Appendix

Proof of Lemma 2.1. Since unitary transformations preserve dot-products, i.e., (T'(z), T(y)) = (x,y), we
need to show that a group element acting on the image I : R? s R as T,[I(z)] = |J,|~Y21(T; (=
a unitary transformation.

Let J, be the Jacobian of the transformation T, with determinant |J,|. We have
11T, ONF = [ P @)
= /IQ(z) |Jgldz, substituting z = T, " (z) = dx = |Jy| dz
=gl 11O

Hence the transformation given as Ty[I(-)] = |J4|™ 1/2I(T 1(-)) is unitary and thus (T, (1), T,(I")) = (I,I")
for two images I and I’. O

Proof of Theorem 3.1. We first define the notion of U-statistics [21].

U-statistics - Let ¢ : R? — R be a symmetric function of its arguments. Given an ii.d. sequence
X1, X2+ Xi of k(> 2) random variables, the quantity U := ﬁzz;j,i,j:l 9(X;, X;) is known as a
pairwise U-statistics. If (P) = Ex, x,~p g(X1,X2) then U is an unbiased estimate of 6(P).

Our goal is to bound

sup. | (v (2). bre(v)) = ko(e.y)

z,yeX

where

Yre(z) ==Y z(giz),z € X C R

We work with z(-) = \/2/s[cos({w1, ) + 1), ..., cos((ws7 ) + bs] € R® with b; ~ Unif(0, 27) as in [33].

~ T2 ~ 7'2
Let kg, (2,y) = %2 Zi,j:l k(giz,g;y) and kqc(z,y) = ﬁ Zi;ﬁj,i,j:l k(giz, 9;y).-

Using the triangle inequality we have

~

sup ‘<¢RF($),¢RF(U)> - kq,G(x;y)‘ < sup ’<7/’RF(-T);7/}RF(Z,/)> - kq,G(xay)‘

z,yeX z,yeX
A
+ sup kq,G(xvy) - kq,G(xay)) + sup qu(xvy) - kq,G('Ta y)‘
z,y€X z,ye€X
B C
Bounding A.
1

A:= sup |—= z ((2(gi), 2(g59)) — k(gix, g;9)) ’

2
zyeXx IT i

Let us define fij(z,y) = (2(g:i%), 2(9;9)) — k(giz,g;v), and f(z,y) = 1/r*3, . fij(x,y). Since each

of the s independent random variables in the summand of 1/r? > (2(gix), 2(g59)) = 1y (T12
12



> i 2cos({wr, gix) + br) cos((wk, g;y) + bk)> is bounded by [—2, 2], using Hoeffding’s inequality for a given

pair x,y, we have

Pr|f(z,y)| > e/4] < 2exp(—se?/128).

To obtain a uniform convergence guarantee over X, we follow the arguments in [33], relying on covering the
space with an e-net and Lipschitz continuity of the function f(z,y).

. d
Since X is compact, we can find an e-net that covers X with Nx = (M%HI(X)) balls of radius n [12].

Let {cx }1, be the centers of these balls, and let L; denote the Lipschitz constant of f(-,-), i.e., | f(z,y) —
flew,a)l < Lgll(y) — ()|l for all ,y,ck,¢; € X. For any x,y € X, there exists a pair of centers ¢y, ¢
such that [|(y) — ()] < v2n. We will have |f(z,y)| < /2 for all z,y if (i) | f(ck, )| < &, Ver, ¢, and (i)
Ly < ﬁ.

We immediately get the following by applying union bound for all the center pairs (¢, ¢;)

Pr [Uk|f(ck,c1)| > €/4] < 2 N3 exp(—se?/128). (9)

We use Markov inequality to bound the Lipschitz constant of f. By definition, we have L; = Supz’vaz,y

@)l = Ve @yl where Vo, f(e.y) = (2HE0)). We also have By Vay (2( gi2), 2(g59)) =
Vayk(giz, g;v). It follows that

2 2
Buy Vo @00 = Buny 5 3 Vo leloia), o) = |25 3 Vouh(gia®,g07)
z,]T:l . i,j=1
By | 5 D Vaulelgia®). 2ow")
mjl .
<Eump (23 D Ialelgia”). 205"

ij=1

<2E,~p sup ||V.(z(gi7),2(g;9))|?
Z,Y,9i,95

2

<2 wwpsup< ZHV Ty( w;.c||>
2
< 2B W,bup< va T, @)l ||wk||>

S
= 2Bunyp SUPIIVng(w)H%;Q Z >l el
z,9

k=11=1
—2supHV Ty( ZZEw~p\|wk\l|\wzll
k=11=1
1 2 ..
=2SHPHVach(96)I|§;2 Eonplwl®+ Y Eunplwl)® | (wi iid)
%9 k,1=1,k#l

1 S
< 2sup||V,T, (9c)||§$—2 SEpmp || + Z Epmpllw]? (Jensen’s inequality)
.9

13 kl=1,k#l



p

<202 sup ||V.T,(2)|3
r€X,geG

where UIQJ = E(w'w), and T, (x) = gz denotes the transformation corresponding to the group action. If we
assume the group action to be linear, i.e., T,(z + y) = T,(z) + T,(y) and Ty(ax) = aT,(z), which holds
for all group transformations considered in this work (e.g., rotation, translation, scaling or general affine

transformations on image x; permutations of =), we can bound ||V, T,(z)|2 as

||Vng($)H2: sup ||VIT9($)UH

wifluf=1
T hu) — T,
= sup }llirr%) ol + 12) o(7) ‘ (directional derivative of vector valued function T,(-))
wiluf|=1 11"
= Aﬁuﬁl”T‘J(U)H =1

(since Ty(-) is either unitary or is converted to unitary by construction (see Lemma 2.1))

Using Markov inequality, Pr[L3 > ¢] <E(L%)/e, hence we get

2,2
Pr {Lf > = } < Hon

4\/517 e?

Combining Eq. (9) with the above result on Lipschitz continuity, we get

64012)772

i (10)

Pr {sup |f(z,9)| < 5/2] >1—2N%exp(—se?/128) —
Bounding B.

As defined earlier, kg, q(z,y) := ﬁ > izjij=1 k(giz, g;y). From the result of U-statistics literature [21],

it is easy to see that E(ks.c(x,v)) = kq.c(z,y).
Since g1, g2 - - - gr are i.i.d samples, we can consider k, ¢(z,y) as function of r random variables (g1, g2, - - gr)-

Denote qug(:ﬁ, y) as f(g1,92,--- gr) - Now if a variable g, is changed to g;, then we can bound the absolute
difference of the changed and the original function. For the rbf kernel, [k(g,, g;9) — k(g,, g;y)| < 1

1 T
(91,92, Gpre - ) = F (1 Gp—12 G Gpr1 -+ )| = m’ > kgpr, 959) — k(g,w, 99)
i=1.j#p
1 .
-1 Y k(gp,95y) = k(gpe. 9;9)]
J=1.#p
< u — 1
“r(r-1) r

Using bounded difference inequality

PTUf(glagz,-.-gr) _E[f(91792"'9r)]| > %} < 2exp(_252).

The above bound holds for a given pair z,y. Similar to the earlier segment for bounding the first term A,
we use the e-net covering of X and Lipschitz continuity arguments to get a uniform convergence guarantee.
Using a union bound on all pairs of centers, we have

1 . £ —re?
PrUic [Eikger gl g5 30 Maewgien| > 5] <ofew (5-)
i =i




In order to extend the bound from the centers ¢; to all x € X, we use the Lipschitz continuity argument.
Let

h(z,y) = kqa(z,y) — kqa(z,y).

Let Ly, denote the Lipschitz constant of h(-,-), i.e., |h(z,y) —h(ck, c1)| < La||(y)— ()] for all 2, y, ek, ¢ € X.
By the definition of e-net, for any x,y € X, there exists a pair of centers cy, ¢; such that ||(§)— ()| < v2n.

We will have |h(z,y)| < e/2 for all x,y if (i) |h(ck,c1)| < §, Yer, ¢, and (i) Ly, < 45777.
We will again use Markov inequality to bound the Lipschitz constant of h. By definition, we
have Ly = sup, [ Ve h(z,p)| = [[Vayh(z*y*)|, where V, h(z,y) = (g;gxg;) We also have

Eomp Ve yka.c(2,y) = Vaykq.c(a,y). It follows that

Eghu-,gr||Vw7yh(x*vy*)||2 = E917---79r|‘vw7ykq,G(x*ay*)H2 - va,ykqﬂ(x*a y*)HZ
<Eyy .9, IVaykgc(z®, ")

2
1 * *
= Eglv"'7gr 1 va,yk(gim »95Y )
r(r—1) &
i#]
2
Noting Ty, (z) = giz, and k(z,y) = exp — 5 | [z — y’ , we have
Vak(gi; 95y) = Vak(Ty, (), Ty, (y))
1 1 2
= *ﬁvchgi(x)(giI - ij) €Xp (W‘ 9iT — gij > .
Continuing
1 1

Hi > Vz,yk(gix,gjy)H <) Hvz,yk(gix, gjy)H
r(r—1) i#j r(r=1) i#]
V2 :
=1 supz Hvxk(gix,gjy)H (using symmetry of k(-,-))
Tt

= 7“(7“—\/?[)02 sup 2- k:(giz,gjy)HVxT () (giw — gjy)H

(_ﬂl)a S kg, g1V T, (@)[ol (g3 — g,9)]
i#j

V2e~1/2

IN

IN

< sup ||VoTy(@)|l2  (using sup ze™= /") = ge1/2)
g reX,geG 2>0
D) —1/2
< L (using linearity and unitariy of T,(-) as before)

(2

It follows that

2
E(Ly?) < ——.
(Ln") < = c
Now using Markov inequality we have
E(Ly?
P[Ln > x/iJSS (th ),



2
Hence we have for ¢t = (4\/%) ,

2n?E((Ly)? 4n?
bl o € ] BB _ ol
44/2n g2 ec2e?
Hence )
9 —re 647>
Pr[B <g/2)] > 1—2(Nx)“exp ( 5 ) oy
Bounding C.
kg2, y) — kgal e Z k(giz, 99) — — Z k(gix, g;v) ‘
i,j=1,i#j i,j=1
1
:\<ﬁ ) S oo b 5 )
4,j=1,i#j 4,j=1,i=j
< ma ! i k( ) ! i k( ) (since k(-,-) > 0)
XN o iy 95Y)s 5 iTs g5 m )2
= TQ(T_DZ-J-ZI » 9iZ, 959y Tgij:1 -, 9i%, 959y

1
< — (as Gaussian kernel k(-,-) <1)
r

Finally we have
1
sup [(Vnr(@), 6rr(v)) — kqa@y)| A+ B+C e+

z,yeX
with a probability at least 1— 2NX exp ( 128 ) 2NX exp ( T;z ) — (i‘i@d) — (gﬁﬁ ), noting that 012, = d/a2
e -y
for the Gaussian kernel k(z,y) = e~ 207

Let

_ge? ) —rg? 647]2d 64772
p=1-2Nx’ exp( 128 ) —2Nx"exp ( 2 )7(5202 ) B <e€202>

_ _2(2diar:(X))2de p( se? ) _2(2dia77;z(X))2deXp(;52) B (64n2d) B ( 641> )

128 €202 ec?o?
2 —ge2
2 1 22 (iom () exp () + (i) exp (352)) 7 (P )

The above probability is of the form of 1 — (k; + k2)n~2¢ — k3n? where Ky = 2(2diam(X))2d exp (7’;2),
1
Ko = 2(2diam(X))2d exp (7552> and K3 = (64(d+1 ) Choose n = <7’“+“2) ey
d

128 202 K3
Hence p > 1 — 2(k1 + Hg)ﬁnf
For given 01,62 € (0,1), we conclude that for fixed constants Cy, Cs , for

Cid .
r> 712 log(diam(X) /41 ),

Cod .
s> %2 (log(diam(X)/d,) ,

we have

sup ’<¢RF($),¢RF(Z/)> —kga(z,y)| <e+ 1,
z,yeX r

202

_d
with probability 1 — (64<;l+1>) T 5y + 5y) T
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Proof of Theorem 3.2. We give here the proof of Theorem 3.2.

Lemma A.1 (Lemma 4 [35]). - Let X = {x1,22---xx} be @id random variables in a ball H of radius
M centered around the origin in a Hilbert space. Denote their average by X = % ZlK:l x;. Then for any

0 > 0, with probability at least 1 — 6,
1
f( /2105)

Proof. For proof, see [35]. O

X - EX] <

Now consider a space of functions,

7= {1 / /qsgxw Jv(g)des| Ja(w)| < Cp(w) |,

and also consider another space of functions,

7= { @) = Yot st joul < E.
k=1 i=1

where ¢(gz,w) = e~ H97w),

Lemma A.2. Let ;1 be a measure defined on X, and f* a function in Fp. If wi,ws...ws are iid samples
from p(w), then for 61,02 > 0, there exists a function f € F, such that

17l = G5 1y o)+ (1 0 ),

with probability at least 1 — §; — §s.

_f‘

Proof. Consider 9(x;wy) = [, ¢(gz, wr)q(g)dv(g). Let fe = B V(;wg), k=15, with 8 = %. Hence
Eomp i = f*.

Deﬁnlt)a f(az) = %22:1 fk. Let fk(ar) ﬁ 1/3(37 wg), where ﬁ(x;wk) = %22:1 &(g;x,wy) is the empirical
estimate of ¢(z;wy). Define f(z) = 1 f (). We have ngqf(a?) = f(z).

i

w7,

7u) L2(X,p) X,p)

From Lemma 1 of [35], with probabihty 1—46y,

‘ Lo(X,pm) — 55(1 * V 2 log 611)

Since f(z) = L e DI S 8 Erg(gir, wr) and Eg7~qf( z) = f(z) with g; iid (and {w;,};_, fixed beforehand),
we can apply Lemma A.1 with

- J|

gzx ch

We conclude that with a probability at least 1 — s,

172 gy = 3 (15 V21005




Hence, with probability at least 1 — §; — do, we have
C / C 1
<=1 21 — 21
’f (x,u)*\/§< * Og51)+\f< Ogdg)

Theorem A.3 (Estimation error [35]). Let F be a bounded class of functions, sup,cx |f(z)] < C for all
feF. Let V(y;f(zi)) be an L-Lipschitz loss. Then with probability 1 — 0, with respect to training samples
{i,Yiti=1,2...8 (id ~ P), every f satisfies

) < Ev() +arra () + 200 1 1oy tos

where R (F) is the Rademacher complexity of the class F:

N
2 /(@)

and o; are iid symmetric Bernoulli random variables taking value in {—1,1}, with equal probability and are
independent form x;.

.,

O

Ry (F)=E; 0 ngg

Proof. See in [35]. O
Let f € F, and f € f'p then the approximation error is bounded as

Ev(F) = Ev(f) < Bayyr|Vuf(@) - Vyf (@)
< LE|f(z) - /()|

< Ly/ E(f(ac) - f(x))2 (Jensen’s inequaity for y/- concave function)
1 1
gL(J(ﬁ( +4/2 1og51)+%( ﬂ/21og52)>

with probability at least 1 —d; —d2. Now let f}, = arg minfej-p ffv(f) and f = arg minfejg-p Ev(f). We have

ewm%wmwMﬂ=&Um—&dwfwﬁ—gg&u>

feFP
<2fs€u]1:3 ‘5\/ SA\/(JF)‘—&—L(%(I—FM)_F%O_‘_\/@))

_2(4LRN(]:) \‘;](v)leLC 1g(1;>—|—

LC(\}E( +1/2 log 51) +%(1+ 210g§12>>,

with probability at least 1 — § — 01 — do. It is easy to show that Ry (F) < % Taking 0 = §; = do yields
the statement of the theorem.
O
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