimization, i.e. that the algo-
rithm’s iterate sequence will not be affected by B. By
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modifying gi to bounded support of size B, we guar-
antee g∗i to be B-Lipschitz continuous.

ḡi(αi) :=

{
λ|αi|, if |αi| ≤ B
+∞, otherwise

The conjugate of ḡi is:

ḡ∗i (ui) = max
αi:|αi|≤B

uiαi − λ|αi| = B
[
|ui| − λ

]
+
.

Duality gap. Using the gap decomposition (4) we
obtain coordinate-wise duality gaps for modified Lasso
and sparse logistic regression, which now depends on
the chosen parameter B:

G(α) =
∑
i

(
g∗i (−a>i w) + gi(αi) + αia

>
i w
)

(21)

=
∑
i

(
B
[
|a>i w| − λ

]
+

+ λ|αi|+ αia
>
i w
)
.

4.2 Hinge-Loss SVM

Our framework directly covers the original hinge-loss
SVM formulation. The importance sampling tech-
nique [Zhao and Zhang, 2014] are not applicable to
the original hinge-loss, but relies on a smoothed ver-
sion of the hinge-loss, changing the problem.

When ϕi(.) is the hinge-loss, defined as ϕi(s) := [1 −
syi]+, our framework is directly applicable by mapping
the SVM dual problem to our template (A), that is

min
α∈Rn

OA(α) :=
1

n

n∑
i=1

ϕ∗i (−αi) +
λ

2

∥∥∥ 1

λn

n∑
i=1

αiai

∥∥∥2

2
.

(22)
The conjugate of the hinge-loss is ϕ∗i (αi) = αiyi, with
αiyi ∈ [0, 1]. In other words, g∗i (−a>i w) = 1

nϕi(a
>
i w)

in our notation, and f∗(w) = λ
2 ‖w‖

2
2.

Duality gap. Section 2.1 shows that the duality gap
decomposes into a sum of coordinate-wise gaps.

4.3 Computational costs

We discuss the computational costs of the proposed
variants under the different sampling schemes. Table 1
states the costs in detail, where nnz is the number of
non-zero entries in the data matrix A. In the table,
one epoch means n consecutive coordinate updates,
where n is the number features in the Lasso, and is
the number of datapoints in the SVM.

Sampling and probability update In each iter-
ation, we sample a coordinate from a non-uniform
probability distribution. While the straightforward

Table 1: A summary of computational costs

Algorithm Cost per Epoch
uniform O(nnz)
importance O(nnz + n log(n))
gap-per-epoch O(nnz + n log(n))
supportSet-uniform O(n · nnz)
adaptive O(n · nnz)
ada-uniform O(n · nnz)
ada-gap O(n · nnz)

approach requires Θ(n) per sample, it is not hard to
see that this can be improved to Θ(log(n)) when using
a tree data structure to maintain the probability vec-
tor [Nesterov, 2013, Shalev-Shwartz and Wexler, 2016].
The tree structure can be built in O(n log(n)).

Variable update and distribution generation
Computing all dual residuals κi or all coordinate-wise
duality gaps Gi is as expensive as an epoch of the
classic CD method, i.e., we need to do Θ(nnz) opera-
tions (one matrix-vector multiplication). In contrast,
updating one coordinate αi is cheap, being Θ(nnz/n).

Total cost per epoch In a naive implementation,
the most expensive sampling schemes are adaptive,
supportSet-uniform, ada-uniform and ada-gap. Those
completely recompute the sampling distribution after
each iteration, giving a total per-epoch complexity of
O(n · nnz). In contrast, the fixed non-uniform sam-
pling scheme importance requires to build the sam-
pling distribution only once, or once per epoch for
gap-per-epoch (both giving O(nnz) operations). The
complexity of n samplings using the tree structure is
O(n log(n)), the complexity of a variable update is
O(nnz). Overall, the asymptotic complexity therefore
is O(n log(n) + nnz) per epoch, compared to O(nnz)
for simple uniform sampling.

5 Experimental results

We provide numerical evidence for our CD sampling
strategies on two key machine learning problems: The
Lasso and the hinge-loss SVM. All our algorithms and
theory are also directly applicable to sparse logistic
regression and others, but we omit experiments due to
space limitations.

Datasets. The experiments are performed on three
standard datasets listed in Table 2, available1 from the
UCI repository [Asuncion and Newman, 2007]. Note
that rcv1* is a randomly subsampled2 version the rcv1

1www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2We randomly picked 10000 datapoints and 1000 fea-

tures, and then removed zero rows and columns.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Lasso (first two rows) and SVM (bottom row). Comparison of different fixed and adaptive variants of
CD, reporting duality gap and suboptimality measures vs. epochs - rcv1*, mushrooms and ionosphere datasets.
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Figure 2: Lasso on the mushrooms dataset. Perfor-
mance in terms of duality gap and suboptimality, plot-
ted against the total number of vector operations.

dataset. Experiments on the full rcv1 dataset are pro-
vided in Appendix C.

Table 2: Datasets

Dataset d n nnz/(nd) cv = µ(‖ai‖)
σ(‖ai‖)

mushrooms 112 8124 18.8% 1.34
rcv1* 809 7438 0.3% 0.62
ionosphere 351 33 88% 3.07

Setup. For Lasso, the regularization parameter λ in
(20) is set such that the cardinality of the true support
set is between 10% and 15 % of the total number of
features n. We use λ = 0.05 for mushrooms, and λ = 7·

10−4 for rcv1*. For hinge-loss SVM, the regularization
parameter λ is chosen such that the classification error
on the test set was comparable to training error. We
use λ = 0.1 for ionosphere.

Performance. Figures 1 and 2 show the perfor-
mance of all our studied variants of CD. We record
suboptimality and duality gap (see (3)) as the main
measures of algorithm performance. All reported re-
sults are averaged over 5 runs of each algorithm.

Methods with fixed sampling distributions.
For the three efficient sampling schemes, our results
show that CD importance converges faster than CD uni-
form on both datasets for Lasso, however it is worse
than the uniform on SVM. The “mildly” adaptive
strategy gap-per-epoch, based on our coordinate-wise
duality gap theory but computed only per-epoch, sig-
nificantly outperforms both of them. This is observed
both in number of epochs (Figure 1) as well as number
of total vector operations (Figure 2).

Methods with adaptive sampling distributions
For the adaptive methods updating the probabilities
after each coordinate step in Figure 1, we show im-
portance sampling as a baseline method (dashed line).
We see that measured per epoch, all adaptive meth-
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ods outperform the fixed sampling methods.Among all
adaptive methods, the ada-gap algorithm shows better
convergence speed with both suboptimality and dual-
ity gap measures.

Highlights.

• The experiments for Lasso show a clear advantage
of non-uniform sampling over the uniform, and
superiority of the adaptive sampling over the fixed
non-uniform, which is supported by our theory.

• Among the adaptive methods per iteration, the
best performance for both Lasso and SVM in
terms of epochs is by ada-gap, which has proven
convergence bounds (Theorem 3.7), but also has
high computational cost (Θ(d · nnz)).

• The best sampling scheme in terms of total
computational cost is gap-per-epoch, which is
the epoch-wise variant of the ada-gap algorithm
(based on recomputing duality gaps once per
epoch), as shown in Figure 2.

6 A discussion on the results

Coordinate descent methods have a rich history in the
discipline of optimization as well as many machine
learning applications, cf., [Wright, 2015] for a review.

For SVMs, CD related methods have been studied
since their introduction, e.g., by [Friess et al., 1998].
Hsieh et al. [2008] is the first to propose CD in the
partially separable primal-dual setting for hinge-loss.
Theoretical convergence rates beyond the application
of the hinge-loss can be found in the SDCA line of
work [Shalev-Shwartz and Zhang, 2013], which is the
primal-dual analog of the primal-only SGD algorithms.
However, the main limitation of SDCA is that it is only
applicable to strongly convex regularizers, or requires
smoothing techniques [Nesterov, 2005] to be applicable
to general regularizers such as L1. The technique of
Dünner et al. [2016] can extend to the CD algorithms
as well as the primal-dual analysis to the problem class
of interest here, using a bounded set of interest for the
iterates instead of relying on smoothing.

The convergence rate of stochastic methods (such
as CD and SGD) naturally depends on a sampling
probability distribution over the coordinates or data-
points respectively. While virtually all existing meth-
ods use sampling uniformly at random [Hsieh et al.,
2008, Shalev-Shwartz and Tewari, 2011, Lacoste-Julien
et al., 2013, Shalev-Shwartz and Zhang, 2012], recently
[Nesterov, 2012, Qu and Richtárik, 2016, Zhao and
Zhang, 2014, Allen-Zhu et al., 2016] showed that an
appropriately defined fixed non-uniform sampling dis-
tribution, dubbed as importance sampling, can signif-
icantly improve the convergence.

The work of [Csiba et al., 2015] has taken the non-
uniform sampling a step further towards adaptive sam-
pling. While restricted to strongly convex regulariz-
ers, the rates provided for the AdaSDCA algorithm of
[Csiba et al., 2015] - when updating all probabilities
after each step - can beat the ones for uniform and im-
portance sampling. A different approach for adapting
the sampling distribution is proposed in [Osokin et al.,
2016], where the block coordinate Frank-Wolfe algo-
rithm is enhanced with sampling proportional to val-
ues of block-wise duality gaps. An adaptive variant of
SGD is studied by [Papa et al., 2015], where they pro-
posed an adaptive sampling scheme dependent on the
past iterations in a Markovian manner, without giving
explicit convergence rates. Other adaptive heuristics
without proven convergence guarantees include ACF
[Glasmachers and Dogan, 2014] and ACiD [Loshchilov
et al., 2011].

For general convex regularizers such as L1, the de-
velopment of CD algorithms includes [Fu, 1998, Fried-
man et al., 2007, 2010] and more recent extensions also
improving the theoretical convergence rates [Shalev-
Shwartz and Tewari, 2011, Johnson and Guestrin,
2015, Zhao et al., 2014]. All are restricted to uni-
form sampling, and we are not aware of proven conver-
gence rates showing improvements of non-uniform or
even adaptive sampling for unmodified L1 problems.
[Zhao and Zhang, 2014, Allen-Zhu et al., 2016] show
improved rates for non-uniform sampling for L1 but
require a smoothing modification of the original prob-
lem, and are not covering adaptive sampling.

Conclusion. In this work, we have investigated
adaptive rules for adjusting the sampling probabili-
ties in coordinate descent. Our theoretical results pro-
vide improved convergence rates for a more general
class of algorithm schemes on one hand, and optimiza-
tion problems on the other hand, where we are able
to directly analyze CD on general convex objectives
(as opposed to strongly convex regularizers in previ-
ous works). This is particularly useful for L1 prob-
lems and (original) hinge-loss objectives, which were
not covered by previous schemes. Our practical exper-
iments confirm the strong performance of the adaptive
algorithms, and confirm that the behavior predicted by
our theory. Finally, we advocate the use of the com-
putationally efficient gap-per-epoch sampling scheme
in practice. While the scheme is close to the ones sup-
ported by our theory, an explicit primal-dual conver-
gence analysis remains a future research question.
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ported in part by the European Commission under
Grant ERC Future Proof, SNF 200021-146750, and
SNF CRSII2-147633.



Dmytro Perekrestenko, Volkan Cevher, Martin Jaggi

References

Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang
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A Proofs

Lemma’ 3.1. Let f be 1/β-smooth and each gi be
µi-strongly convex with convexity parameter µi ≥ 0
∀i ∈ [n]. For the case µi = 0, we require gi to have a
bounded support. Then for any iteration t, any sam-
pling distribution p(t) and any arbitrary si ∈ [0, 1]
∀i ∈ [n], the iterates of the CD method satisfy

E[OA(α(t+1))|α(t)] ≤ OA(α(t))−
∑
i

sip
(t)
i Gi(α

(t))

−
∑
i

p
(t)
i

(µi(si − s2
i )

2
− s2

i ‖ai‖2

2β

)
|κ(t)
i |

2,

(23)

here κ
(t)
i is i-th dual residual.

Proof. Since in CD update (α(t+1) = α(t) + ei∆αi)
only one coordinate per iteration is changed, the one
iteration improvement in dual objective can be written
as:

OA(α(t))−OA(α(t+1))

=
[
gi(α

(t)
i ) + f(Aα(t))

]
︸ ︷︷ ︸

(A)

−
[
gi(α

(t+1)
i ) + f(Aα(t+1))

]
︸ ︷︷ ︸

(B)

.

To bound part (B) we use a suboptimal update ∆αi =

siκ
(t)
i , for all si ∈ [0, 1]:

(B) = gi(α
(t+1)
i ) + f(Aα(t+1))

≤ min
∆αi

[
gi(α

(t)
i + ∆αi) + f(Aα(t) + ai∆αi)

]
≤ gi(α(t)

i + siκ
(t)
i ) + f(Aα(t) + aisiκ

(t)
i ).

Each of gi is µi-strongly convex, therefore:

gi(α
(t)
i + siκ

(t)
i ) = gi(α

(t)
i + si(u

(t)
i − α

(t)
i ))

= gi(si(u
(t)
i ) + (1− si)(α(t)

i ))

≤ sigi(u(t)
i ) + (1− si)gi(α(t)

i )− µi
2
si(1− si)(κ(t)

i )2.

The function f is 1
β -smooth:

f(Aα(t) + aisiκ
(t)
i )

≤ f(Aα(t)) +∇f(Aα(t))>(siκ
(t)
i ai) +

1

2β
‖siκ(t)

i ai‖
2.

As a result:

(B) ≤ sigi(u(t)
i )− sigi(α(t)

i )− µi
2
si(1− si)(κ(t)

i )2

+ gi(α
(t)
i ) + f(Aα(t))︸ ︷︷ ︸

(A)

+∇f(Aα(t))>(siκ
(t)
i ai)

+
1

2β
‖siκ(t)

i ai‖
2.

With obtained results above and optimality condition
w(α) = ∇f(Aα), the improvement in dual objective
can be written as:

OA(α(t))−OA(α(t+1)) = (A)− (B)

≥ −sigi(u(t)
i ) + sigi(α

(t)
i ) +

µi
2
si(1− si)(κ(t)

i )2

−w(α(t))(siu
(t)
i ai) +w(α(t))(siα

(t)
i ai)−

1

2β
‖siκ(t)

i ai‖
2

= si

(
− gi(u(t)

i ) + gi(α
(t)
i )−w(α(t))(ut−1

i ai)

+w(α(t))(αt−1
i ai) +

µi
2

(1− si)(κ(t)
i )2 − si

2β
‖ai‖2|κ(t)

i |
2
)
.

Since u
(t)
i ∈ ∂g∗i (−a>i w(α(t))), the Fenchel-Young in-

equality becomes equality for gi(u
(t)
i ):

gi(u
(t)
i ) + g∗i (−a>i w(α(t))) = −w(α(t))(u

(t)
i ai)

Using this fact, the bound on the improvement in dual
objective becomes:

OA(α(t))−OA(α(t+1)) ≥ si
(
gi(α

(t)
i ) + g∗i (−a>i w(α(t)))

+w(α(t))(α
(t)
i ai) +

µi
2

(1− si)(κ(t)
i )2 − si

2β
‖ai‖2|κ(t)

i |
2
)

Therefore for any si ∈ [0, 1] it holds that:

OA(α(t))−OA(α(t+1))

≥ si
[
Gi(α

(t)) +
µi
2

(1− si)|κ(t)
i |

2 − si
2β
‖ai‖2|κ(t)

i |
2
]
,

(24)
where Gi is i-th coordinate-wise duality gap:

G(α(t)) =
∑
i

Gi(α
(t))

Gi(α
(t)) = g∗i (−a>i w) + gi(α

(t)
i ) + α

(t)
i a

>
i w.

By taking an expectation of the both sides with respect
to i, conditioned on α(t), we obtain:

E[OA(α(t+1))|α(t)] ≤ OA(α(t))−
∑
i

sip
(t)
i Gi(α

(t))

−
∑
i

p
(t)
i

(µi(si − s2
i )

2
− s2

i ‖ai‖2

2β

)
|κ(t)
i |

2

and thus finalize the proof.
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Theorem’ 3.3. Assume f is 1
β -smooth function.

Then, if g∗i is Li-Lipschitz for each i and p(t) is co-
herent with κ(t), then the iterates of the CD method
satisfies

E[ε
(t)
A ] ≤

2F ◦n2 +
2ε

(0)
A

pmin

2
pmin

+ t
. (25)

Moreover, the overall number of iterations T to obtain
a duality gap G(ᾱ) ≤ ε must satisfy the following:

T ≥ max

{
0,

1

pmin
log
( 2ε

(0)
A

n2pminF ◦

)}
+

5F ◦n2

ε
− 1

pmin
.

(26)
Moreover, when t ≥ T0 with

T0 = max

{
0,

1

pmin
log
( 2ε

(0)
A

n2pminF ◦

)}
+

4F ◦n2

ε
− 2

pmin

(27)
we have the suboptimality bound of E[OA(α(t)) −
OA(α?)] ≤ ε/2, where ε

(0)
A is the initial dual subop-

timality and F ◦ is an upper bound on E[F (t)] taken
over the random choice of the sampled coordinate at
1, . . . , T0 algorithm iterations.

Proof. According to Lemma 2.2 if g∗i is Li-Lipschitz,
then gi has Li-bounded support and the conditions of
Remark 3.2 are satisfied. From Remark 3.2 we know:

E[OA(α(t+1))|α(t)] ≤ OA(α(t))− θG(α(t)) +
θ2n2

2
F (t)

(28)

With OA(α(t))−OA(α(t+1)) = ε
(t)
A − ε

(t+1)
A and ε

(t)
A =

OA(α(t))−OA(α∗) ≤ G(α(t)), this implies:

E[ε
(t+1)
A |α(t)] ≥ ε(t)

A − θε
(t)
A +

θ2n2

2
F (t)

by taking unconditional expectation over all iterations
and using definition of F ◦ we obtain:

E[ε
(t+1)
A ] ≤ (1− θ)E[ε

(t)
A ] +

θ2n2

2
E[F (t)]

≤ (1− θ)E[ε
(t)
A ] +

θ2n2

2
F ◦

Now we will show using induction that we can bound
the dual suboptimality as:

E[ε
(t)
A ] ≤ 2F ◦n2

2
pmin

+ t− t0
, (29)

where t ≥ t0 = max
{

0, 1
pmin

log
( 2ε0A
n2pminF◦

)}
. Indeed,

let’s choose θ = pmin, then the basis of induction at

t = t0 is verified as:

E[ε
(t)
A ] ≤ (1− pmin)tε

(0)
A +

t−1∑
i=0

(1− pmin)ip2
minn

2F
◦

2

≤ e−tpminε
(0)
A + n2pmin

F ◦

2

≤ n2pminF
◦.

Note that if in (29) instead of F ◦ we take F ′◦ := F ◦+
ε
(0)
A

n2pmin
, the condition holds with t0 = 0:

E[ε
(t)
A ] ≤ 2F ′◦n2

2
pmin

+ t
=

2F ◦n2 +
2ε

(0)
A

pmin

2
pmin

+ t
.

Now let’s prove the inductive step, for t > t0. Suppose
claim holds for t− 1, then

E[ε
(t)
A ] ≤ (1− θ)E[ε

(t−1)
A ] + θ2n2F

◦

2

≤ (1− θ) 2F ◦n2

2
pmin

+ (t− 1)− t0
+ θ2n2F

◦

2
,

choosing θ = 2
2

pmin
+t−1−t0

≤ pmin yeilds:

E[ε
(t)
A ] ≤

(
1− 2

2
pmin

+ t− 1− t0

)
2F ◦n2

2
pmin

+ (t− 1)− t0

+

(
2

2
pmin

+ t− 1− t0

)2
F ◦n2

2

=

(
1− 2

2
pmin

+ t− 1− t0

)
2F ◦n2

2
pmin

+ (t− 1)− t0

+

(
1

2
pmin

+ t− 1− t0

)
2F ◦n2

2
pmin

+ (t− 1)− t0

=

(
1− 1

2
pmin

+ t− 1− t0

)
2F ◦n2

2
pmin

+ (t− 1)− t0

=
2F ◦n2

2
pmin

+ (t− 1)− t0

(
2

pmin
+ t− 2− t0

2
pmin

+ t− 1− t0

)

≤ 2F ◦n2

2
pmin

+ t− t0
.

This proves the bound (29) on suboptimality. To
bound the duality gap we sum the inequality (28) over
the interval t = T0 + 1, ..., T and obtain

E[OA(α(T0))−OA(α(T ))]

≥ θE
[ T∑
t=T0+1

OA(α(t−1)) +OB(w(t−1))
]

− (T − T0)
θ2n2

2
F ◦,
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by rearranging terms and choosing w̄ and ᾱ to be the
average vectors over t ∈ {T0, T − 1} we get:

E[G(ᾱ)] = E[OA(ᾱ) +OB(w̄)]

≤ E[OA(α(T0))−OA(α(T ))]

θ(T − T0)
+ θn2F

◦

2
.

If T ≥ 1
pmin

+T0 and T0 ≥ t0, we can set θ = 1/(T−T0)

and combining this with (29) we get:

E[G(ᾱ)] ≤ E[OA(α(T0))−OA(α(T ))] +
F ◦n2

2(T − T0)

≤ E[OA(α(T0))−OA(α∗)] +
F ◦n2

2(T − T0)

≤ 2FTn
2

2
pmin

+ t− t0
+

F ◦n2

2(T − T0)
.

A sufficient condition to bound the duality gap by ε is

that T0 ≥ t0 − 2
pmin

+ 4F◦n2

ε and T ≥ T0 + F◦n2

ε which

also implies E[OA(α(T0)) − OA(α∗)] ≤ ε/2. Since we
also need T0 ≥ t0 and T − T0 ≥ 1

pmin
, the overall

number of iterations should satisfy:

T0 ≥ max
{
t0,

4FTn
2

ε
− 2

pmin
+ t0

}
and

T − T0 ≥ max
{ 1

pmin
,
F ◦n2

ε

}
.

Using a+ b ≥ max(a, b) we finally can bound the total
number of required iterations to reach a duality gap of
ε by:

T ≥ T0 +
1

pmin
+
F ◦n2

ε

≥ t0 +
4F ◦n2

ε
− 1

pmin
+
F ◦n2

ε

= t0 +
5F ◦n2

ε
− 1

pmin

.

This concludes the proof.

Theorem’ 3.7. Let f be a 1
β -smooth function. Then,

if g∗i is Li-Lipschitz for each i and p
(t)
i := Gi(α

(t))
G(α(t))

,

then the iterations of the CD method satisfies

E[ε
(t)
A ] ≤

2F ◦g n
2 + 2nε

(0)
A

t+ 2n
, (30)

where F ◦g is an upper bound on E
[
F

(t)
g

]
, where the ex-

pectation is taken over the random choice of the sam-
pled coordinate at iterations 1, . . . , t of the algorithm.

Here
−→
G and

−→
F are defined as:

−→
G := (Gi(α

(t)))ni=1,
−→
F := (‖ai‖2|κ(t)

i |
2)ni=1,

and F
(t)
g is defined analogously to (8):

F (t)
g :=

χ(
−→
F )

nβ(χ(
−→
G))3

∑
i

‖ai‖2|κ(t)
i |

2. (31)

Proof. We start from the result (23) of Lemma 3.1
when µi = 0:

E[OA(α(t+1))|α(t)] ≤ OA(α(t))−
∑
i

sip
(t)
i Gi(α

(t))

+
∑
i

p
(t)
i

s2
i ‖ai‖2

2β
|κ(t)
i |

2,

by regrouping the elements and subtracting the opti-
mal function value OA(α?) from both sides we obtain:

E[OA(α(t+1))−OA(α?)|α(t)] ≤ OA(α(t))−OA(α?)

−
∑
i

sip
(t)
i Gi(α

(t)) +
∑
i

ptis
2
i

2β
‖ai‖2|κ(t)

i |
2.

With ε
(t)
A := OA(αt)−OA(α∗):

E[ε
(t+1)
A |α(t)] ≤ ε(t)

A −
∑
i

sip
(t)
i Gi(α

(t))

+
∑
i

p
(t)
i s2

i

2β
‖ai‖2|κ(t)

i |
2.

We take p
(t)
i := Gi(α

(t))
G(α(t))

and si := s, then:

E[ε
(t+1)
A |α(t)] ≤ ε(t)

A −
s

G(α(t))

∑
i

(Gi(α
(t)))2

+
s2

2βG(α(t))

∑
i

Gi(α
(t))‖ai‖2|κ(t)

i |
2.

To simplify the following derivation we define a dual-

ity gap vector
−→
G := (Gi(α

(t)))ni=1 and residual vector
−→
F := (‖ai‖2|κ(t)

i |2)ni=1, the inequality becomes:

E[ε
(t+1)
A |α(t)] ≤ ε(t)

A −
s

G(α(t))
‖
−→
G‖22+

s2

2βG(α(t))
〈
−→
G,
−→
F 〉.
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By bounding the last term using the Cauchy-Schwarz

inequality 〈
−→
G,
−→
F 〉 ≤ ‖

−→
G‖2‖

−→
F ‖2 and using Lemma 3.6

we obtain:

E[ε
(t+1)
A |α(t)] ≤ ε(t)

A −
s

G(α(t))
‖
−→
G‖22

+
s2

2βG(α(t))
‖
−→
G‖2‖

−→
F ‖2

= ε
(t)
A −

sG(α(t))(χ(
−→
G))2

n

+
s2χ(
−→
G)χ(

−→
F )
∑
i ‖ai‖2|κ

(t)
i |2

2nβ

≤ ε(t)
A − ε

(t)
A

(χ(
−→
G))2s

n
+
s2χ(
−→
G)χ(

−→
F )
∑
i ‖ai‖2|κ

(t)
i |2

2nβ

=
(

1− (χ(
−→
G))2s

n

)
ε

(t)
A +

s2χ(
−→
G)χ(

−→
F )
∑
i ‖ai‖2|κ

(t)
i |2

2nβ
.

In the third line we have used weak duality, that is

G(α(t)) ≥ ε
(t)
A . Analogously to the proof of Theorem

3.3 we now prove that the suboptimality is bounded
by:

E[ε
(t)
A ] ≤

2F ◦g n
2 + 2nε

(0)
A

t+ 2n
, (32)

where

F ◦g ≥ E
[

χ(
−→
F )

nβ(χ(
−→
G))3

∑
i

‖ai‖2|κ(t)
i |

2

]
.

The basis of induction at t = 0 obviously follows from
the non-negativity of F ◦g .
Now let us prove the induction step, assume that
condition (32) holds at step t, then by taking s :=

2n

(t+2n)(χ(
−→
G))2

we get:

E[ε
(t+1)
A |α(t)] ≤

(
1− (χ(

−→
G))2s

n

)
ε

(t)
A

+
s2χ(
−→
G)χ(

−→
F )
∑
i ‖ai‖2|κ

(t)
i |2

2nβ

≤
(

1− 2

(t+ 2n)

)2F ◦g n
2 + 2nε

(0)
A

t+ 2n

+
2nχ(

−→
F )
∑
i ‖ai‖2|κ

(t)
i |2

β(t+ 2n)2(χ(
−→
G))3

.

(33)

By taking an unconditional expectation of (33) and

bounding by Ĉ := F ◦g n+ ε
(0)
A we obtain:

E[ε
(t+1)
A ] ≤

(
1− 2

(t+ 2n)

) 2nĈ

t+ 2n

+
2n

(t+ 2n)2
E
[
χ(
−→
F )
∑
i ‖ai‖2|κ

(t)
i |2

β(χ(
−→
G))3

]
≤
(

1− 2

(t+ 2n)

) 2nĈ

t+ 2n
+

2nĈ

(t+ 2n)2

=
2nĈ

t+ 2n

(
1− 2

(t+ 2n)
+

1

(t+ 2n)

)
=

2nĈ

t+ 2n

t+ 2n− 1

t+ 2n

≤ 2nĈ

t+ 2n

t+ 2n

t+ 2n+ 1

=
2nĈ

t+ 2n+ 1
.

And this concludes the proof.



Faster Coordinate Descent via Adaptive Importance Sampling

B Algorithms

B.1 Algorithms with fixed sampling

In this subsection we give the coordinate descent algo-
rithms with sampling schemes with fixed probabilities
which we derived the in previous chapter. The basic
Coordinate Descent with uniform sampling for Lasso
was presented in [Shalev-Shwartz and Tewari, 2011,
Algorithm 1]. Coordinate descent for hinge-loss SVM
was given in [Shalev-Shwartz and Zhang, 2013]. Here
we give these algorithms along with their enhanced
fixed non-uniform sampling versions of importance
sampling and heuristic gap-per-epoch sampling, which
is based on initial coordinate-wise duality gaps at the
beginning of each epoch.

Lasso See Algorithms 2, 3. To describe the algo-
rithm the ”soft-threshold” function sτ (w) is defined:

sτ (w) := sign(w)(|w|−τ)+ = sign(w) max
{
|w|−τ, 0

}

Algorithm 2 Coordinate Descent for Lasso (uniform
& importance)

1: Choose mode ∈ [uniform, importance]
2: let α(0) = 0, w(0) = ∇f(Aα(0))
3: switch mode do
4: case uniform
5: pi := 1

n ∀i
6: case importance

7: pi := Li‖ai‖∑
j Lj‖aj‖ ∀i

8: for t = 0,1,... do
9: sample j from [n] according to distribution p

10: let zj = ∂f(Aα(t))
∂αj

11: α
(t+1)
j = sλ(α

(t)
j − zj)

12: w(t+1) = ∇f(Aα(t+1))
13: end for

Algorithm 3 Coordinate Descent for Lasso (gap-per-
epoch)

1: let α(0) = 0, w(0) = ∇f(Aα(0))
2: for t = 0,1,... do
3: if mod(t, n) == 0 then
4: generate probabilities distribution p(t):

pi =
B
[
|a>i w(0)| − λ

]
+

+ λ|α(0)
i |+ α

(0)
i a

>
i w

(0)∑
j

(
B
[
|a>j w(0)| − λ

]
+

+ λ|α(0)
j |+ α

(0)
j a

>
j w

(0)
)

5: end if
6: sample j from [n] according to distribution p

7: let zj = ∂f(Aα(t))
∂αj

8: α
(t+1)
j = sλ(α

(t)
j − zj)

9: w(t+1) = ∇f(Aα(t+1))
10: end for

Hinge-Loss SVM See Algorithms 4, 5

Algorithm 4 Stochastic Dual Coordinate Descent
(uniform & importance)

1: Choose mode ∈ [uniform, importance]
2: let α(0) = 0, w(0) = 0
3: switch mode do
4: case uniform
5: pi := 1

n ∀i
6: case importance

7: pi := Li‖ai‖∑
j Lj‖aj‖ ∀i

8: for t = 0,1,... do
9: sample j from [n] according to distribution p

10: ∆αj = yj max

(
0,min

(
1,

1−yja>j w
(t)

‖aj‖2/(λn) +

yjα
(t)
j

))
− α(t)

j

11: α(t+1) = α(t) + ∆αjej
12: w(t+1) = w(t) + (λn)−1∆αjaj
13: end for
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Algorithm 5 Stochastic Dual Coordinate Descent
(gap-per-epoch)

1: let α(0) = 0, w(0) = 0
2: for t = 0,1,... do
3: if mod(t, n) == 0 then
4: generate probabilities distribution p(t):

pi =
ϕi(a

>
i w)− αiyi + αia

>
i w∑n

j=1

(
ϕj(a>j w)− αjyj + αja>j w

)
5: end if
6: sample j from [n] according to distribution p

7: ∆αj = yj max

(
0,min

(
1,

1−yja>j w
(t)

‖aj‖2/(λn) +

yjα
(t)
j

))
− α(t)

j

8: α(t+1) = α(t) + ∆αjej
9: w(t+1) = w(t) + (λn)−1∆αjaj

10: end for

B.2 Algorithms with adaptive sampling

In this subsection we consider Coordinate Descent
with adaptive sampling schemes. Here we present 4
different schemes:

• supportSet-uniform discussed in Section 3.3,
defined in (16).

• adaptive discussed in Section 3.3, defined in (17).

• ada-uniform discussed in Section 3.3, defined in
(18).

• ada-gap discussed in Section 3.2.1, defined in
Theorem 3.7.

The algorithms with aforementioned sampling schemes
are given below. For Lasso see Algorithms 6, 7, 8 and
9. For hinge-loss SVM see Algorithms 10, 11, 12 and
13.

Algorithm 6 Coordinate Descent (supportSet-
uniform)

1: let α(0) = 0, w(0) = ∇f(Aα(0))
2: for t = 0,1,... do

3: calculate absolute values of dual residuals |κ(t)
j |

for all j ∈ [n]

|κ(t)
j | :=

∣∣∣αj −B · sign(a>i w
(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
4: find t-support set It = {i ∈ [n] : κ

(t)
i 6= 0} ⊆ [n]

5: generate adaptive probabilities distribution
p(t), for each i ∈ [n]:

p
(t)
i :=

{
1
|It| , if κ

(t)
i 6= 0

0, otherwise

6: sample j from [n] according to p(t)

7: let zj = ∂f(Aα(t))
∂αj

8: α
(t+1)
j = sλ(α

(t)
j − zj)

9: w(t+1) := ∇f(Aα(t+1))
10: end for
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Algorithm 7 Coordinate Descent (adaptive)

1: let α(0) = 0, w(0) = ∇f(Aα(0))
2: for t = 0,1,... do

3: calculate absolute values of dual residuals |κ(t)
j |

for all j ∈ [n]

|κ(t)
j | =

∣∣∣αj −B · sign(a>i w
(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
4: generate adaptive probabilities distribution
p(t):

p
(t)
i =

|κ(t)
i |‖ai‖∑

j |κ
(t)
j |‖aj‖

5: sample j from [n] according to p(t)

6: let zj = ∂f(Aα(t))
∂αj

7: α
(t+1)
j = sλ(α

(t)
j − zj)

8: w(t+1) = ∇f(Aα(t+1))
9: end for

Algorithm 8 Coordinate Descent (ada-uniform)

1: let α(0) = 0, w(0) = ∇f(Aα(0))
2: for t = 0,1,... do

3: calculate absolute values of dual residuals |κ(t)
j |

for all j ∈ [n]

|κ(t)
j | =

∣∣∣αj −B · sign(a>i w
(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
4: find t-support set It = {i ∈ [n] : κ

(t)
i 6= 0} ⊆ [n]

5: generate adaptive probabilities distribution
p(t):p

(t)
i = 1

2|It| +
|κ(t)

i |‖ai‖
2
∑

j |κ
(t)
j |‖aj‖

, if κ
(t)
i 6= 0

p
(t)
i = 0, otherwise

6: sample j from [n] according to p(t)

7: let zj = ∂f(Aα(t))
∂αj

8: α
(t+1)
j = sλ(α

(t)
j − zj)

9: w(t+1) = ∇f(Aα(t+1))
10: end for

Algorithm 9 Coordinate Descent (ada-gap)

1: let α(0) = 0, w(0) = ∇f(Aα(0))
2: for t = 0,1,... do

3: calculate feature-wise duality gaps G
(t)
j for all

j ∈ [n]

G
(t)
j = B

[
|a>i w(t)| − λ

]
+

+ λ|α(t)
i |+ α

(t)
i a

>
i w

(t)

4: generate adaptive probabilities distribution
p(t):

p
(t)
i =

G
(t)
i∑

j G
(t)
j

5: sample j from [n] according to p(t)

6: let zj = ∂f(Aα(t))
∂αj

7: α
(t+1)
j = sλ(α

(t)
j − zj)

8: w(t+1) = ∇f(Aα(t+1))
9: end for

Algorithm 10 Stochastic Dual Coordinate Descent
(supportSet-uniform)

1: let α(0) = 0, w(0) = 0
2: for t = 0,1,... do

3: calculate absolute values of dual residuals |κ(t)
j |

for all j ∈ [n]

4: find t-support set It = {i ∈ [n] : κ
(t)
i 6= 0} ⊆ [n]

5: generate adaptive probabilities distribution
p(t), for each i ∈ [n]:

p
(t)
i :=

{
1
|It| , if κ

(t)
i 6= 0

0, otherwise

6: sample j from [n] according to distribution p(t)

7: ∆αj = yj max

(
0,min

(
1,

1−yja>j w
(t)

‖aj‖2/(λn) +

yjα
(t)
j

))
− α(t)

j

8: α(t+1) = α(t) + ∆αjej
9: w(t+1) = w(t) + (λn)−1∆αjaj

10: end for
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Algorithm 11 Stochastic Dual Coordinate Descent
(adaptive)

1: let α(0) = 0, w(0) = 0
2: for t = 0,1,... do

3: calculate absolute values of dual residuals |κ(t)
j |

for all j ∈ [n]
4: generate adaptive probabilities distribution
p(t):

p
(t)
i =

|κ(t)
i |‖ai‖∑

j |κ
(t)
j |‖aj‖

5: sample j from [n] according to distribution p(t)

6: ∆αj = yj max

(
0,min

(
1,

1−yja>j w
(t)

‖aj‖2/(λn) +

yjα
(t)
j

))
− α(t)

j

7: α(t+1) = α(t) + ∆αjej
8: w(t+1) = w(t) + (λn)−1∆αjaj
9: end for

Algorithm 12 Stochastic Dual Coordinate Descent
(ada-uniform)

1: let α(0) = 0, w(0) = 0
2: for t = 0,1,... do

3: calculate absolute values of dual residuals |κ(t)
j |

for all j ∈ [n]

4: find t-support set It = {i ∈ [n] : κ
(t)
i 6= 0} ⊆ [n]

5: generate adaptive probabilities distribution
p(t):p

(t)
i = 1

2|It| +
|κ(t)

i |‖ai‖
2
∑

j |κ
(t)
j |‖aj‖

, if κ
(t)
i 6= 0

p
(t)
i = 0, otherwise

6: sample j from [n] according to distribution p(t)

7: ∆αj = yj max

(
0,min

(
1,

1−yja>j w
(t)

‖aj‖2/(λn) +

yjα
(t)
j

))
− α(t)

j

8: α(t+1) = α(t) + ∆αjej
9: w(t+1) = w(t) + (λn)−1∆αjaj

10: end for

Algorithm 13 Stochastic Dual Coordinate Descent
(ada-gap)

1: let α(0) = 0, w(0) = 0
2: for t = 0,1,... do
3: generate adaptive probabilities distribution
p(t):

pi =
ϕi(a

>
i w)− αiyi + αia

>
i w∑n

j=1

(
ϕj(a>j w)− αjyj + αja>j w

)
4: sample j from [n] according to distribution p(t)

5: ∆αj = yj max

(
0,min

(
1,

1−yja>j w
(t)

‖aj‖2/(λn) +

yjα
(t)
j

))
− α(t)

j

6: α(t+1) = α(t) + ∆αjej
7: w(t+1) = w(t) + (λn)−1∆αjaj
8: end for
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C Experimental results on large
dataset

A comparison of the algorithms with fixed per-epoch
sampling on large dataset rcv1 (see Table 3) is given
in Figures 3 and 4. We use λ = 7 · 10−4 for Lasso and
λ = 0.1 for SVM.

Table 3: Datasets

Dataset d n nnz/(nd) cv = µ(‖ai‖)
σ(‖ai‖)

rcv1 47236 20242 0.16% 0.57
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Figure 3: Lasso on the full rcv1 dataset. Performance
in terms of duality gap and suboptimality
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Figure 4: SVM on the full rcv1 dataset. Performance
in terms of duality gap and suboptimality
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