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Abstract

In this paper, we develop new test statis-
tics for private hypothesis testing. These
statistics are designed specifically so that
their asymptotic distributions, after account-
ing for noise added for privacy concerns,
match the asymptotics of the classical (non-
private) chi-square tests for testing if the
multinomial data parameters lie in lower di-
mensional manifolds (examples include good-
ness of fit and independence testing). Em-
pirically, these new test statistics outperform
prior work, which focused on noisy versions
of existing statistics.

1 Introduction

In 2008, Homer et al. [13] published a proof-of-concept
attack showing that participation of individuals in sci-
entific studies can be inferred from aggregate data
typically published in genome-wide association studies
(GWAS). Since then, there has been renewed interest
in protecting confidentiality of participants in scien-
tific data [14, 21, 25, 19] using privacy definitions such
as differential privacy and its variations [7, 6, 3, 5].

An important tool in statistical inference is hypothesis
testing, a general framework for determining whether
a given model — called the null hypothesis Hy — of a
population should be rejected based on a sample from
the population. One of the main benefits of hypothesis
testing is that it gives a way to control the probability
of false discovery or Type I error — falsely concluding
that a model should be rejected when it is indeed true.
Type II error is the probability of failing to reject Hy
when it is false. Typically, scientists want a test that
guarantees a pre-specified Type I error (say 0.05) and
has high power — complement of Type II error.
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The standard approach to hypothesis testing is to
(1) estimate the model parameters from the data,
(2) compute a test statistic T (a function of the data
and the model parameters), (3) determine the (asymp-
totic) distribution of T under the assumption that the
model generated the data, (4) compute the p-value
(Type I error) as the probability of T being more ex-
treme than the realized value from the data.’

Our main contribution is a general template for creat-
ing test statistics involving categorical data. Empiri-
cally, they improve on the power of previous work on
differentially private hypothesis testing [12, 23], while
maintaining at most some given Type I error. Our ap-
proach is to select certain properties of non-private hy-
pothesis tests (e.g., their asymptotic distributions) and
then build new test statistics that match these proper-
ties when Gaussian noise is added (e.g., to achieve con-
centrated differential privacy [5, 3] or (approzimate)
differential privacy [6]). Although the test statistics
are designed with Gaussian noise in mind, other noise
distributions can be applied, e.g. Laplace.?

We point out that implications of this work extend be-
yond simply alleviating privacy concerns. In adaptive
data analysis, data may be reused for multiple analy-
ses, each of which may depend on previous outcomes
thus potentially overfitting. This problem was recently
studied in the computer science literature by Dwork
et al. [8], who show that differential privacy can help
prevent overfitting despite reusing data. There have
been several follow up works [9, 4, 1] that improve
and extend the connection between differential privacy
and generalization guarantees in adaptive data analy-
sis. Specifically, [17] deals with post-selection hypoth-
esis testing where they can ensure a bound on Type I
error even for several adaptively chosen tests, as long
as each test is differentially private.

'For one-sided tests, the p-value is the probability of

seeing the computed statistic or anything larger under Hp.
2If we use Laplace noise instead, we cannot match prop-
erties like the asymptotic distribution of the non-private
statistics, but the new test statistics still empirically im-
prove the power of the tests. Due to space issues, these
experiments appear in the supplementary materials.
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We discuss related work in Section 2, provide back-
ground information about privacy in Section 3, present
our extension of minimum chi-square theory in Sec-
tion 4 and show how it can be applied to goodness of
fit (Section 5) and independence testing (Section 6).
Experiments appear in these latter two sections. We
present conclusions in Section 7.

Please note that, due to space constraints, proofs can
be found in the supplementary file.

2 Related Work

One of the first works to study the asymptotic dis-
tributions of statistics that use differentially private
data came from Wasserman and Zhou [24]. Smith [20]
then showed that for a large family of statistics, there
is a corresponding differentially private statistic that
shares the same asymptotic distribution as the origi-
nal statistic. However, these results do not ensure that
statistically valid conclusions are made for finite sam-
ples. It is then the goal of a recent line of work to
develop statistical inference tools that give valid con-
clusions for even reasonably sized datasets.

Prior work on private statistical inference for categor-
ical data can be roughly grouped into two main ap-
proaches. The first group adds appropriately scaled
noise to the sampled data (or histogram of data) to
ensure differential privacy and uses existing classical
hypothesis tests, disregarding the additional noise dis-
tribution [14]. This approach is based on the argument
that the impact of the noise becomes small as the sam-
ple size grows large. Along these lines, [22] studies
how many more samples would be needed before the
test with additional noise recovers the same level of
power as the original test on the actual data. How-
ever, as pointed out in [11, 15, 16, 12], even for moder-
ately sized datasets, the impact of privacy noise is non-
negligible and therefore such an approach can lead to
misleading and statistically invalid results, specifically
with much higher Type I error than the prescribed
amount.

The second group of work consists of tests that focus
on adjusting step (3) in the standard approach to hy-
pothesis testing given in the introduction. That is,
these tests use the same statistic in the classical hy-
pothesis tests (without noise) and after making the
statistic differentially private, they determine the re-
sulting modified asymptotic distribution of the private
statistic [21, 25, 23, 12]. Unfortunately, the resulting
asymptotic distribution cannot be written analytically,
and so Monte Carlo (MC) simulations or numerical ap-
proximations are commonly used to determine at what
point to reject the null hypothesis.

We focus on a different technique from these two dif-
ferent approaches, namely modifying step (2) in our
outline of hypothesis testing. Thus, we consider trans-
forming the test statistic itself so that the resulting
distribution is close to the original asymptotic distri-
bution when additional Gaussian noise is used. If the
noise is non-Gaussian, then this is followed by another
step that appropriately adjusts the asymptotic distri-
bution. The idea of modifying the test statistic for
regression coefficients to obtain a t-statistic in ordi-
nary least squares has also been considered in [18].

3 Privacy Preliminaries

Formal privacy definitions can be used to protect scien-
tific data with the careful injection of noise. Hypothe-
sis testing must then properly account for this noise to
avoid generating false conclusions. We briefly discuss
examples of privacy definitions that can be used and
then elaborate on how to add noise to satisfy those
definitions.

Let X be an arbitrary domain for records. We define
two datasets x = (z1, -+ ,xy),x = (2], -+ ,2}) € X"
to be neighboring if they differ in at most one entry, i.e.
there is some i € [n] where x; # 7, but x; = 2, for all
j # 4. We now define differential privacy (DP)[7, 6].

Definition 3.1 (Differential Privacy). A randomized
algoirthm M : X™ — O is (¢, 6)-DP if for all neighbor-
ing datasets x,x’ and each subset of outcomes S C O,

Pr(M(x) € S] < ePr[M(x') € S] +.
If § = 0, we simply say M is e-DP.

In this work, we focus on a recent variation of dif-
ferential privacy, called zero concentrated differential
privacy (zCDP) [3]; extensions of our work to e-DP
can be found in the supplementary material.

Definition 3.2 (zCDP). A randomized algorithm
M X™ — O is p-zCDP if for all neighboring datasets
x,x" and all a € (1, 00), we have Dy (M (x)]|IM(x')) <
pa, where, for distributions P and @, the Renyi diver-
gence D, (PI|Q) is =L log ( P(y)*Q(y)'~ dy).

zCDP lies between pure-DP where 6 = 0 and approz-
imate-DP (where § may be positive):

Theorem 3.3 ([3]). If M is e-DP, then M is %-
2CDP. Further, if M is p-zCDP then M 1is (p +
24/pIn(1/4),0)-DP for every 6 > 0.

The following property is useful because it ensures the
privacy of the dataset no matter what an adversary
does with the output of a zCDP algorithm.
Theorem 3.4 (Post Processing [3]). Let M : X" — O
and g : O — O be randomized algorithms. If M is
p-2CDP then go M : X™ — O’ is p-zCDP.



Daniel Kifer, Ryan Rogers

We can privately release a function f : X" — R? of
the data using the Gaussian Mechanism Mgauss [6]-
M Gauss first computes the global sensitivity of f, which
is defined as Ap(f) = IMaXpeighboring x,x/EX"{Hf(x) -
f(x)||p}. and then generates a noisy version of f as

follows (here o = Ax(f)/v/2p):
MGauss(X) ~ N(f(X), 0—2 ' Id) (1)

Theorem 3.5 ([3]). For a function f: X™ — R%, the
Gaussian mechanism M Gauss from (1) is p-zCDP.

For this work we will be considering categorical data.
That is, we assume the domain X has been partitioned
into d buckets or outcomes and the function f: X™ —
R? returns a histogram counting how many records are
in each bucket. Our test statistics will only depend
on this histogram. Since neighboring datasets x,x’
of size n differ on only one entry, their corresponding
histograms differ by £1 in exactly two buckets. Hence,
we will say that two histograms are neighboring if they
differ in at most two entries by at most 1. In this case,
As(f) = V2. To preserve privacy, we will add noise
to the corresponding histogram X = (Xi,---,Xy) of
our original dataset to get X = (X1,...,X4). We
perform hypothesis testing on this noisy histogram X.
By Theorem 3.4, we know that each of our hypothesis
tests will be p-zCDP as long as we add Gaussian noise
with variance 1/p to each count in X.

4 General Chi-Square Tests

In the non-private setting, a chi-square test involves a
histogram X and a model Hy that produces expected
counts X over the d buckets. In general, Hy will have
k < d parameters and will estimate the parameters
from X. The chi-square test statistic is defined as
T = E?:1(Xi — X;)?/X;. If the data were gener-
ated from Hy and if k parameters had to be estimated,
then the asymptotic distribution of T.y; is Xﬁfkfl, a
chi-square random variable with d — k — 1 degrees of
freedom. This is the property we want our statistics
to have when they are computed from the noisy his-
togram X instead of X. Note that in the classical
chi-square tests (e.g. Pearson independence test), the
statistic Tep; is computed and if it is larger than the
1 — « percentile of X%—k—h then the model is rejected.

The above facts are part of a more general minimum
chi-square asymptotic theory [10], which we overview
in Section 4.2. However, we first explain the differences
between private and non-private asymptotics [23, 12].

4.1 Private Asymptotics

In non-private statistics, a function of n data records is
considered a random variable, and non-private asymp-

totics considers this distribution as n — oco. In

private asymptotics, there is another quantity o2, the

variance of the added noise.

In the classical private regime, one studies what hap-
pens as n/o2 — oo; i.e., when the variance due to pri-
vacy is insignificant compared to sampling variance in
the data (i.e. O(n)). In practice, asymptotic distribu-
tions derived under this regime result in unreliable hy-
pothesis tests because privacy noise is significant [21].

In the variance-aware private regime, one studies what
happens as n/o2 — constant as n — oo; that is, when
the variance due to privacy is proportional to sampling
variance. In practice, asymptotic distributions derived
under this regime result in hypothesis tests with reli-
able Type I error (i.e. the p-values they generate are
accurate) [12, 23]. From now on, we will be using the
variance-aware privacy regime.’

4.2 Minimum Chi-Square Theory

In this section, we present important results about
minimum chi-square theory. The discussion is based
largely on [10] (Chapter 23). Our work relies on this
theory to construct new private test statistics in Sec-
tions 5 and 6 whose asymptotic behavior matches the
non-private asymptotic behavior of the classical chi-
square test.

We consider a sequence of d-dimensional random vec-
tors V™ for n > 1 (e.g. the data histogram). The
parameter space © is a non-empty open subset of R¥,
where k < d. The model A maps a k-dimensional pa-
rameter § € O into a d-dimensional vector (e.g., the
expected value of V™), hence it maps © to a subset
of a k-dimensional manifold in d-dimensional space.

In this abstract setting, the null hypothesis is that
there exists a §° € © such that:*

N (V(”) - A(GO)) B N(0,0(6°)) 2)

where C(0) € R4 is a covariance matrix. Intuitively,
Equation 2 says that the Central Limit Theorem can
be applied for 6°.

We measure the distance between V(™) and A(f) with
a test statistic given by the following quadratic form:

D) =n (VO - A(@))TM(H) (v - a0) @)

3Note that taking n and o2 to infinity is just a math-

ematical tool for simplifying expressions while mathemat-
ically keeping privacy noise variance proportional to the
data variance; it does not mean that the amount of actual
noise added to the data depends on the data size.

“Here 3 means convergence in distribution, as in the
Central Limit Theorem [10].
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where M(0) € R¥>9 is a symmetric positive-
semidefinite matrix; different choices of M will result
in different test statistics. We make the following stan-
dard assumptions about A(#) and M (6).

Assumption 4.1. For all § € O, we have: 1) A(6)
is bicontinuous,” 2) A() has continuous first partial
derivatives, which we denote as A(6) with full rank k,
3) M(0) is continuous in 0 and there exists an n > 0
such that M(6) — nly is positive definite in an open
neighborhood of 6°.

If ° is known, then we show in the supplementary
file that setting M (#) = C(#)~" in (3) then D™ (9°)
converges in distribution to x2. However, as we show
in Section 5, this can be a sub-optimal choice of M.

When 6° is not known, we need to estimate a good
parameter ) to plug into (3). One approach is to
set 0 = argmingce D) (). However, this can be a
difficult optimization. If there is a rough estimate of §°
based on the data, call it ¢(V(™), and if it converges
in probability to 8° (i.e. ¢(V(™) 500 asn — 00),
then we can plug it into the middle matrix to get:

D) =n (VO - A(G))T M(a(V™) (V) — A9)) .

(4)
and then set our estimator #) = arg mingee D™ (6).
The test statistic becomes D™ (™)) and the following
theorems describe its asymptotic properties under the
null hypothesis. We use the shorthand A = A(6°),
M = M(#°), and C = C(6°).
Theorem 4.2. Let ™) = argmingeg D™ (9). Given
Assumption 4.1 and (2), we have \/ﬁ(é\(") — 69 e
N(0,¥) where 6° is the true parameter and ¥ =

. At VA A\ —1

(drmd)  Armewma (Atvd)
We then state the following result using a slight mod-

ification of Theorem 24 in [10].

Theorem 4.3. Let v be the rank of C(6y). If As-
sumption 4.1 and (2) hold, and, for all § € O,
C(OMO)CH) = C(0) and C(O)M(0)A(H) = A(H)
then for 8™ given in Theorem 4.2 and D™ (6) given
in (4) we have: D™ (5(”)) oS X2 s

5 Private Goodness of Fit Tests

As a warmup, we will first cover goodness of fit
testing where the null hypothesis is simply testing
whether the underlying unknown parameter is equal
to a particular value. We consider categorical data

XM = (Xl(")7 e ,X((in)) ~ Multinomial(n, p) where

p = (p1,--- ,pa) is some probability vector over the
d outcomes. We want to test the null hypothesis
Hy : p = p° where each component of p° is posi-
tive, but we want to do so in a private way. We then
have the following classical result [2].
Lemma 5.1. Under the null hypothesis Hy : p = p?,
. . X(") 0 D
X ™) /n is asymptotically normal /n (T -p ) =
N(0,%) where ¥ has rank d — 1 and can be written as

defn

¥ =" Diag(p’) — p’(p°)". (5)

5.1 TUnprojected Private Test Statistic

To preserve p-zCDP, we will add appropriately scaled
Gaussian noise to each component of the histogram

X We then define the zCDP statistic Up(") =

(Up(ﬁ),~-- ,U:g) where we write Z ~ N (0,1/p- I4)
and )
n) defn X\ 4+ Z
U/E = \/ﬁ(n—po)- (6)

We next derive (see proof in supplementary file) the

asymptotic distribution of Uén) under both private
asymptotic regimes in Section 4.1 (note that o? =

1/p).
Lemma 5.2. The random vector U,g:) from (6) un-

der the null hypothesis Hy : p = p° has the fol-

lowing asymptotic distribution. If np, — oo then
D

Up(:) = N(0,%). PFurther, if np, — p > 0 then
Up(f) RS N(0,%,) where 3, has full rank and
5, S 1/p- I, (7)

Because ¥, is invertible when the privacy parameter

p > 0, we can create a new statistic based on U,E”)
that has a chi-square asymptotic distribution under
variance-aware privacy asymptotics.

Theorem 5.3. Let Up(:f) be given in (6) for np, —
p > 0. If the null hypothesis Hy : p = p° holds, then
for ,,, given in (7), we have

QI (U) mp U Bag@®)
Note that ¥, is ill-conditioned when p is large (data
variance overwhelms privacy noise), since ¥ is singular
and X 1 = 0. This makes the test statistic unstable.
Further, the additional noise adds a degree of freedom
to the asymptotic distribution of the original statistic.
This additional degree of freedom results in increasing
the point in which we reject the null hypothesis, i.e.
the critical value. Thus, rejecting an incorrect model
becomes harder as we increase the degrees of freedom,
and hence decreases power.
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5.2 Projected Private Test Statistic

Given that the test statistic in the previous section
depends on a nearly singular matrix, we now derive a
new test statistic for the private goodness of fit test. It
has the remarkable property that its asymptotic dis-
tribution is Xfl_l under both private asymptotics.

We start with the following observation. In
the classical chi-square test, the random vari-

d
ables (W)i_l have covariance matrix Iz —
\/[T\/[FT under the null hypothesis Hy : p = p°.
The classical test essentially uncorrelates these ran-
dom variables and projects them onto the subspace
orthogonal to \/[W . We will use a similar intuition for

the privacy-preserving random vector Ué").

The matrix ¥, in (7) has eigenvector 1 with eigen-
value 1/p — regardless of the true parameters of the
data-generating distribution. Hence we think of this
direction as pure noise. We therefore project UF(,n) onto
the space orthogonal to 1 (i.e. enforce the constraint
that the entries in U,S”) add up to 0, as they would in
the noiseless case). We then define the projected statis-

tic QE,") as the following where we write the projection
matrix P <" I; — éllT

n) defn D\T - n
Q[ = (ufm)' Py, LPUM. )

It will be useful to write out the middle matrix in Q')
for analyzing its asymptotic distribution.

Lemma 5.4. For the covariance matriz X,,,,, given in
(7), we have the following identity when np, — p >0
Py} P — ¥ ' — 5117 Further, when np, — oo, we

have the following PY, ) P — PDiag (p°) -'p

The projected statistic is asymptotically chi-square
distributed in both private asymptotic regimes.

Theorem 5.5. Let Upn) be given in (6). The projected

statistic QE)”) has the following asymptotic distribution

for np, — p > 0 and np, — oo (as n — o0) if the

null hypothesis Hy : p = p° holds: E)Z) e X3 .

5.3 Comparison of Statistics

We now want to compare the two private chi-square
statistics in (8) and (9) to see which may lead to a
larger power (i.e. smaller Type II error). The follow-
ing theorem shows that we can write the unprojected
statistic (8) as a combination of both the projected
statistic (9) and squared independent Gaussian noise.

Theorem 5.6. Consider histogram data X ™ that has
Gaussian noise Z ~ N(0,1/p - 1) added to it. For

the statistics Q(pn) and an) based on the noisy counts
given in (8) and (9) respectively, we have Qg,n) =

2
E)”)+§ (Zle Zi> . Further, for any fized data X ™,

(n) . . d 2
p is independent of (> ;1 Z;) .

Algorithm 1 (zCDP-GOF) shows how to perform good-
ness of fit testing with either of these two test statis-
tics, i.e. unprojected (8) or projected (9). We
note that our test is zCDP for neighboring histogram
datasets due to it being an application of the Gaussian
mechanism and Theorem 3.4. Hence:

Theorem 5.7. zCDP-GOF(; p,a, p°) is p-2CDP.

Algorithm 1 zCDP Chi-Square Goodness of Fit Test

procedure zCDP-GOF(X(™); p, o, Hy : p = p?)
Set X < X + 7 where Z ~ N(0,1/p - I).

For the unprojected statistic:

T L (XM _ppo) -1 (X0 _ ppo

n np np np
t + (1 — a) quantile of x?
For the projected statistic:
~ T ~
T+ 1 (X(") — np0> PZ;plP (X(") — npo)

n
t + (1 — a) quantile of x2_,
if T > ¢t then Reject

When the null hypothesis is false (i.e., p # p°), both
statistics converge to a non-central chi-square distribu-
tion (the analysis can be found in the supplementary
file). We then turn to empirical results.

5.4 Experiments for Goodness of Fit Testing

Throughout all of our experiments, we will fix @ = 0.05
and privacy parameter p = 0.001. All of our tests are
designed to achieve Type I error at most «.°

We then empirically check the power of our new tests
in zCDP-GOF for both the projected and unprojected
statistic. Subject to the constraint that our tests
achieve Type I error at most «, we seek to maximize
power, or the probability of rejecting the null hypoth-
esis when a distribution p' # p°, called the alternate
hypothesis, is true. We expect to see the projected
statistic achieve higher power than the unprojected
statistic due to Theorem 5.6. Further, the critical
value we use for the projected statistic is smaller than
the critical value for the unprojected statistic, which
might improve the power of the projected statistic.

Here we present a typical experimental scenario. We
set the null hypothesis p® = (1/2,1/6,1/6,1/6)

5Due to space limitations we give the empirical Type I

error for various p° and n in the supplementary file.
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GOF Power Curves in 5000 Trials
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Figure 1: Comparing power between the projected and
unprojected statistics in zCDP-GOF with the classical non-
private test with 5000 trials each, p = 0.001 and « = 0.05.

and alternate hypothesis p! = p° + 0.01
(1,-1/3,-1/3,—1/3) for various sample sizes (we em-
pirically found this to be a tough alternative hypoth-
esis for our statistics). For each sample size n, we
sample 5,000 independent datasets from the alternate
hypothesis and test Hy : p = p° in zCDP-GOF. The re-
sulting power plots are in Figure 1 for zCDP-GOF from
Algorithm 1. We label “NonPrivate” as the classi-
cal chi-square goodness of fit test used on the actual
data (and thus not private). Further, we write “Pro-
jGOF” as the test from zCDP-GOF with the projected
statistic whereas “UnProjGOF” uses the unprojected
statistic. Clearly, the projected outperforms the un-
projected statistic.

We then compare the projected and unprojected
statistic in zCDP-GOF to prior work in Figure 2.
Since the projected statistic outperforms the other
tests, we plot the difference in power between the
projected statistic and the other tests. We la-
bel “GLRV_MCGOF_GAUSS” as the Monte-Carlo
(MC) test with Gaussian noise from [12],” and
“GLRV_GOF_Asympt” as the asymptotics-based test
with Gaussian noise from [12, 23]. The error bars show
1.96 times the standard error in the difference of pro-
portions from 100,000 trials, giving a 95% confidence
interval.

6 General Chi-Square Private Tests

We now consider the case where the null hypoth-
esis contains many distributions, so that the best
fitting distribution must be estimated and used in

"We set the the number of MC trials m = 59 in these
experiments, which guarantees at most 5% Type I error.

Power Comparisons with Projected Statistic
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Figure 2: The empirical power loss from using other pri-
vate goodness of fit tests instead of the projected statistic
in zCDP-GOF for 100, 000 trials, p = 0.001 and « = 0.05.

the test statistics. The data is multinomial X ~
Multinomial(n, p(6°)) and p is a function that con-
verts parameters into a d-dimensional multinomial
probability vector. The null hypothesis is Hy : 8° € ©;
i.e. p(6°) belongs to a subset of a lower-dimensional
manifold. We again use Gaussian noise Z ~ N(0,1/p-
1) to ensure p-zCDP, and we define

. (n)
v e i (K ew). o

With 6° being the unknown true parameter, we are
now ready to define our two test statistics in terms of
some function ¢ : R? — R, such that ¢(X ™) +2) B g0
(recall from Section 4.2 that ¢ is a simple but possibly
a suboptimal estimate of the true parameter 6° based

on the noisy data) and the covariance matrix 3,(6) defn
Diag (p(0)) —p(0)p(0)T +1/p - L.

We define the unprojected statistic R,(Dn) (0) as follows:

M\dc:fn (an ((b(X(n) + Z)))—l
ROV(9) ‘<" UM ()T MU ™ (6). (11)

This is a specialization of (4) in Section 4.2 with the

following substitutions: V(™) = (%), A9) =
p(6), and M(6) = (3,,(6) "

For the projected statistic RS (6), the corresponding
substitutions are P = I;— éllT, v = p. (%),

A(0) = P-p(0), and again M () = (an(ﬂ))_l giving:

n defn n o n
RV (0) =" UM (0)T - PMP - U™ (6). (12)
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We then assume that for both the projected and un-
projected statistic Assumption 4.1 holds using their
relative vectors V(") A(6), and matrix M (#). We now
present the asymptotic distribution of both statistics,
which is proved using the result in Theorem 4.3 (the
full proof is in the supplementary file).

Theorem 6.1. Under Hy : 0° € O, the following are
true as n — oo. Setting o) = arg mingco RE]:;)(G)
we have Rg:)(a(”)) i X3k if npn — p > 0. Fur-
thermore, setting o) = arg mingco ’R,(Z)(G) we have

RO B2, if np = p or np, — 0.

Again, the projected statistic has the same distri-
bution under both private asymptotic regimes and
matches the non-private chi-square test asymptotics.
We present our more general test zCDP-Min-x? in
Algorithm 2. The quick-and-dirty estimator ¢(-) is
application-specific (Section 6.1 gives independence
testing as an example).® Further, for neighboring his-
togram data, we have the following privacy guarantee.

Theorem 6.2. zCDP-Min—x>(-; p,a, ¢,0) is p-2zCDP.

Algorithm 2 zCDP General Chi-Square Test

procedure zCDP-Min-x2(X(™); p, a, ¢, Hy : 6°
©)

Set X" « X" 4 Z where Z ~ N(0,1/p - I,).
Set M = %, (qs()”((n)))

For the unprojected statistic:

T~

1 /-~ -
= Z(xm _ (n) _
T(0) =~ (X np(e)) M (X np(9)>

Set §(m) = argmingcg T(6)

t + (1 — a) quantile of x3_,

For the projected statistic:

1/ T _—~ 5
- = (n) _ (n) _

T(0) = (X np(e)) PP (X np(e))

Set §(m) = argming.g T(6)

t + (1 — a) quantile of x3_, _,
if T(A™) >t then Reject

6.1 Application - Independence Test

We showcase our general chi-square test zCDP-Min-y?
by giving results for independence testing. Conceptu-
ally, it is convenient to think of the data histogram
as an r x c table, with p;; being the probability
a person is in the bucket in row ¢ and column j.
We then consider two multinomial random variables

8For goodness-of-fit testing, ¢ always returns p® and
k = 0 so zCDP-Min-x? is a generalization of zCDP-GOF.

Y ~ Multinomial(1, 7(")) for 7(!) € R” (the marginal
row probability vector) and Y’ ~ Multinomial(1, 7(?))
for 7?2 € R (the marginal column probability vec-
tor). Under the null hypothesis of independence be-

tween Y and Y/, p;; = ﬂ§1)ﬂ§2). Generally, we

write the probabilities as p(r(), 7(2)) = 7(1) (7T(2))T
so that X ~ Multinomial (n, p(7™),7(?)). Thus
we have the underlying parameter vector #° =

(7r§1), e 51)1,7r§2)7 . ,7r£27)1> - we do not need the

last component of 7(!) or 7(?) because we know that
each must sum to 1. Also, we have d = rc¢ and
k= (r—1)+4 (¢ —1) in this case. We want to test
whether Y is independent of Y’. For our data, we
are given a collection of n independent trials of Y and
Y’. We then count the number of joint outcomes in
a contingency table given in Table 1. Each cell in the
contingency table contains element X f’;) that gives the
number of occurrences of Y; = 1 and Yj’ = 1. Since our
test statistics notationally treat the data as a vector,
when needed, we convert X(™) to a vector that goes
from left to right along each row of the table.

Table 1: Contingency Table.

Yy \ Y 1 2 c Marginals
2 [y Xy [ (x| X0
r xW [ xt[xi ] x
Marginals | X .(ﬁ) X ~(,72L) e X () n

In order to compute the statistic R,()") ((9\(")) or
R(" (0 ")) in zCDP-Min-x?2, we need to find a quick-
and-dirty estimator ¢(X(™ + Z) that converges in
probability to p (77(1), 71'(2)) asn — oo. We will use the
estimator for the unknown probability vector based on

the marginals of the table with noisy counts, so that

(n) (n)
1 X, U+ 2, 2 X O+Z.
for naive estimates 77( ) = ——, S L )

,] n
where i = n + 32, Z;; we have’ ¢ (XM +27) =
(7, D77, 7 P) . Note that 2~

T 21, T ’ Teq
N(0, 1/pn - Iyc) so it is easy to see that under both
private asymptotic regimes (npn —> p and np,, — o0)
we have 7r( S 77(1) 2 5 7r ) for all i € [r] and
j €] as n — oco.

and 7 7T

We then use this statistic ¢(X (™ + Z) in our unpro-
jected and projected statistic in zCDP-Min-x? to have

9We note that in the case of small sample sizes, we
follow a common rule of thumb where if any of the expected
cell counts are less than 5, i.e. if nfrgl)ﬁ]@ < 5 for any
(,7) € [r] % [c], then we do not make any conclusion.
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Figure 3: Comparing power between the projected and un-
projected statistics in zCDP-Min-x? for independence test-
ing with the classical Pearson chi-square test with 5000
trials each, p = 0.001 and a = 0.05.

a p-zCDP hypothesis test for independence between
two categorical variables. Note that in this setting,
the projected statistic has a X%r—l)(c—l) distribution,
which is exactly the same asymptotic distribution used
in the classical Pearson chi-square independence test.

For our results we will again fix @« = 0.05 and p =
0.001. We verify experimentally in the supplementary
file that our tests achieve at most « Type I error.

We then compare the power zCDP-Min-Y? achieves for
either of our test statistics. As a sample of our exper-
iments, we set r = ¢ = 2 and 71 = (2/3,1/3),7(? =
(1/2,1/2). We then sample our contingency table
X () from Multinomial(n, p(7™), 7))+ A) where A =
0.01-(1,0,—1,0), so that the null hypothesis is indeed
false and should be rejected. We give the empirical
power of zCDP-Min-x? in Figure 3 using both the un-
projected R,(Jn) (5(”)) from (11) and projected statis-
tic ’R,E,")(g(”)) from (12) for 5,000 independent trials
and various sample sizes n. Note that again we pick
6™ from Theorem 4.2 relative to the statistic we use.
We label “NonPrivate” as the classical Pearson chi-
square test used on the actual data and “ProjIND” as
the test from zCDP-Min-y? with the projected statistic
whereas “UnProjIND” uses the unprojected statistic.

The projected statistic again outperforms prior work,
so in Figure 4, we plot the difference in power
between the projected statistic in zCDP-Min-y?
and the competitors (the unprojected statistic and
independence tests from [12]) in 50,000 trials.
Note that we label “GLRV_MCIND_GAUSS” (resp.,
“GLRV_IND_Asympt”) as the Monte Carlo (resp.,
asymptotics-based) test with Gaussian noise from [12].

o
o
s
o GLRV_IND_Asympt
8 ] | » GLRV_MCIND_GAUSS
1|+ UnProjIND

10000 20000 30000 40000 50000 60000
]

Figure 4: The empirical power loss from using other pri-
vate independence tests instead of the projected statistic
in zCDP-Min-y? for 50,000 trials, p = 0.001 and a = 0.05.

Additional experiments can be found in the supple-
mentary material.

7 Conclusions

We have demonstrated a new broad class of private hy-
pothesis tests zCDP-Min-y?2 for categorical data based
on the minimum chi-square theory. We gave two statis-
tics (unprojected and projected) that converge to a chi-
square distribution when we use Gaussian noise and
thus lead to zCDP hypothesis tests. Unlike prior work,
these statistics have the same asymptotic distributions
in the private asymptotic regime as the classical chi-
square tests have in the classical asymptotic regime.

Our simulations show that with both statistics our
tests achieve at most o Type I error (see supplemen-
tary file). Empirically, the test using the projected
statistic significantly improves the Type II error when
compared to the unprojected statistic and prior work
[12]. Further, our new tests give comparable power to
the classical (nonprivate) chi-square tests. The sup-
plementary file contains further applications to GWAS
data and other privacy-preserving noise distributions
(e.g. Laplace).
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