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Abstract

Invariance to nuisance transformations is
one of the desirable properties of effec-
tive representations. We consider trans-
formations that form a group and pro-
pose an approach based on kernel meth-
ods to derive local group invariant repre-
sentations. Locality is achieved by defin-
ing a suitable probability distribution over
the group which in turn induces distribu-
tions in the input feature space. We learn
a decision function over these distributions
by appealing to the powerful framework of
kernel methods and generate local invari-
ant random feature maps via kernel ap-
proximations. We show uniform conver-
gence bounds for kernel approximation and
provide generalization bounds for learn-
ing with these features. We evaluate our
method on three real datasets, including
Rotated MNIST and CIFAR-10, and ob-
serve that it outperforms competing kernel
based approaches. The proposed method
also outperforms deep CNN on Rotated-
MNIST and performs comparably to the
recently proposed group-equivariant CNN.

1 Introduction

Effective representation of data plays a key role in
the success of learning algorithms. One of the most
desirable properties of effective representations is be-
ing invariant to nuisance transformations. For in-
stance, convolutional neural networks (CNNs) owe
much of their empirical success to their ability in
capturing local translation invariance through con-
volutional weight sharing and pooling which turns
out to be a useful model prior for images. Capturing
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class sensitive invariance can also result in reduction
in sample complexity [1] which is particularly useful
in label scarce applications. We approach the prob-
lem of learning with invariant representations from a
group theoretical perspective and propose a scalable
framework for incorporating invariance to nuisance
group actions via kernel methods.

At an abstract level, a group is defined as a set G en-
dowed with a notion of product on its elements that
satisfies certain axioms of (i) closure: a,b € G =
the product ab € G, (ii) associativity: (ab)e = a(be),
and (iii) inverse element: for each g € G,3g7! € G
such that gg~! = g7 '¢g = e € G, where e is the
identity element satisfying ge = eg = ¢g,Vg € G.
A group is abelian if the group product is com-
mutative (gh = hg,Vg,h € G). For most practi-
cal applications each element g € G can be seen
as a transformation acting on an input space X,
T, : X — X. The orbit of an element x € X un-
der the action of the group G is defined as the set
O, = {T,(z) | g € G}. The set of all rotations in
a fixed 2-D plane is an example of an infinite group
where the product is defined as the consecutive ap-
plication of two rotations. The orbit of an image
under this rotation group is the infinite set consist-
ing of all rotated versions of the image. The closure
property of the group implies that the orbit of a
point z is invariant under a group action on z, i.e.,
O.i6 = Or1,(2), V9 € G. The reader is referred to [35]
for a more detailed introduction to group theory.

For unimodular groups, which include compact
groups and abelian groups, there exists a so called
unique (up to scaling) Haar measure v that is in-
variant to both left and right group products, i.e.,
v(S) = v(gS) = v(Sg) for all measurable sub-
sets S C G and all g € G, essentially generaliz-
ing the notion of Lebesgue measure to groups. For
a compact group G, Haar measure can be normal-
ized by v(G) (since v(G) < o0) to obtain the nor-
malized Haar measure which assigns a probability
mass to all measurable subsets of G. Normalized
Haar measure can be seen as inducing a uniform



probability distribution on the group. Recently,
Anselmi et al. [1] used the normalized Haar mea-
sure 7 on the group to map each orbit (O, ¢Vz) to a
probability distribution P, on the input space, i.e.,
Pa(A) =o({g | Ty(z) € A}),VA C X. The distri-
bution P, induced by each point z can be taken
as its invariant representation. However, estimating
this distribution directly can be challenging due to
its potentially high dimensional support. Anselmi
et al. [1] propose to capture histogram statistics of
1-dimensional projections of P, ¢ to generate an in-
variant representation that can be used for learn-
ing, e, 6 (@) = 1/1G] Xyeq (T (@), 1) for a
finite group G, where t; are the projection direc-
tions (termed as templates), 1, (+) are some nonlinear
functions that are expected to capture the histogram
statistics. More recently, Mroueh et al. [29] analyzed
the concentration properties of the linear kernel de-
fined over these features and provided generalization
bounds for learning with this linear kernel.

Our point of departure from [1,29] is the observa-
tion that histogram based features may not be the
optimal way to characterize the probability distribu-
tions P, induced by the group on the input space and
their approach has its limitations. First, there is no
principled guidance provided regarding the choice of
nonlinearities 7,. Second, the inner-product of his-
togram based features ({¢*(x)}) approximately in-
duces a Euclidean distance (group-averaged) in the
input space [29] which may render them unsuitable
for learning complex nonlinear decision boundaries
in the input space. Further, locality is achieved by
restricting the uniform distribution to a chosen sub-
set of the group (i.e. elements within the subset are
allowed to transform the input with equal probabil-
ity and elements outside the subset are prohibited)
which can be limiting.

Contributions: In this paper, we address afore-
mentioned points and propose a framework to gener-
ate invariant representations by embedding the orbit
distributions P,|g into a reproducing kernel Hilbert
space (RKHS) [31,39]. We propose to use character-
istic kernels [41] so that the resulting map from the
distributions to the RKHS is injective (one-to-one),
preserving all the moments of the distribution. Our
use of kernel methods to embed orbit distributions
also renders a large body of work on kernel approx-
imation methods at our disposal, which enable us
to scale our proposed method. In particular, we de-
rive invariant features by approximating the kernel
using Nystrom method [16,45] and random Fourier
features (for shift invariant kernels) [32]. The nonlin-
earities in the features (7, (-)) emerge in a principled

manner as a by-product of the kernel approximation.
The RKHS embedding framework also naturally al-
lows us to use more general probability distributions
on the group, apart from the uniform distribution.
This allows us to have better control over selectivity
of the derived features and also becomes a technical
necessity when the group in non-compact. We ex-
periment with three real datasets and observe con-
sistent accuracy improvements over baseline random
Fourier [32] and Nystrom features [16] as well as
over [29]. Further, on Rotated MNIST dataset [22]
we outperform recent invariant deep CNN and RBM
based architectures [37,40], and perform compara-
bly to the more recently proposed group equivariant
deep convolutional nets [11].

2 Formulation

Let the input features belong to a set X C R%. A
group element g € G acts on points from R¢ through
a map Ty : R? — R4, and we use a shorthand no-
tation of gz to denote Ty(x). We use ¢S to denote
the action of a group element g on the set S, i.e.,
gS = {Ty(z) | z € S C X}. We take liberty in
using the same notation to denote the product of
a group element with a subset of the group, i.e.,
gS={gh|heSCG}and Sg={hg|heScCGqG}.

2.1 RKHS embedding of Orbit
distributions

As introduced in the previous section, the orbit of
an element x € X under the action of the group
G is defined as the set Oy = {92 | g € G}. For
all unimodular groups there exists a Haar measure
v : S — R, which is invariant under left and right
group product ie., v(S) = v(gS) = v(Sg) for all
measurable subsets S C G and all g € G. Let ¢()
be the probability density function of a distribution
defined over G. This probability distribution over
the group can be used to map each orbit O, ¢ to
a probability distribution P, ¢ on the input space,
ie., Pya(A) = fg:gxeA q(g)dv(g) VA C X. Note
that P, (O ) = 1 (for an appropriately normal-
ized measure v), and P,g(A) = 0V A for which
AN Om|G = (.

Let H be a reproducing kernel Hilbert space (RKHS)
of functions f : X ~— R induced by kernel k :
X x X +— R, with the inner-product satisfying the re-
producing property, i.e., (f, k(z,-)) = f(z),Vf € H
and (k(z,-), k(z’,-)) = k(z,2"). The RKHS embed-
ding of the distribution P, is given as [39]

H[PI\G] = EZNPI|G]€(Z7 ) (1)



This expectation is well-defined under the probabil-
ity measure P g, which is in turn induced by the
measure v over the group. The support of P, g is
Ol and sampling a point z ~ P, g is equivalent
to sampling the corresponding group element g and
setting z = gax. Thus we can rewrite the RKHS
embedding of Eq. 1 as

WPael = [ Har i@ avia. @)
If the kernel is characteristic this map from distribu-
tions to the RKHS is injective, preserving all the in-
formation about the distribution [41]. All universal
kernels [43] are characteristic when the support set of
the distribution is compact [39]. In addition, many
shift invariant kernels (e.g., Gaussian and Laplacian
kernels) are characteristic on all of R? [17]. For pre-
cise characterization of characteristic shift invariant
kernels, please refer to [42].

For a characteristic kernel the embedding u[Pyq]
can be used as a proxy for P, in learning prob-
lems. To this end, we introduce a hyperkernel
h : H x H — R that defines the similarity between
the RKHS embeddings corresponding to two points
rand 2’ as kg (v, 2") := h(u[Pycl, plPac]). If we
take h to be the linear kernel which is the regular
inner-product in H, we obtain

1Prcls [ Peria) ) 3

// (92, 9'2")q(g)a(g")dv(g)dv(g")

(3)

koc(z,2') =

The kernel kg : X x X — R turns out to be
the expectation of the base kernel k(-,-) under the
predefined probability distribution on the group G.
It trades off locality and group invariance through
appropriately selecting the probability density ¢(-).
Taking g to be a delta function over the Identity
group element gives back the original base kernel
k(-,-) which does not capture any invariance. On the
other hand, if we take ¢ to be the uniform probabil-
ity density, we get the global group invariant kernel
(also termed as Haar integration kernel [20,29])

cla.a') = /G /G kg, o'2')dv(g)du(g),

satisfying the property kg(gz,g'2’) = kg(z,2’) for
any g,9' € G and any z,z’ € X. Haar integral ker-
nel does not preserve any locality information (e.g.,
images of digits 6 and 9 will be placed under same
equivalence class). Strictly speaking, we only need
v to be the normalized right Haar measure satisfy-
ing v(S) = v(Sg), VS C G, Vg € G for the global

(4)

3

group invariance property to hold. A unique (up
to scaling) right Haar measure exists for all locally
compact groups and for all unimodular groups (for
which left and right Haar measures conincide) [35].
All Lie groups (e.g., rotation, translation, scaling,
affine) are locally compact. Additionally, all com-
pact groups (e.g., rotation), abelian groups (e.g.,
translation, scaling), and discrete groups (e.g., per-
mutation) are unimodular. However, the Haar inte-
gration kernel kg (z,z’) of Eq. 4 can only be defined
for compact groups since we need v(G) < oo to keep
the integral finite. Indeed, earlier work has used
Haar integration kernel for compact groups [20, 29]
(however, without the RKHS embedding perspective
provided in our work which motivates the use of a
characteristic base kernel k(-,-)).

A framework allowing more general (non-uniform)
probability distribution on the group serves two pur-
poses: (i) It enables us to operate with non-compact
groups in a principled manner since we only need
fG q(g ) < oo to enable construction of kernels
such that Eq 3 is finite; (ii) It allows for a bet-
ter control over locality of the kernel k, (-, ). Ear-
lier work [1,29] achieves locality by taking a sub-
set Gy C G and restricting the domain of the Haar
integration kernel to be Gy which amounts to hav-
ing a uniform distribution over Gy. A more gen-
eral non-uniform distribution (e.g., a unimodal dis-
tribution with mode at the Identity element of the
group) allows us to smoothly decrease the probabil-
ity of sampling more extreme group transformations
rather than abruptly prohibiting group transforms
falling outside a preselected subset.

2.2 Feature generation via kernel
approximation

The kernel k; ¢ of Eq. 3 can be used for learning
with kernel machines [38], probabilistically trading
off locality and group invariance through appropri-
ately selecting ¢(-). However, kernel based learning
algorithms suffer from scalability issues due to the
need to compute kernel values for all pairs of data
points. In this section, we describe our approach
to obtain local invariant features via approximating

kq.c-

2.2.1 Features using random Fourier
approximation

We first consider the case of shift-invariant base ker-
nel satisfying k(z,2’) = k(z — 2) which is a com-
monly used class of kernels that includes Gaussian
and Laplacian kernels. Many shift-invariant kernels



are characteristic on R? as mentioned in the pre-
vious section. We use the random Fourier features
proposed in [32] that are based on the characteriza-
tion of positive definite functions by Bochner [6,36].
Bochner’s theorem establishes Fourier transform as
a bijective map from finite non-negative Borel mea-
sures on R? to positive definite functions on R%. Ap-
plying it to shift-invariant positive definite kernels
one gets

k(x,x)

=k(z —a')
(5)

where p(-) is the unique probability distribution cor-
responding to the kernel k(- -), assuming the kernel
is properly scaled. We use this characterization to
obtain local group invariant features as follows:

kq, c(z, x
= [ By [0 dlg)ats (gt
= Funp /G /G e~ 0m=9) T g)q(g' v (g)d ()

— B, /G 99 4(9)d (g) /G 9 (g (g)

3

1 —1({w T - i{w x
~ EWNpﬁ e (w gk >Z€ (w,gk >’ (gk ~ q)
k=1 k=1
1 S T T
~ (wj,grT) i(wj, gk ~ o~
N3 e Wi gkm) N e Ik (g~ g, w5 ~ p)
j=1k=1 k=1
= (Yrr(7), YrF(7"))Cs (6)
where
1 T
_ —i{wi,gkz) —i{ws,grT)
Yrr(2) mYF ;6 Ze
e C’.

(7)

We use standard Monte Carlo to approximate both
inner integral over the group and the outer ex-
pectation over w. It is also possible to use quasi
Monte Carlo approximation for the expectation over
w, which has been carefully studied for random
Fourier features [46]. We provide uniform conver-
gence bounds and excess risk bounds for these fea-
tures in Section 3.

The feature map ¢ rp(+) requires us to apply r group
actions to every data point which can be expen-
sive in large data regime. If the group action is
unitary transformation preserving norms and dis-
tances between points (i.e., ||gz|l2 = ||z|]2), the in-
ner product satisfies (z,z’) = (gz, gz’). This can be

2/ eii(xfm/)T“’p(w)dw,Vx,m’,
Rd
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used to transfer the group action from the data to
the sampled template as (w, gz) = (97w, g7 1gz) =
(g7 w, x) [1] without affecting the approximation of
kernel kg4 ¢, as long as the pdf ¢ is symmetric around
the identity element (¢(g) = ¢(¢~')Vg € G). For in-
stance, in the case of images which can be viewed
as a function I : R? — R, one can show the follow-
ing result! regarding group actions (e.g., rotation,
translation, scaling, affine transformation).

Lemma 2.1. Let g be a group element acting on
an image I : R? — R. The group action defined
as Ty[I(x)] = |J,|~Y21(g7 x), Vo, where J, is the
Jacobian of the transformation, is a unitary trans-
formation and satisfies (Ty(I),Ty(I")) = (I,1').

Proof. See appendix. O

The lemma suggests scaling the pixel intensities of
the image by a factor |Jg|’1/2 to make the group ac-
tion unitary. The Jacobian for rotating or translat-
ing an image has determinant 1 obviating the need
for scaling. For general affine transformation, we
need to scale the pixel intensities accordingly to keep
it unitary?.

2.2.2 Features using Nystrom
approximation

Here we consider the case of a general base ker-
nel and derive local group invariant features using
Nystrom approximation [16,45]. Nystrom method
starts with identifying a set of landmark points (also
referred as templates) Z = {z1,..., 25} and approx-
imates each function f € H by its orthogonal pro-
jection onto the subspace spanned by {k(-, z;)}i_;.
Several schemes for identifying the landmark points
have been studied in the literature, including ran-
dom sampling, sampling based on leverage scores,
and clustering based landmark selection [19,21]. We
can choose landmarks from the original set X or
from the orbit gX. Nystrom method approximates
the kernel as k(z,z’) Ky K5 ;Kz., where
Kz, = [k(x,21),...,k(z,2)]" and Kz 7 is square
kernel matrix for the landmark points with K;Z
denoting the pseudo-inverse. )

~
~

Since Kz 7z is a positive semi-definite matrix, let

!This is mentioned in [1] as a remark without a formal
proof. We provide a proof in the appendix for complete-
ness.

2The Jacobian for affine transformation T(x) =
b is its linear component A.

Az +



K} , = LTL, where L € R*k(Kz2)%s We have
kyc(z, 2

)
~ G/GKngzK—Zi_,ZKZ,g’a:/ Q(Q)Q(g/)du(g)dy(gl)
= /G/GKgx7ZLTLKZ’g/x/ q(g)Q(g,)dll(g)dy(g’)

= </GLKZ-,91 q(g)dl/(g)7/GLKZ’gz, q(g)dy(g)>
1 1 <
~ L;ZKZQM’L;ZKZ,,«;M’ s (gk ~ q),
k=1 k=1

where the features are given by

1 s
Ynys(x) = ;LZKZ;ka c RTk(Kz,.2) (8)
k=1

If the base kernel satisfies k(gz,g2’) =
k(x,2'),Vg,z,2’, we can transfer the group
action from the data points to the landmark points
as k(gx,2) = k(g7 tgr,g712) = k(x,g'2) without
affecting the Nystrom approximation of k4 q, as
long as the pdf ¢ is symmetric around the identity
element (¢(g) = q(¢7')Vg € G). This becomes
essential in large data regime where the number
of data points is much larger than the number
of landmarks. For the group action defined in
Lemma 2.1, all dot product kernels (k((z,z’))) and
shift invariant kernels (k(||z — 2’||2)) satisfy this
property.

Remarks:

(1) Earlier work [1,29] has proposed features of the
form ¢ (z) = 1/r 5, 1a((g;2,wk)) where 7a(")
were taken to be step functions 7, (a) = 1(a < hy,)
with preselected thresholds h,.  Nonlinearities
in our proposed local invariant features emerge
naturally as a result of kernel approximation, with
n(z,w) = e**) for ¢Ypp and n(z,w) = k(z,w) for
wNys-

(2) Our work can also be viewed as incorporating
local group invariance in widely used random
Fourier and Nystrom approximation methods,
however this viewpoint overlooks the Hilbert space
embedding perspective motivated in this work.

(3) The kernel k, g defined in Eq. (3) assumes
a linear hyperkernel h : H x H — R over RKHS
embeddings of orbit distributions. It is also possible
to use a nonlinear hyperkernel along the lines of [10]
and [30], and approximate it using a second layer
of random Fourier (RF) or Nystrém features. We
show empirical results for both linear and Gaussian
hyperkernel (approximated using RF features) in
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Sec. 4.

(4) Computational aspects. The complexity
of feature computation is 7Cy 4 rsCy where Cy is
the cost of computing the vanilla random Fourier
or vanilla Nystrom features and Cj is the cost
of computing a group action on a template w.
However same set of templates are used for all data
points so group actions on the templates can be
computed in advance. Structured random Gaussian
templates can also be used in our framework to
speed up the computation of random Fourier fea-
tures Ygr [7,9,23]. Recent approaches for scaling
randomized kernel machines to massive data sizes

and very large number of random features can also
be used [3].

3 Theory

In this section we focus on local invariance learning
using the random feature map ¢ rp defined in Sec-
tion 2.2.1 for the Gaussian base kernel k(-,-). We
first address the uniform convergence of the ran-
dom feature map 1 rpr to the local invariant kernel
kq,c on a set of points M. In other words we show
in Theorem 3.1 that for a sufficiently large number
of random templates s, and group element samples
r, we have (Yrp(z),Yrr(Y)) = k¢c(z,y), for all
points z,y € M. Second we consider a supervised
binary classification setting, and study generaliza-
tion bounds of learning a linear classifier in the local
invariant random feature space ¥ gpr. In a nutshell
Theorem 3.2 shows that linear functions in the ran-
dom feature space (w,¥grp(z)), approximate func-
tions in the RKHS induced by our local invariant
kernel kg .

3.1 Uniform Convergence

Theorem 3.1 provides a uniform convergence bound
of our invariant random feature map ¢ rr for Gaus-
sian base kernel k(-, -).

Theorem 3.1 (Uniform convergence of Fourier Ap-
proximation). Let X be a compact space in R? with
diameter diam(X). Fore > 0,061,942 € (0,1), the fol-
lowing uniform convergence bound holds with proba-

4
bility 1 — (64<d+1>) T8y 4+ 6,) T

€202

sup ’<¢RF($),¢RF(ZI)> - Kyc(z,y) §5+%

z,yeX

for a number of group samples

r> C’lgzlog(diaum(X)/(Sl)7



and a number of random templates

d
s > Uy log(diam(X)/d2),

€
where 07 = Eylw'w] = d/o? is the second moment
of the Fourier transform of the Gaussian base kernel
k, and Cy and Cs are numeric universal constants.

Proof. See Appendix.

3.2 Generalization Bounds

Given a labeled training set S {(Jci,yi) |z; €
X,y €Y = {+1, —1}}, our goal is to learn a deci-
sion function f : X — Y via empirical risk mini-
mization (ERM)

N

S V(if (@)

i=1

1

min &y (f) = N

ferk

where V is convex and L-Lipschitz loss function.
Let &v(f) = EzyuprV (yf(x)) be the expected risk
for f € Hx. According to the representer the-
orem, the solution of ERM is given by f*(-)
Sl atkea(@i ).

We consider linear hyperkernel h in Eq. (3) and
consider Hx, the RKHS induced by the kernel
koc(@y) = Jo Joklgz.ga") alg)aly’) dv(g)dv(g"),
as introduced in Sec. 2.1. Similar to [29], for C' > 0,
we define F, an infinite dimensional space to ap-
proximate Hy (see [33] for a motivation for this ap-
proximation):

Fo={1@) = [ o) | slorwito)aviois]
()] < Cp)},

where ¢(gz,w) = e~49%%)  Similarly define the lin-
{f@)
(@ rr(@)) = Vi, and YO dlgiwn)|lan] <

<}

=0

Theorem 3.2. Let § > 0.Consider the training set
S = {(zi,y;) | @ €X,y; €Y,i=1...N} sam-
pled from the input space and let f} is the empirical
risk minimizer such that f§, = arg min .z Evif) =
%Zf\; V(yif(x;)), then we have with probability
1 =39 (over the training set, random templates and
group elements)

Ev(fi)— min &v(f) <

ear space in the span of Yrp(+), ]:—p = =
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RMSE RMSE w/

Method 2nd layer RF
Original (RF) 14.01 13.78
Original (Nys) 13.97 13.81
Original (GP) 13.48 N/A
Sort-Coulomb (RF) 12.89 12.49
Sort-Coulomb (Nys) 12.83 12.51
Sort-Coulomb (GP) [28]  12.59 N/A
Rand-Coulomb [28] 11.40 N/A
GICDF [29] 12.25 N/A
LGIKA(RF) 10.82 10.05
LGIKA(Nys) 10.87 10.45

Table 1: RMSE on Quantum Machine data
1 1 1 1
O(|—=+—F4+—F—|LCy/log—|.
<<\/ﬁ Vs \/77> & 5)

Proof. See Appendix.

4 Empirical Observations

We evaluate the proposed method (referred as
LGIKA here) on three real datasets. We use Gaus-
sian kernel as the base kernel in all our experi-
ments. For methods that produce random (unsu-
pervised) features, which include the proposed ap-
proach as well as regular random Fourier (abbrv.
as RF) [32] and Nystrom [45] method, we report
performance with: (i) linear decision boundary on
these features (linear SVM or linear regularized least
squares (RLS)), and (ii) nonlinear decision bound-
ary which is realized by having a Gaussian kernel
on top of the features and approximating it through
random Fourier features [32], followed by a linear
SVM or RLS. The later can also be viewed as using
a nonlinear hyperkernel over RKHS embeddings of
orbit distributions (also see Remark (3) at the end of
Sec. 2). Parameters for all the methods are selected
using grid search on a hold-out validation set unless
otherwise stated.

4.1 Quantum Machine dataset

This data consists of 7165 Coulomb matrices of size
23 x 23 (each matrix corresponding to a molecule)
and their associated atomization energies in kcal/-
mol. It is a small subset of a large dataset collected
by Blum and Reymond (2009) [4], and was recently
used by Montavon et al. (2012) [28] for evalua-
tion. The goal is to predict atomization energies



of molecules which is modeled as a regression task.

The atomization energy is known to be invariant to
permutations of rows/columns of the Coulomb ma-
trix which motivates the use of representations in-
variant to the permutation group. We follow the
experimental methodology of [28] and report mean
cross-validation accuracy on the five folds provided
in the dataset. An inner cross-validation is used
for tuning the parameters for each fold as in [28].
We compare the performance of our method with
several baselines in Table 1: (i) Original (GP/R-
F/Nys): Gaussian Process regression on original
Coulomb matrices and its approximation via ran-
dom Fourier (RF) [32] and Nystrom features [45],
(ii) Sort-Coulomb (GP/RF/Nys): GP regression
on sorted Coulomb matrices (sorted according to
row norms) [28] and its approximation, (iii) Rand-
Coulomb: permutation invariant kernel proposed in
[28], and (iv) GICDF': Group invariant CDF (his-
togram) based features proposed in [29]. The re-
sults for Sort-Coulomb (GP) and Rand-Coulomb are
taken directly from [28]. For all RF and Nystrom
based features we use 10k random templates (w).
For GICDF and our method, we sample 70 ran-
dom permutations (r = 70 in Eq. 7) using the same
scheme as in [28]. The proposed LGIKA outper-
forms all these directly competing methods including
Rand-Coulomb and GICDF. Neural network based
features used in [28] can also be used within our
framework but we stick to raw Coulomb matrices
for simplicity sake.

1K~ K/ K] G =20 I — K/ K. G =40
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Figure 1: Kernel approximation error (normalized)
in spectral and Frobenius norms vs number of ran-
dom features, for 20 (left) and 40 (right) group trans-
formations
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Kernel Approximation. We also report empiri-
cal results on approximation error for kernel matrix
(in terms of spectral norm and Frobenius norm) in
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Accuracy Accuracy w/

Method 2nd layer RF
Original (RF) 87.75 88.01
Original (Nys) 88.93 88.98
Original (RBF) 90 N/A
TI-RBM [40] 95.8 N/A
RC-RBM [37] 97.02 N/A
GICDF [29] 93.81 N/A
Z2-CNN [11] 94.97 N/A
P4-CNN [11] 97.72 N/A
LGIKA(RF) 96.83 97.18
LGIKA(Nys) 96.81 97.21

Table 2: Rotated MNIST results

Fig. 4.1. The plots show the approximation error
for different number of group actions as the number
of random Fourier features are increased. The ker-
nel used is the Gaussian kernel. The true kernel has
been computed using 70 group elements randomly
sampled from the permutation group. The normal-
ized error for all the cases goes down with the num-
ber of random Fourier features which is in line with
our theoretical convergence results.

4.2 Rotated MNIST

Rotated MNIST dataset [22] consists of total 62k
images of digits (12k for training and 50k for test),
obtained by rotating original MNIST images by an
angle sampled uniformly between 0 and 2w. We
compare the proposed method with several other
approaches in Table 4.1. We use von-misses dis-
tribution (p(6) = exp(—rcos()) with £ = 0.2, se-
lected using cross-validation) to sample r = 100 ro-
tations. We use s = 7k random templates for both
RF and Nystrom approximations, and use 17k ran-
dom templates for layer-2 RF approximation. The
results for the cited methods in Table 4.1 are di-
rectly taken from the respective papers, except for
GICDF [29] which we implemented ourselves. The
proposed LGIKA outperforms most of the com-
peting methods including deep architectures like
rotation-invariant convolutional RBM (RC-RBM)
[37], transformation invariant RBM (TI-RBM) [40],
and regular deep CNN (Z2-CNN) [11]. Our method
also performs close to the recently proposed group-
equivariant CNN (P4-CNN) [11].

4.3 CIFAR-10

The CIFAR-10 dataset consists of 60k RGB images
(50k/10k for train/test) of size 32 x 32, divided into
10 classes. We consider a sub-group of the affine



Original (RF) [32] LGIKA
1-layer 2-layer 1-layer 2-layer
61.02 62.79 64.19 67.32

Table 3: CIFAR-10 results

group Aff(2) consisting of rotations, translations
and isotropic scaling. Instead of operating with a
distribution (e.g. Gaussian) over this subgroup, we
use three individual distributions to have better con-
trol over the three variations: a log-normal distri-
bution over the scaling group (¢ = 0,0 = 0.3),
a Gaussian distribution over the translation group
(v =0,0 =0.3), and a von-misses distribution over
the rotation group (k = 9). We observe that working
with wider distributions over these groups actually
hurts the performance, highlighting the importance
of locality for CIFAR-10. We use the normalized
pixel intensities as our input features and use the
group action defined in Lemma 2.1 to keep it unitary.
We use s = 10k random templates and r = 50 group
transforms for the first layer RF features (Eq. 7),
and use 30k random templates for second layer RF
features. The proposed LGIKA outperforms vanilla
RF features as shown in Table 4.3. Nystrom based
features gave similar results as random Fourier fea-
tures in our early explorations. We were not able to
scale GICDF [29] to a suitable number of random
templates due to memory issues (for every random
template, GICDF generates n features (number of
bins, set to 25 following [29]) blowing up the overall
feature dimension to n x 10k). Note that the per-
formance of LGIKA on this data is still significantly
worse than deep CNNs [11] since LGIKA treats the
image as a vector ignoring the spatial neighbor-
hood structure taken into account by CNNs through
translation invariance over small image patches. In-
corporating orbit statistics of image patches in our
framework is left for future work.

5 Related Work

Invariant Kernel Methods. [2] introduced Tomo-
graphic Probabilistic Representations (TPR) that
embed orbits to probability distributions. Unlike
TPR, our representation maps orbits or local por-
tions of the orbit via kernel mean embedding to an
RKHS and allows to define similarity between orbits
in this space. Indeed our representation is infinite
dimensional and is related to Haar Invariant Ker-
nel [20]. As discussed earlier it can be approximated
via random features or Nystrom sampling. Other
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approaches for building invariant kernels were de-
fined in [44] that focuses on dilation invariances. A
kernel view of histogram of gradients was introduced
in [5], where finite dimensional features were defined
through kernel PCA. Kernel convolutional networks
introduced in [27], [26], considers the composition
of multilayer kernels, where local image patches are
represented as points in a reproducing kernel. How-
ever they do not consider general group invariances.
The work of [12] considers the general problem of
learning from conditional distributions. When ap-
plied to invariant learning, their optimization ap-
proach needs to sample a group transformed exam-
ple in every SGD iteration whereas our approach
allows working with group actions on the random
templates.

Invariance in Neural Networks. Inducing in-
variances in neural networks has attracted many re-
cent research streams. It is now well established that
convolutional neural networks (CNN) [24] ensure
translation invariance. [15] showed that mapping or-
bits of rotated and flipped images through a shared
fully connected network builds some invariance in
the network. Scattering networks [8] have built in
invariances for the roto-translation group. [18] gen-
eralizes CNN to general group transformations. [14]
exploits cyclic symmetry to have invariant predic-
tion in the network. More recently, [11] designs a
convolutional neural network that is equivariant to
group transforms by introducing convolution over
the group.

6 Concluding Remarks

The proposed approach can be suitable for large-
scale problems, benefiting from the recent advances
in scalability of randomized kernel methods [3, 13,
25].  As a future direction, we would like to ex-
tend our framework to operate at the level of image
patches, enabling us to capture local spatial struc-
ture. Further, the proposed approach requires com-
putation of all r group transformations for all the
sampled random templates. Reducing the required
number of group transformations is an important
direction for future work. Our work also assumes
that the appropriate group actions are given. Ex-
tension to the case when the group transformations
are learned from the data (e.g., using local tangent
space [34]) is also an important direction for future
work.

Acknowledgments: We thank Dmitry Malioutov
for several insightful discussions. This work was
done while Anant Raj was a summer intern at IBM
Research.
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