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Abstract

In supervised learning, a human annotator
only needs to assign each data point (docu-
ment, image, etc.) its correct label. But in
many situations, the human can also provide
richer feedback at essentially no extra cost.
In this paper, we examine a particular type
of feature feedback that has been used, with
some success, in information retrieval and in
computer vision. We formalize two models
of feature feedback, give learning algorithms
for them, and quantify their usefulness in the
learning process. Our experiments also show
the efficacy of these methods.

1 INTRODUCTION

In supervised learning, obtaining a labeled training
data set can be costly: a human labeler needs to scru-
tinize each data point and determine its label. One
approach to reducing this expense is active learning:
the learner intelligently and adaptively decides which
points should be labeled. There are several active
learning methods that work well in practice and enjoy
theoretical guarantees [Settles, 2012, Dasgupta, 2011].
Here we consider a strategy complementary to active
learning: can the human, while examining the data
point, provide not just the label but also the identity
of one or more relevant features?

Consider, for example, a document classification prob-
lem in which a labeler assigns each document z to a
category y (“sports”, “politics”, and so on). While mak-
ing this determination, the labeler might also be able to
highlight a few words that are highly indicative of the
label (e.g. “Congress”, “Obama”, “filibuster”). Figure la

illustrates feature feedback. This additional informa-
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tion can often be provided with minimal extra effort
and might be useful for learning a classifier. Early work
in information retrieval that advocates this auxiliary
feedback is that of Croft and Das [1990]. Since then,
there have been several experimental studies of differ-
ent methods for exploiting this feedback [Raghavan
et al., 2005, Dayanik et al., 2006, Druck et al., 2008,
Raghavan and Allan, 2007, Settles, 2011].

Alternatively, consider a computer vision system that
is learning to recognize different animals. Whenever
it makes a mistake —classifies a “zebra” as a “horse”,
say—a human labeler corrects it. While doing this,
the labeler can also, at no extra cost, highlight a part
of the image (the stripes, for instance) that distin-
guishes the two animals. Recent work on recognizing
different species of birds, for instance, has used this
effectively [Branson et al., 2010].

This kind of feedback is not trivial to model. For
one thing, it is potentially quite ambiguous. Let’s
return to the example of a document about “politics”
in which the labeler highlights the word “filibuster”.
This word is, indeed, predictive of the label, but it is
also so specific that it might not apply to very many
documents. Should “filibuster” be treated as a proxy
for a whole collection of words that co-occur with it,
or possibly a proxy for an entire topic? This seems
reasonable, but what is the right level of granularity
for the topic, or the cluster of co-occurring words?

Similarly, in the computer vision example, suppose
a labeler decides that a bird is a particular type of
robin and provides additional feedback by clicking on
its breast (whose color, for instance, might be a decid-
ing factor). The learner may have some higher-level
representation of the image, for instance a hierarchical
parts decomposition, in which case it will in general
be unclear which of these features the user is refer-
ring to: several features, at different scales, might be
candidates.

In both the text classification and vision examples, we
see that there is the raw input z (document, image),
as well as an intermediate representation z (clusters
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of words, hierarchical parts decomposition) that the
labeler can not access directly. After deciding on the
label y, the labeler indicates one or more coordinates
in z; these indirectly and noisily reference a subset
of features in z, of which some might be relevant to
y and some not. Under this scenario there is some
vagueness in the labeler’s intent: he/she directly acts
on coordinates in x whose selection triggers a subset
of coordinates in z. Figure 1b illustrates vague feature
feedback for the example of document classification.

Contributions. In contrast to the richness of theo-
retical results for label-based active learning, there is
little theoretical work on feature feedback. In this paper
we formalize two models of feature feedback and give
learning algorithms for them, along with theoretical
guarantees. We also provide experimental corrobora-
tion of the efficacy of these methods.

The first model we study is a probabilistic general-
ization of disjunctions. For concreteness, we define
this model specifically in the document-topic setting,
but it applies more generally to the z-z-y situation
described above: the label y of each document z is
assumed to be probabilistically generated from the un-
named intermediate-level features z. We call this the
probabilistic disjunction model (PDM). If we only had
documents and labels, we could try to find a maximum-
likelihood fit for the generative model, but we show
that this is an NP-hard problem. On the other hand,
feature feedback makes learning tractable. We give
an efficient algorithm that exploits this feedback to
learn a PDM. Under simple assumptions, we are able
to guarantee the correctness of this algorithm, as well
as quantify its label complexity.

The PDM model is not as expressive as linear separa-
tors, which are commonly used in document classifica-
tion. To address this, the second situation we study is
learning linear separators from feature feedback. We
suggest a straightforward approach to incorporating
information that a particular feature is relevant: reduc-
ing the degree of regularization on that feature. This
is algorithmically simple and we show that it leads to
better generalization bounds.

The regularization approach to feature feedback has
the drawback of not directly modeling vagueness in the
labeler’s intent. We incorporate this in a bootstrapped
PDM algorithm in which a PDM is first fit to data,
using a small amount of feature feedback, and is then
used to label whichever documents it is confident about.
This augmented training set is then used to train a
linear separator (or any other model of interest).

The rest of the paper is organized as follows. In sec-
tion 2 we review previous work in learning with feature

feedback. In section 3 we lay out the problem of learn-
ing probabilistic disjunctions. We give a hardness result
and in turn, a simple and efficient algorithm for learning
a PDM. Then, in section 4 we study linear separators.
We first provide an improved generalization bound for
feature feedback, and then derive a practical algorithm
for learning a linear support vector machine with fea-
ture feedback (SVM-FF). To cope with the limitations
of the PDM and SVM-FF we propose the bootstrapped
PDM. In section 6 we present a variety of simulation
experiments comparing these methods (PDM, SVM-FF
and bootstrapped PDM) on several benchmark text
categorization data sets. We then conduct a user study
to assess feature feedback in a situation with human
annotators and conclude.

2 RELATED WORK

There is a lot of work on incorporating domain knowl-
edge into learning, for instance by using this knowledge
to construct a preliminary classifier or to set Bayesian
hyperparameters (Schapire et al. [2002], Wu and Srihari
[2004], and Dayanik et al. [2006]).

For feature feedback more specifically, the feedback
model closest in spirit to ours is probably that of
Druck et al. [2007], whose generalized expectation crite-
ria framework incorporates user-supplied feature-label
relationships into the objective function for learning.
Another line of work develops the idea of annotator
rationales (Zaidan et al. [2007], Zaidan and Eisner
[2008], Donahue and Grauman [2011]), in which the
labeler highlights regions of the document that serve
as explanations of the label; these are then used to
generate contrast examples (same document, but with
these regions removed) and the learning procedure
asks for each document to be distinguished from its
contrasting version. This framework involves denser
annotation than we have in mind. A related form of
“contrast example” is considered by Sun and DeJong
[2005], who incorporate this into an SVM framework
and provide generalization bounds—though these are
weaker and less general than our bounds, which have
less requirements on the feedback and apply to any lin-
ear model. Later work by Small et al. [2011] developed
the constrained weight-space SVM framework by allow-
ing annotators to provide ranked features. One further
research thread includes work developed in Melville
et al. [2004, 2005|, Raghavan et al. [2006], Sindhwani
et al. [2009], where active learning is used to incorpo-
rate feature feedback into learning. The framework
there is to identify the most informative features to be
shown to the human, when asked to label an example.

In the above works feature feedback is explicit: informa-
tion about particular (feature, label) associations does
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Figure 1: Models of Feature Feedback

not propagate to others. With the exception of Sun
and DeJong [2005], there is also a lack of theoretical
analysis of the efficacy of the various methods.

3 A PROBABILISTIC
DISJUNCTION MODEL (PDM)

In this section, we define a stochastic model that gen-
erates the label y € {1,2,...,k} of any document d.
The model makes use of an intermediate-level represen-
tation that, for concreteness, we think of as referring
to topics.

Suppose we have a set of T' “topics” as well as a proce-
dure for representing any document as a convex com-
bination 8 = (01,...,07) of these topics (so the 6,
are nonnegative and sum to 1). The details of how
this is done are irrelevant. We will assume that every
topic t € {1,2,...,T} either has an associated label
0(t) € {1,2,...,k} or has £(t) = 7. In the former case,
the topic is a strong predictor of the corresponding
label. In the latter case, the topic is ambiguous, for in-
stance, an overly general topic. We will denote the set
of predictive topics as P = {t : £(t) # ?} and we will as-
sume that every document assigns non-zero probability
to at least one predictive topic, that is, EteP 0, > 0.

The probabilistic disjunction model is a generative pro-
cess for the label of a document:

o Let 6 =(0y,...,07) be the topic representation of
the document.

e Pick a predictive topic at random: choose t € P
with probability proportional to 6;.

e The label of the document is £(t).

Suppose there is no feature feedback; that is, the learner
has access only to a collection of (document, label)

pairs. A reasonable objective, under the above stochas-
tic model, is to find the assignment ¢: {1,2,...,T} —
{1,2,...,k,7} that maximizes the likelihood of the
data. But we can show that merely finding an assign-
ment with non-zero likelihood is NP-hard.

Theorem 1. The following problem is NP-complete:
Given a collection of labeled documents, where each
document is represented as a distribution over topics,
and where k = 2 (binary labels), find an assignment
0:[T] — {0,1,7} with non-zero likelihood.

(Proof in Section A.1.) Feature feedback makes this
intractability go away, as we will see next.

3.1 Learning a PDM with Feature Feedback

The interactive labeling process works as follows:
(a) The labeler gets a batch of (say) 10 documents.
(b) For each document: he/she assigns it a label and
chooses a predictive word (or maybe several words).
This is then repeated until the budget for human inter-
action runs out.

The goal of the learner is to identify the correct mapping
2T — {1,2,...,k,?}. A scheme for doing this is
shown in Algorithm 1. Roughly, when the user tags
a document with label y and identifies relevant words
w1, ..., W, the algorithm picks a set of topics S C [T
triggered by these words and increments a counter ng,
for each ¢ € S. This ny, counts how many times the
user has suggested that topic ¢ is predictive of label y.

The specific mechanism for choosing the set S
based on the feedback, corresponding to the function
select-topics in the pseudocode, is not relevant for
the theoretical results we establish below. In our ex-
perimental work, we use the following strategy: given
feedback words wy, . .., w, for document x, obtain topic
distributions for each of these words in the context of
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document z; call these py,...,p. (distributions over T
topics). Add topic t to the selected set S if the tth
entry of (p1 +---+p.)/c exceeds a predefined threshold.

Algorithm 1 Probabilistic Disjunction Model (PDM)

Input: Collection of unlabeled documents U
Initialize: nyy, = 0,Vt, y
Labeled data set L = ()

repeat
Draw next batch B C U of documents at random
U=U\B
for each document 2 € B do
Receive label y, relevant words wy, . .., we
Add (z,y) to L
S = select-topics(z, w1, . . .
for t € S do
Nty = Nty + 1
end for
end for
until budget runs out

,We)

Assigning a label to each topic. This is summa-
rized in Algorithm 2. The total amount of feedback
received for topic tisn; =Y y Mty If this exceeds some
fixed amount n,, and moreover there is a specific label
y for which ng,, > Any, then we assign £(t) = y. Here A

-~

is a fixed fraction. In all other cases, we set £(t) =?.

Labeling a new document. This prediction rule is
shown in Algorithm 3. Once topics are labeled, the
estimated set of predictive topics is P = {t : £(t) #7}.
Let 0 be the topic distribution for the new document.
The conditional probability that this document has
label y is estimated as

m(y) = L=y b
Zteﬁ 0,

3.2 Theoretical Guarantees

Correctness of topic labeling. In order to show
that the topic labeling algorithm recovers the true la-
bels ¢(t) with high probability, we do not need the
full strength of the PDM assumption. What we re-
quire is that the topics selected by the user are not
systematically misleading. On each round, the machine
associates a set of user-selected topics S with a label
y. Some of these associations may be spurious, for
instance, due to polysemy that the user inadvertently
overlooks. But the same spurious associations should
not occur repeatedly.

To formalize this, first observe that the two sources
of randomness in topic labeling are: (1) the random
selection of documents for labeling, and (2) the possi-
bly stochastic mechanism by which the human selects
helpful words from a document.

Algorithm 2 Topic labeling assignment (TLA)

Input: ny,Vt,y, A, no
for each topic t do
L) =7
ne = Zy Nty
if n: > n, then
Y = argmax,, Ny
if nyy > Ang then
(t) =y
end if
end if
end for

Algorithm 3 PDM prediction rule

Input: Topic representation 6 € [0,1]7 of document d
Initialize: = = 0F
Label topics according to TLA (Algorithm 2)
for eich topic t do

if £(t) # 7 then

w(L(t)) < w(L(L)) + O

end if
end for
Normalize 7 to sum to 1

Assumption 1. For any topic t and any label y # (1),
if we pick a document at random, ask the human for
the label and for helpful words, and look at the induced
set of selected topics,

Pr(label =y | topic t is selected) < \/2.
Meanwhile, for any predictive topic t € P,

Pr(label = ¢(t) | topic t is selected) > 2.

Theorem 2. Pick any 0 < § < 1. Suppose Assump-
tion 1 holds and that we set n, > (6/A) In(Tk)/6. Then

with probability at least 1 — &, for all t € [T] with

~

ng > no, we have £(t) = £(t).

(Proof in Section A.2.)

Label complexity. In order to quantify the amount
of feedback needed to recover the true labels ¢, we
require that the user doesn’t systematically avoid any
informative topics, as follows.

Assumption 2. There is an absolute constant c, for
which the following holds. Pick any t,y such that ¢(t) =
y. Then for any document with topic distribution 6
and label y, if we solicit feature feedback and look at
the induced set of topics,

04

Pr(topic t is selected) > co =———.
Zt’:l(t’):y Oy
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Let 6(z) = (01(x),...,07(x)) be the topic distribution
for any document xz. We define the prevalence of a
predictive topic t € P as

v =E; [ bu(a) ] :

> vepby(2)

where the expectation is over a uniform-random choice
of « from the corpus. Roughly, 7; tells us how common
topic t is relative to other predictive topics, and thereby
how casy it is to estimate £(t).

Theorem 3. Suppose documents are labeled according
to the PDM process. Under Assumption 2, for any
t € P, the expected number of labels needed for ((t) to
be set is at most ny/(coye)-

(Proof in Section A.3.) For fixed constants A and §,
we need n, = O(InTk). If all predictive topics are
equally prevalent then they each have v, = 1/|P|. In
this case, the number of rounds of interaction needed
is O(|P|In(Tk)). This shows the benefit of feature
feedback when only a small fraction of the topics are
predictive (that is, |P| < T).

4 LEARNING LINEAR
SEPARATORS WITH FEATURE
FEEDBACK

We now study feature feedback in the setting where
the goal is to learn a linear classifier by minimizing
a loss function and a regularization penalty. Given a
data set {(x;,y;)}; C RP x Y, the optimization is:

1 n
W = arg min — Zé(w i, ys) + Mwl]?,

w

i=1
where £(+) is a loss function and || - || is some norm. For
SVMs, for instance, £ is the hinge loss and || - || is the

2-norm.

We propose a simple scheme for incorporating informa-
tion about relevant features: reduce the regularization
along those specific dimensions. To achieve this, we
take the regularization norm || - || to be a Mahalanobis
norm, given by a p X p positive definite matrix A:

lz]la = VaT Az = [|A2z]),.

In the absence of feature feedback, A is the identity
matrix [, giving the 2-norm. But if we find that fea-
tures R C [p] are relevant, we downweight the diagonal
matrix in those dimensions: we set A;; = 1/c for rele-
vant features j and A;; = 1 otherwise, for some ¢ > 1.
In spirit, this regularization reweighting is analogous
to increasing the prior on these features in a Bayesian
model, as was done in Settles [2011].

We next study the statistical benefit of this estimator.

4.1 Improved Generalization Error Bounds

Let’s start with a generalization bound for learning
linear classifiers chosen from some set F. Write the
empirical loss function as

N 1 n
L(w) =~ Mw-zi, 1)
i=1

(regularization is incorporated by restricting F to vec-
tors of bounded norm). When the training data (z;, y;)
comes i.i.d. from an (unknown) underlying distribution,
the following seminal result shows the relation of £(w)
to the true loss L(w) = Eg l(w - z,y):

Theorem 4. [Bartlett and Mendelson, 2003] Suppose
the loss function ¢ is Lipschitz in its first argument
and is upper-bounded by a constant My. Then for any
6 > 0, with probability > 1 — & over the choice of data,

LUP) < B+ 2R0(F) + M 20

where R, (F) is the Rademacher complezity of F.

vVfeF:

The key term here is R, (F). In our setup, let w* be a
sparse target classifier of interest and define a feature
as being relevant if it is set in w*. Using a powerful
result of [Kakade et al., 2009], we obtain the following.

Theorem 5. Let R = {j € [p] : w} # 0} denote the
relevant features of w*.

o We can write any x in terms of its relevant and
other components, © = (xg,x,).

o Let A be the diagonal matriz whose jth entry is
1/cif j € R and 1 otherwise.

Then, for the family of linear separators F = {w :
lwlla < ||[w*||a}, we have

1 2
< * . . 2 , 2 =
Ry (F) = [lw”l2 gleag\/(cllxollﬁllxzarIIz) .

(Proof in Section B.1.) In situations where the z, (the
irrelevant portion of the data) has significant norm, this
downweighting by a factor of ¢ substantially reduces
the generalization error bound. Note that this result
requires all relevant features to be revealed in advance.
It remains an open problem to characterize the benefit
when relevant features are gradually disclosed during
rounds of interaction.

4.2 Practical Linear Models with Feature
Feedback

Given training data {(z;,y;)}7; C R? x Y consider
the SVM problem with our Mahalanobis regularizer:
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Algorithm 4 SVM with feature feedback (SVM-FF)

Input: ¢ < 1, unlabeled data set U
Initialize: L =0,A =1,
repeat
Draw next batch B C U of documents
U=U\B
for each document =z € B do
Receive label y, words s
Add (z,y) to L
for j € s do
Ajj =cC
end for
Train linear SVM on {(A~'?z,y) : (z,y) € L}
end for
until budget runs out

Algorithm 5 Bootstrap PDM

Input: Unlabeled data set U, 1o (optionally, ¢ < 1)
Initialize: L = ) (optionally, A = I,,)
repeat
Draw next batch B C U of documents
L=LUB; U=U\B
Train PDM (Algorithm 1) on L
(optionally, update A as in Algorithm 4)
for each document z € U do
I = 0 (documents with inferred labels)
Predict 7(-) over labels according to Algorithm 3
Predict § = argmax,c(1, 5y 7(y')
if 7w(y) > 70 then
Add (z,7) to I
end if
end for
Train any classifier on {(z,y) : (z,y) € LUI}
(optionally, train linear SVM as in Algorithm 4)
until budget runs out

1 N
Sl +C >

i=1
& >0, yi(a]w+b)>1-¢, Vi

minimize
w
subject to

A straightforward derivation shows the following.

Lemma 6. Pick any positive definite p X p ma-
trix A. Then, learning a linear SVM on instances
{(zs,y:)}1~ with Mahalanobis regularizer ||w|a is
equivalent to learning a linear SVM on modified in-
stances {(A~Y2x;,y;)}, with ||w||2 regularization.

(Proof in Section C.) An SVM algorithm with feature
feedback (SVM-FF) is given in Algorithm 4. For each
supplied feature, the corresponding diagonal entries of
A are set to a particular value ¢ < 1 and every labeled
and unlabeled example is weighted by A=1/2. Then, a
standard linear SVM is trained on the weighted labeled
instances.

5 BOOTSTRAPPING THE PDM

The feedback in the regularization approach is explicit:
the regularization will only be applied to features that
the labeler selects. Let’s return to the “filibuster™
“politics” example in the introduction. Even though
the word “filibuster” is a good predictor for “politics”
it is a fairly uncommon word. Hence, not that many
documents will be affected by reducing the regulariza-
tion on it. On the other hand, vague feature feedback
facilitated by the PDM is richer: feedback on “filibuster”
propagates to other words in the same topic. To in-
corporate vague feedback into a linear classifier, we
introduce the bootstrapped PDM (Algorithm 5). Given
a labeled data set L and an unlabeled data set U, the
algorithm fits a PDM to L and uses this PDM to pre-
dict on U. It then infers the labels of a set I C U of
data points for which it is confident. We say that the
PDM is confident on an instance x if its prediction 7
has estimated conditional probability 7 () > 7o (recall
the notation of Algorithm 3), where 7y is a parameter
to be set. One can then train any classifier on LU I. If
the classifier of choice is a linear SVM, one can apply
the mixed regularization, by multiplying every example
by A~1/2 and training a lincar SVM on this weighted
data set of labeled and inferred points.

6 EXPERIMENTS

We conducted experiments on the following 6 bench-
mark text categorization data sets. 20 NewsGroups:
Set of approximately 20,000 documents, partitioned
evenly across 20 newsgroups, containing postings
about politics, sports, technology, religion, science etc.
Reuters-21578: Another widely used collection for
text categorization research. Documents with less than
or with more than one label were eliminated, resulting
in R8 (8 classes) and R52 (52 classes). webkb: Data
set that contains web pages collected from computer
science departments of various universities. cade: Web
pages from the CADE Web Directory, which points to
Brazilian web pages classified by human experts in 12
classes, including services, education, sciences, sports,
culture etc. ohsumed: Medical abstracts from the
MeSH (Medical Subject Headings) data set, belonging
to 23 cardiovascular disease categories. For further de-
tails on the data sets, see section D.1 of the Appendix.
The first five data sets were already processed [Cardoso-
Cachopo, 2007]; we processed ohsumed in the same
manner (stemming, removal of stop words and words
shorter than two characters). As we are interested in
single label documents, we only kept data points that
had only one label. For each document we obtained
its tf-idf and topic representations. For the latter we
trained a Latent Dirichlet Allocation model using the
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collapsed Gibbs sampler [Griffiths and Steyvers, 2004].
The number of topics was 10 times the number of
classes in each data set.

Oracle features. To simulate the labeler’s feedback,
we first generated a list of oracle features for each
class as follows. We first trained a logistic regression
classifier with ¢; regularization and took all the feature
weights that were positive. We then looked at the
level of correlation between these features and the
class labels. Specifically, for various thresholds «, we
considered feature j as feedback for class k if P(k|j),
the conditional probability of label k given the presence
in the document of word j, was at least a. We then
tested our models for various values of a. Feature
feedback on a document applied if it contained any of
the words in the list of its label. An example of feature
feedback for the 20ng dataset using the PDM is shown
in figure 4 in the appendix.

Experimental setup. We compared our models to
a linear SVM without feedback. To choose the cost C'
of all SVM classifiers, we only tuned the SVM without
feedback by optimizing the macro-F; score on the grid
{1,10,100,1000}. We then set C for the SVM-FF and
bootstrap PDM models to that value. On the first
few batch iterations we used 2-fold cross validation and
continued with 5-fold in later iterations. We set the rest
of the parameters for PDM, SVM-FF, and bootstrap
PDM as follows: A = 1—107 N =2,c= % and 19 = .75.

Discussion of simulation results. Figures 2 (a-c)
show learning curves for the first 500 data points for
each training data set, divided into 20 batches. For
each batch iteration, we report macro-F; score on the
test set. (See D.2 for a more detailed exposition of the
experimental results.) Across the board, we find that
feedback on a few predictive words helps significantly.
To get a feel of the amount of feature feedback see
figures 11- 12 in D.2. Vague feature feedback (PDM,
bootstrap PDM) is particularly helpful when the la-
beled data set is small. Generous feature feedback (i.e.
a > .5) helps fast convergence when data are scarce
but has a somewhat adverse effect when plenty of la-
beled samples are available. However, this improves for
« > .9. Interestingly, in addition to its superior per-
formance, SVM-FF produces a solution that is much
sparser than that of the SVM, as seen in figure 2d. This
makes sense intuitively, as feature feedback helps the
learning algorithm to focus on important dimensions.

Small vs large data regimes. The simulation re-
sults illustrate that the benefits of feature feedback
diminish asymptotically. We note that since we are
learning a linear classifier, in the limit of enough la-
beled data, we can simply run SVM. Also, the degree

of regularization in the SVM-FF can be adjusted so
that ¢ — 1 as the sample grows. Hence, our methods
are well suited to the fairly common situation where
the amount of labeled data is limited.

Human experiment. To get a sense of the feature
feedback that humans tend to provide and to quantify
the difference in the benefits of a selected feature vs
a random feature, we conducted a small human study
involving 5 annotators. We considered a subset of
the 20ng data set that included points with classes
talk.politics.mideast, comp.graphics, sci.med, rec.autos
and misc.forsale. The annotators provided the labels
of a randomly chosen set of 50 points along with a
number of features via an interface. (See D.3 for de-
tails). For class k, call Si, Nj the set of features
that annotators selected and did not select, respec-
tively. In table 1 we show pg, = |S71k| > jes, PklJ)
and py, = Ilel > jen, P(klj), where the P(k|j)’s are
the conditional probabilities described earlier.

Table 1: Results of Human Experiment

Ps, DN,

misc.forsale  0.63  0.76
rec.autos 0.95 0.82

sci.med 0.96 0.78
comp.graphics 0.83 0.66
talk.politics. mideast 0.98 0.74

Note that pg, is smaller than py, only for the class
misc.forsale because some annotators confused docu-
ments about items for sale with documents with class
comp.graphics and rec.autos. This is not a surprising
effect and we expect to diminish with more labeled
data and with a larger pool of annotators. Across the
board, we find that humans tend to provide words that
are highly predictive of the label.
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