
A Lower Bound on the Partition Function of Attractive Graphical
Models in the Continuous Case

Nicholas Ruozzi
University of Texas at Dallas

Abstract

Computing the partition function of an
arbitrary graphical model is generally in-
tractable. As a result, approximate infer-
ence techniques such as loopy belief propa-
gation and expectation propagation are used
to compute an approximation to the true par-
tition function. However, due to general is-
sues of intractability in the continuous case,
our understanding of these approximations is
relatively limited. In particular, a number of
theoretical results known for these approxi-
mations in the discrete case are missing in the
continuous case. In this work, we use graph
covers to extend several such results from the
discrete case to the continuous case. Specif-
ically, we provide a graph cover based up-
per bound for continuous graphical models,
and we use this characterization (along with
a continuous analog of a discrete correlation-
type inequality) to show that the Bethe par-
tition function also provides a lower bound
on the true partition function of attractive
graphical models in the continuous case.

1 INTRODUCTION

Graphical models represent the factorization of a joint
probability distribution over a hypergraph. The graph
together with the factorization are then used to per-
form a variety of, either approximate or exact, infer-
ence tasks for prediction and learning (e.g., comput-
ing marginals and the partition function). Graphical
models over discrete state spaces owe much of their
popularity to simple approximate inference algorithms
such as loopy belief propagation (BP) that are easy to

Preliminary work. Under review by AISTATS 2017. Do
not distribute.

implement (often as message-passing algorithms) and
tend to provide reasonable approximations in practice.
However, when the state space of the graphical model
is continuous, loopy BP is much harder to apply: the
algorithm requires computing potentially high dimen-
sional integrals and even representing the messages
that it passes becomes a non-trivial task.

A number of algorithms have been designed for ap-
proximate inference in continuous graphical models,
many of which attempt to address one or more of the
shortcomings of loopy BP: particle belief propagation
(Ihler and McAllester, 2009), kernel belief propagation
(Song et al., 2011), quantized stochastic belief propa-
gation (Noorshams and Wainwright, 2013), expecta-
tion propagation (EP) (Minka, 2001), adaptive dis-
cretization (Isard et al., 2008), EPBP (Lienart et al.,
2015), and many more. Irrespective of the approxi-
mate inference scheme that is used, we would like to
understand the relationship between the true parti-
tion function and the approximate partition function
generated by our scheme. This turns out to be surpris-
ingly challenging, with the exception of simple meth-
ods/models (e.g., Gaussian graphical models, näıve
mean field, etc.).

In this work, we take a few steps towards a better
understanding of approximate variational inference in
the continuous case. Here, we focus on BP and the
closely related EP algorithms as they can both be
viewed as algorithms to compute local optima of the
Bethe free energy over a set of constraints. We pro-
vide two main theorems. The first demonstrates that
the so-called Bethe partition function can be upper
bounded via graph covers. A related result in the dis-
crete case was previously demonstrated by Vontobel
(2013), but additional effort is required to handle the
continuous case. Second, we show that the Bethe par-
tition function always lower bounds the true partition
function for continuous, attractive graphical models,
another result that was previously known only in the
discrete setting (Ruozzi, 2012, 2013). Discrete, attrac-
tive graphical models have been used successfully in
a variety computer vision applications, the theoretical
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results presented here suggest that their continuous
analogs could open up a new world of possible ap-
plications if efficient algorithms could be designed for
continuous, attractive graphical models. We conclude
with a discussion of the implications of the proposed
theory.

2 PREREQUISITES

Let f : Rn → R≥ε be a strictly positive function where
R is the set of possible assignments of each variable and
R≥ε is the set of all real numbers larger than some ε >
0. A function f factorizes with respect to a hypergraph
G = (V,A), if there exist potential functions fi : R→
R≥ε for each i ∈ V and fα : R|α| → R≥ε for each
α ∈ A such that

f(x1, . . . , xn) =
1

Z

∏
i∈V

fi(xi)
∏
α∈A

fα(xα),

where the normalization constant, Z ∈ R≥0, ensures
that f defines a probability distribution. The hyper-
graph G together with the potential functions fi∈V
and fα∈A define a graphical model.

A typical inference task is to compute the marginals
and/or the normalization constant, often called the
partition function, of the graphical model.

Z =

∫
Rn
f(x1, . . . , xn)dx1, . . . , dxn

The computation of the partition function is chal-
lenging for several reasons. First, there are signifi-
cant numerical issues that need to be addressed when
computing/approximating high-dimensional integrals.
Second, computing the partition function of general
discrete graphical models (which are a special case of
this formulation) is a #P-hard problem. Third, the
integral itself may not exist. In this paper, we will as-
sume that the partition function is a positive number
and that all potential functions are continuous almost
everywhere and bounded over any finite interval (or
product of intervals) of their domain1.

2.1 The Bethe Free Energy

Because of the computational challenges associated
with computing the exact partition function, approxi-
mate inference techniques are often employed in prac-
tice. One popular approach, given its relationship to
loopy belief propagation, is to use the Bethe partition
function as a surrogate for the true partition function.

1Here we work with Riemann integration. All of the re-
sults described herein can be extended to the more general
case of product measures over Rn.

The Bethe partition function is defined via an opti-
mization problem over the Bethe free energy.

logFB(G, τ) , U(G, τ)−H(G, τ)

where U is the energy,

U(G, τ) =−
∑
i∈V

∫
R
τi(xi) log fi(xi)dxi

−
∑
α∈A

∫
R|α|

τα(xα) log fα(xα)dxα,

and H is an approximation of the differential entropy,

H(G, τ) =−
∑
i∈V

∫
R
τi(xi) log τi(xi)dxi

−
∑
α∈A

∫
R|α|

τα(xα) log
τα(xα)∏
k∈α τk(xk)

dxα.

The Bethe free energy is evaluated over a collection
of so-called pseudomarginals that satisfy a set of lo-
cal marginalization constraints, which define the local
marginal polytope, ML.

ML =

τ :

τi : R→ [0, 1], τα : R|α| → [0, 1]
are probability densities and
∀α ∈ A, i ∈ α, xi ∈ X ,∫
R|α| τα(xα)dxα\i = τi(xi)


The log-Bethe partition function is then determined
by the minimum of FB(G, τ) over all τ ∈ML.

logZB(G) = − min
τ∈ML

FB(G, τ)

To estimate ZB in the discrete case, one typically runs
loopy belief propagation until a fixed point is reached.
As fixed points of loopy belief propagation correspond
to local optima of FB, the attained fixed point must
yield a lower bound on ZB (Yedidia et al., 2005).

Similarly, the expectation propagation algorithm can
be viewed as finding local optima of FB over a
weaker constraint setMEP ⊇ML, which replaces the
marginalization constraint with one that only requires
the approximate distributions described by τ to agree
in expectation (Heskes and Zoeter, 2002). As a result,
the corresponding approximation to the partition func-
tion must satisfy ZEP(G) ≥ ZB(G). However, in order
to make the EP algorithm tractable in practice, the
allowable pseudomarginals are often restricted to be
from a “nice” family of distributions. In this case, the
above inequality only holds if we similarly restrict the
marginal polytope and compute the Bethe partition
function over this restricted set.
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(b) One possible 2-cover of G.

Figure 1: An example of a graph cover of a factor
graph. The nodes in the cover are labeled for the node
that they copy in the base graph.

2.2 Graph covers

The primary theoretical tool that will enable the main
results of this paper depends heavily on the notion of
graph covers (sometimes called lifts of graphs).

Definition 2.1. A graph H covers a graph G =
(V,E) if there exists a graph homomorphism h : H →
G such that for all vertices i ∈ G and all j ∈ h−1(i), h
maps the neighborhood ∂j of j in H bijectively to the
neighborhood ∂i of i in G.

This definition can be extended to hypergraphs as well
by using the factor graph formulation of a hypergraph.
That is, each hypergraph G can be expressed as a stan-
dard graph as follows. Create a node in the factor
graph representation for each vertex (called variable
nodes) and each hyperedge (called factor nodes) of G.
Each factor node is connected via an edge in the factor
graph to the variable nodes on which the correspond-
ing hyperedge depends. A hypergraph H is said to be
an M -cover of G if every vertex and every hyperedge
of G has exactly M copies in H. See Figure 1 for an
example of this construction.

To any M -cover H = (V H ,AH) of G given by the ho-
momorphism h, we associate a collection of potentials
as defined by the homomorhpism h: the potential at
node i ∈ V H is equal to fh(i), the potential at node
h(i) ∈ G, and for each β ∈ AH , we associate the po-
tential fh(β). In this way, we can construct a function

fH : RM |V | → R≥ε such that fH factorizes over H.
The graphical model H is an M -cover of the graphical
model G whenever H is an M -cover of G and fH is
chosen as described above. In the sequel, we will write
fH(xH) = fH(x1, . . . , xM ) where xmi is the mth copy
of variable i ∈ V .

For discrete graphical models, there is a relationship
between the Bethe partition function and the true par-
tition function of each graph cover.

Theorem 2.2 (Theorem 27 of Vontobel (2013)). For

any graphical model over a finite state space,

ZB(G) = lim sup
M→∞

M

√ ∑
H∈CM (G)

Z(H)/|CM (G)|

where CM (G) is the set of all M -covers of G.

The proof of this theorem relies on a counting argu-
ment: assignments on graph covers are mapped to
pseudomarginals in the local marginal polytope. Un-
der the mapping, every assignment on some M -cover
that maps to the same collection of pseudomarginals
must have the same energy. Then, to estimate the
quantity under the M th-root in the statement of the
theorem, it suffices only to count how many assign-
ments over all M -covers can map down to each specific
collection of pseudomarginals in the local marginal
polytope.

2.3 Log-supermodularity

A nonnegative, real-valued function, g : Rn → R≥0,
is log-supermodular (equivalently, multivariate totally
positive of order two (Karlin and Rinott, 1980)) if

g(x)g(y) ≤ g(x ∧ y)g(x ∨ y)

for all x, y ∈ Rn, where x ∨ y is the componentwise
maximum of the vectors x and y and x ∧ y is their
componentwise minimum. A strictly positive twice
continuously differentiable function g : Rn → R>0

is log-supermodular if and only if ∂2 log g
∂xi∂xj

≥ 0 for all

i 6= j ∈ V .

A graphical model is said to be log-supermodular de-
composable if the objective can be factorized as a
product of log-supermodular potentials. Such graph-
ical models are sometimes said to be “attractive”:
the potential functions encourage agreement between
the variables on which they depend. Discrete log-
supermodular decomposable graphical models, in par-
ticular the ferromagnetic Ising model, have been very
popular in computer vision applications, so much so
that fast MAP inference algorithms have been devel-
oped for this special case (Kolmogorov and Zabih,
2002).

For log-supermodular decomposable graphical mod-
els over discrete state spaces, it was conjectured and
then shown that ZB(G) ≤ Z(G) (Sudderth et al.,
2007; Ruozzi, 2012): the proof of this result makes
use of Theorem 2.2 and a correlation inequality for
log-supermodular functions (Ruozzi, 2012).

3 THE CONTINUOUS CASE

In the remainder of this work, we explain how to par-
tially extend Theorem 2.2 to continuous state spaces
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by viewing the continuous case as a limit of discrete
partition function computations. This combined with
a correlation inequality will allow us to demonstrate
that ZB(G) ≤ Z(G) for continuous log-supermodular
decomposable graphical models. Expectation propa-
gation may also yield a lower bound for such attractive
models, though the techniques presented here are not
sufficient to establish such a result.

3.1 Graph Covers and ZB

We begin by proving an upper bound analogous to
Theorem 2.2 in the continuous case.

Theorem 3.1. For any continuous graphical model
whose potential functions are bounded from below by
some ε > 0,

ZB(G) ≤ lim sup
k→∞

M

√ ∑
H∈CM (G)

Z(H)/|CM (G)|

where CM (G) is the set of all M -covers of G.

Note that the above upper bound is all that is required
for the proof of the main result. We conjecture that,
as in the discrete case, equality should hold in the
continuous case.

A complete proof of this theorem is described in Ap-
pendix A, but we describe the basic approach here.
At a high level, we consider the special case of prob-
ability distributions with bounded support [−t, t]n for
some large t > 0. We can carve up this domain into
equal sized buckets of volume 1/2sn for some s ∈ Z>0

by partitioning [−t, t] into intervals of size 1/2s. The
argument then considers only those pseudomarginal
distributions in ML that are constant over these par-
titions. As any Riemann-integrable distribution can
be arbitrarily well approximated by distributions of
this form, the result will follow by taking the limit as
s→∞.

The key observation is that the Bethe free energy
restricted to pseudomarginals that are constant over
each partition can almost be expressed as the Bethe
free energy of a discrete graphical model (there is a
somewhat technical issue as differential entropy is not
a limit of discrete entropy). We then apply Theorem
2.2 to this discrete graphical model and argue that the
upper bound holds in the limit. This requires a some-
what more nuanced approach than the proof described
by Vontobel (2013), but the basic approach remains
the same.

3.2 Correlation Inequalities

We would like to use Theorem 3.1 to extend the lower
bound results of Ruozzi (2012) for log-supermodular

decomposable graphical models to the continuous case.
Again, we accomplish this by proving the continuous
analogs of the theorems used for the proof in the dis-
crete case.

In particular, we prove a correlation inequality for con-
tinuous log-supermodular functions. For any collec-
tion of vectors x1, . . . , xM ∈ Rn, let zi(x1, . . . , xM ) be
the vector whose jth component is the ith largest ele-
ment of x1j , . . . , x

M
j for each j ∈ {1, . . . , n}. We have

the following theorem.

Theorem 3.2. Let f1, . . . , fM : Rn → R≥0 and g :
RMn → R≥0 be nonnegative real-valued functions such
that g is log-supermodular. If for all x1, . . . , xM ∈ Rn,

g(x1, . . . , xM ) ≤
M∏
i=1

fi(z
i(x1, . . . , xM )), then

∫
RMn

g(x1, . . . , xM )dx1 . . . dxM ≤
M∏
i=1

[ ∫
Rn
fi(x)dx

]
.

The proof of this theorem can be found in Appendix
B. It relies on extending a discrete version of the above
inequality to the continuous case (Ruozzi, 2012). The
argument is relatively straightforward: approximate
the integrals as sums over a finite distributive lattice,
apply the known theorem for the discrete case, and
then take a limit as the discretization becomes finer
and finer.

3.3 Putting It All Together

Finally, we are ready to state and prove that the Bethe
partition function provides a lower bound on the true
partition function of log-supermodular decomposable
graphical models.

Theorem 3.3. If fG : Rn → R≥ε is log-supermodular
decomposable over G = (V,A), then for any M -cover,
H, of G, Z(H) ≤ Z(G)M .

Proof. We emulate the proof of Ruozzi (2012). Let H
be an M -cover of G. As described previously, each
variable and hyperedge of G must appear M times in
the cover. We denote the assignment of the ith copy
of each variable in G by the vector xi.

For each α ∈ A, let yiα denote the assignment to the ith

copy of α by the elements of x1, . . . , xM . By repeated
application of the definition of log-supermodularity, we
have

M∏
i=1

ψα(yiα) ≤
M∏
i=1

ψα(zi(y1α, . . . , y
M
α ))

=

M∏
i=1

ψα(zi(x1α, . . . , x
M
α ))
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=

M∏
i=1

ψα(zi(x1, . . . , xM )α).

From this, we can conclude that fH(x1, . . . , xM ) ≤∏k
i=1 f

G(zi(x1, . . . , xM )). Now, by Theorem 3.2,

Z(H) =

∫
RMn

fH(x1, . . . , xM )dx1, . . . dxM

≤
M∏
i=1

[ ∫
Rn
fG(x)dx

]
= Z(G)M

as claimed.

The desired lower bound is then a simple corollary of
this theorem and Theorem 3.1.

Corollary 3.4. Under the conditions of Theorem 3.3,
ZB(G) ≤ Z(G).

4 DISCUSSION

A few general remarks about the above theorems in
the continuous case are in order. First, even if the
partition function Z(G) exists and is finite, it does not
mean that ZB(G) is necessarily finite. In particular,
there could exist an M -cover H of G such that Z(H)
is not finite. As a result, for any M ′, there exists an
M ′′ > M ′ and an M ′′-cover H ′′ such that Z(H ′′) is not
finite. Because all of the potentials are nonnegative, as
we consider larger and larger supports [−t, t]n, ZB(G)
could tend towards infinity.

This does indeed happen in practice. The canonical
example is given by pairwise Gaussian graphical mod-
els, i.e., graphical models of the form

p(x) ∝ exp
(
−1/2xTAx+ bTx

)
=
∏
i∈V

exp

(
−1

2
Aiix

2
i + bixi

) ∏
(i,j)∈E

exp (−Aijxixj)

for some symmetric positive definite matrix A ∈ Rn×n
(the inverse covariance matrix) and some vector b ∈
Rn. It has been shown that for such models that when
the matrix A is not walk-summable (Malioutov et al.,
2006), then there exists a 2-cover whose covariance ma-
trix is not positive semidefinite (Ruozzi and Tatikonda,
2013). Such models are not normalizable, i.e., they do
not have finite partition functions. Separately, Cseke
and Heskes (2011) showed that the Bethe free energy
is unbounded in this case. If equality could be estab-
lished in Theorem 3.1, then combined with the results
of Ruozzi and Tatikonda (2013); Ruozzi et al. (2009)
this would immediately yield an alternative proof.
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Figure 2: Locally optimal Gaussian beliefs in
the Bethe free energy versus the exact par-
tition function for the model f(x1, x2, x3) ∝
exp

(
−|x1|3 − |x2|3 − |x3|3 + cx1x2 + cx1x3 + cx2x3

)
for various values of c. The model is log-supermodular
for c ≥ 0. As |c| increases the model becomes
increasingly multimodal, and the Bethe free energy
over only Gaussian distributions provides a poorer
and poorer estimate of the true partition function.

More generally, as the above example illustrates, the
Bethe partition function of log-concave probability dis-
tributions is not necessarily well-behaved.

Second, if the partition function exists and is fi-
nite for a log-supermodular decomposable graphical
model, then the Bethe partition function exists and
is finite. This makes log-supermodular decomposable
functions a nice family to work with in the contin-
uous setting as the Bethe partition function always
provides a meaningful lower bound on the true par-
tition function for these models. Further, the ap-
proximate MAP inference problem, obtained by drop-
ping the entropy terms from the Bethe approximation,
is exact for log-supermodular models (Ruozzi, 2015).
Previous work has shown that EP behaves well for
strongly log-concave potential functions whose third
through sixth derivatives are bounded (Dehaene and
Barthelmé, 2015), but these restrictions are quite se-
vere compared to log-supermodularity.

Third, log-supermodular decomposable models need
not be unimodal: there are log-supermodular mod-
els that are log-concave, log-convex, and even multi-
modal. Figure 2 illustrates the behavior of the Bethe
partition function for a log-supermodular model whose
corresponding probability distribution is multimodal.
We note that it is not particularly difficult to construct
multimodal log-supermodular decomposable graphical
models with a finite partition function. In particu-
lar, one can take any log-supermodular decomposable
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graphical model that is possibly unbounded on Rn and
restrict it to a box in Rn on which it is bounded. As ev-
ery box in Rn is a sublattice of Rn, the resulting graph-
ical model is log-supermodular decomposable over the
box.

Finally, recall that expectation propagation further re-
laxes the Bethe free energy, i.e., ZB ≤ ZEP. This
means that, in general, if ZB ≥ Z, then ZB is nec-
essarily a better approximation to the true partition
function than ZEP. However, for log-supermodular
models, if ZEP is less than Z, then it must necessarily
outperform the Bethe free energy approximation.

In summary, we have provided an upper bound on the
Bethe partition function of continuous graphical mod-
els. We used this upper bound to prove that Z ≥
ZB for continuous log-supermodular graphical models,
which matches a result for discrete log-supermodular
graphical models. To apply these theoretical results
to real-world log-supermodular decomposable models
would require fast/practical algorithms. We leave this
as the subject of future work.
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A PROOF OF THEOREM 3.1

For simplicity, we work with joint distributions with
bounded support over [−t, t]|V | for some positive inte-
ger t and pseudomarginals that are supported on sub-
sets of this space. Specifically, τi : [−t, t] → R≥ε for
each i ∈ V and τα : [−t, t]|α| → R≥ε for each α ∈ A.

We can partition each [−t, t] interval into boxes of
size ∆s = 1

2s for some positive integer s. Let
Ms

L ⊆ML denote the set of all pseudomarginals that
are piecewise constant over each of the boxes of size
∆s. Any Riemann integrable probability distribution
over [−t, t]|V | can be arbitrarily well approximated as
s → ∞, therefore any collection of pseudomarginals
τ ∈ ML can be arbitrarily well approximated by a
sequence of τs ∈ Ms

L for s ∈ N (i.e., τs → τ as
s → ∞). We will consider maximizing the Bethe free
energy over Ms

L.

Let Ys , {1, . . . , 2t/∆s}, and for any k ∈ Ys, let Isk ⊆
[−t, t] denote the kth partition of size ∆s. We extend
this notation to vectors by forming the product, Isy ,∏
i∈V I

s
yi for each y ∈ Y |V |s .

For any τs ∈ Ms
L, we can define a collection of dis-

cretized pseudomarginals µs for each y ∈ Y |V |s .

µsi (y
s
i ) ,

∫
Isyi

τsi (xi)dxi

= ∆sτ
s
i (xi), for any xi ∈ Isyi

µsα(ysα) , ∆|α|s τsα(xα), for any xα ∈ Isyα

With these definitions, the Bethe free energy of τs ∈
Ms

L is given by

FB(G, τs) ≥ F sB(G,µs) , Us(G,µs)−Hs(G,µs)

where

Us(G,µs) =−
∑
i∈V

∑
yi

µsi (yi) inf
xi∈Isyi

log fi(xi)

−
∑
α∈A

∑
yα

µsα(yα) inf
xα∈Isyα

log fα(xα),

Hs(G,µs) =−
∑
i∈V

[
− log ∆s +

∑
yi

µsi (yi) logµsi (yi)

]

−
∑
α∈A

∑
yα

µsα(yα) log
µsα(yα)∏
i∈α µ

s
i (yi)

.

This is a “∆s-corrected” version of the Bethe free en-
ergy of the discrete pseudomarginals µ corresponding
to a discrete graphical model over the hypergraph G
with potential functions

f̂si (yi) , inf
xi∈Isyi

fi(xi)

f̂sα(yα) , inf
xα∈Isyα

log fα(xα)

and joint distribution

f̂s(y1, . . . , y|V |) ∝
∏
i∈V

f̂si (yi)
∏
α∈A

f̂sα(yα).

This, in turn, provides a lower bound on the original
joint distribution with a distribution that is constant
over each of the partitions of [−t, t]|V |. Note that the
approximations are nondecreasing in s.

Denote the local marginalization constraints in the dis-
crete case as

T sL ,

{
µs ≥ 0 :

∑
yi

µsi (yi) = 1,∀i ∈ V, and

∑
yα\{i}

µsα(yα) = µsi (yi),∀α ∈ A, i ∈ α, yi ∈ Ys

}

with ZsB = exp
(
− infµ∈T sL F

s
B(µ)

)
. Additionally, we

will write Zs(G) , Z(G; f̂si∈V , f̂
s
α∈A) to denote the

partition function of the discrete model.
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We have that the limit of the discrete partition func-
tions is equal to the true partition function and that
the limit of the discrete Bethe approximations is equal
to the exact Bethe approximation.

lim
s→∞

Zs(G)∆|V |s = Z(G)

lim
s→∞

ZsB(G) = sup
s>0

ZsB(G) = ZB(G) (1)

The roadmap for the remainder of the proof is as fol-
lows. We have shown how to represent exact partition
function computations in the continuous case as a limit
of the partition function of discrete graphical models.
To evaluate the average partition function over all M -
covers as required by the theorem, we will map as-
signments on M -covers to discrete pseudomarginals in
T sL . As any assignment that maps to the same pseudo-
marginal must have the same energy (i.e., evaluate to
the same number when plugged into the joint distri-
bution of the appropriate M -cover), we will only need
to count how many assignments map to each pseu-
domarginal. We can then combine all of the above
observations to prove the desired result.

Definition A.1. Consider the following mapping,
ϕsM , from assignments/configurations on covers to
pseudomarginals in T sL :

ϕsM : {(H, yH)|H ∈ CM (G), yH ∈ YM |V |s } → T sL
: (H, yH) 7→ µ

Let h(·) be the covering map from H to G. The com-
ponents of µ are given by

µα(yα) =
∑

β∈A(H):h(β)=α

1yHβ =xα

M
,∀α ∈ A(G), yα ∈ Y |α|s

µi(yi) =
∑

j∈V (H):h(j)=i

1yHj =yi

M
,∀i ∈ V (G), yi ∈ Ys.

Each µi(yi) corresponds to the number of times that
each of the M copies of the vertex i ∈ G in the M -
cover, H, are equal to yi in the assignment yH , divided
by M . Note that, by construction, exp(−M · U(µ)) =

f̂Hs (yH).

Definition A.2. The set of all pseudomarginals re-
alizable by some configuration on some M -cover, de-
noted T̃ Ms ⊆ T sL , is the image of the pseudo-marginal
mapping.

T̃ Ms , image(ϕsM )

The size of the set of all pseudo-marginal lift realizable
vectors, |T̃ Ms |, grows polynomially with M for a fixed
s.

|T̃ Ms | ≤ (M + 1)(|V ||Ys|+
∑
α∈A |Ys|

|α|) (2)

This can be seen by observing that for some vertex
i, µi has |Ys| possible assignments, each of which can
take one of the M +1 values in the set { 0

M , 1
M , ..., MM }.

Similar reasoning applies to each factor α ∈ A.

Our goal is to count the average number of assignments
over all M -covers that map down via ϕsM to a specific
µ ∈ T̃ Ms . We will denote this quantity by

C̄sM (µ) ,
| (ϕsM )

−1
(µ)|

|CM (G)|
.

Lemma A.3. For each µ ∈ T̃ Ms ,

C̄sM (µ) =
∏
i∈V

(
M

M · µi

)|1−∂i| ∏
α∈A

(
M

M · µα

)
= exp(M ·HB(µ) + o(M))

where (
M

M · µi

)
,

M !∏
yi∈Ys(Mµi(yi))!(

M

M · µα

)
,

M !∏
yα∈Y|α|

s
(Mµα(yα))!

.

Proof. Vontobel (2013) proves a similar result (see
Lemma 29 and Theorem 30) for factor graphs in nor-
mal form (into which any graphical model can easily
be converted). We state the result here for the gen-
eral case and to emphasize that terms in the o(M)
term do not depend on s. As the argument is nearly
identical to (Vontobel, 2013), we omit it due to space
constraints.

We now have all of the tools necessary for the proof of
the theorem. Define

ZsB,M (G) ,
M

√√√√∑H∈CM (G) Zs(H)∆
|V |M
s

|CM (G)|
.

Using the above counting arguments, we can relate
ZsB,M to the Bethe free energy of pseudomarginals µ ∈
T sL .

ZsB,M (G)M

=
∑

H∈CM (G)

∑
yH∈YM|V |

s

f̂Hs (yH)

|CM (G)|
∆|V |Ms

=
∑
µ∈T̃Ms

∑
H∈CM (G)

∑
yH :ϕsM (H,yH)=µ

f̂Hs (yH)

|CM (G)|
∆|V |Ms

=
∑
µ∈T̃Ms

∑
H∈CM (G)

∑
yH :ϕsM (H,yH)=µ

exp(−M · Us(µ))

|CM (G)|
∆|V |Ms

=
∑
µ∈T̃Ms

exp(−M · Us(µ)) · C̄sM (µ)∆|V |Ms
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=
∑
µ∈T̃Ms

exp (−M · F sB(µ) + o(M))

To complete the proof, we need to argue that, af-
ter taking the appropriate limits, this quantity upper
bounds ZB(G). Fix an s′ > 0.

lim sup
M→∞

lim
s→∞

ZsB,M

(a)

≥ lim sup
M→∞

M

√√√√ ∑
µ∈T̃M

s′

exp
(
−M · F s′B (µ) + o(M)

)
(b)
= lim sup

M→∞
M

√
max
µ∈T̃M

s′

exp(−M · F s′B (µ) + o(M))

= lim sup
M→∞

max
µ∈T̃M

s′

exp(−F s
′

B (µ) + o(1))

= sup
µ∈T̃ s′L

exp(−F s
′

B (µ))

= exp(− inf
µ∈T̃ s′L

FB(µ))

= Zs
′

B

Step (a) follows from the observation that lims→∞ =
sups→∞, see (1). Step (b) follows from the observation
that, for a fixed s, the number of terms in the sum is
growing polynomially in M , see (2).

As the lower bound holds for any s′, we must have

lim sup
M→∞

lim
s→∞

ZsB,M ≥ sup
s
ZsB

= lim
s
ZsB

= ZB

as desired.

B PROOF OF THEOREM 3.2

Again, we will assume that all of the functions involved
are bounded over every finite interval, continuous al-
most everywhere, and Riemann integrable. We will
extend the following result to the continuous case.

Theorem B.1 (Theorem 3.8 of (Ruozzi, 2012)). Let
f1, . . . , fk : {0, 1}n → R≥0 and g : {0, 1}kn → R≥0
be nonnegative real-valued functions such that g is log-
supermodular. If for all x1, . . . , xk ∈ {0, 1}n,

g(x1, . . . , xk) ≤
k∏
i=1

fi(z
i(x1, . . . , xk)), then

∑
x1,...,xk∈{0,1}n

g(x1, . . . , xk) ≤
k∏
i=1

[ ∑
x∈{0,1}n

fi(x)
]
.

Every finite distributive lattice can be embedded as
a sublattice of {0, 1}n (Alon and Spencer, 2000). As
this embedding preserves log-supermodularity, Theo-
rem B.1 applies over any finite distributive lattice, not
just {0, 1}n.

As in the statement of Theorem 3.2, let f1, . . . , fM :
Rn → R≥0 and g : RMn → R≥0 be nonnegative real-
valued functions such that g is log-supermodular and
for all x1, . . . , xM ∈ Rn,

g(x1, . . . , xM ) ≤
M∏
i=1

fi(z
i(x1, . . . , xM )).

As in the proof of Theorem 3.1, we will work with
joint distributions with bounded support over [−t, t]n
for some positive integer t and pseudomarginals that
are supported on subsets of this space. Specifically,
fi : [−t, t]n → R≥0 for each i ∈ V and g : [−t, t]Mn →
R≥0. We can partition each [−t, t] interval into boxes
of size ∆s = 1

2s for some positive integer s. Let Ys ,
{1, . . . , 2t/∆s}, and for any k ∈ Ys, let Isk ⊆ [−t, t]
denote the kth partition of size ∆s. Finally, let Xs
denote the set of left endpoints of the partitions.

We will construct discrete approximations of the inte-
grals by defining

∀x ∈ Xns , f̂si (x) , fi(x)∆n
s and

∀x1, . . . , xM ∈ Xns , ĝs(x1, . . . , xM ) , g(x1, . . . , xM )∆Mn
s .

We have that

lim
s→∞

∑
x∈Xns

f̂si (x) =

∫
x∈[−t,t]n

fi(x)dx and

lim
s→∞

∑
x1,...,xM∈Xns

ĝs(x1, . . . , xM ) =

∫
x1,...,xM∈[−t,t]n

g(x)dx.

Moreover, ĝs is log-supermodular, and, for all
x1, . . . , xM ∈ Xs,

ĝs(x1, . . . , xM ) ≤
M∏
i=1

f̂si (zi(x1, . . . , xM )).

Now, by Theorem B.1,

∑
x1,...,xM∈Xns

ĝs(x1, . . . , xM ) ≤
M∏
i=1

 ∑
x∈Xns

f̂si (x)

 .
Taking limits on both sides of the inequality gives the
desired result.
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