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A Proof of optimizing a CMI query

Proof of Lemma 1. We use the product-sum property
of the logarithm (line 3) and linearity of expectation
(line 4) to show that CrossCat’s variable partition γ
induces a factorization of a CMI query.
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B Experimental methods for
dependence detection baselines

In this section we outline the methodology used to
produce the pairwise R2 and HSIC heatmaps shown
in Figures 6a and 6b. To detect the strength of linear
correlation (for R2) and perform a marginal indepen-
dence test (for HSIC) given variables xi and xj in the
Gapminder dataset, all records in which at least one
of these two variables is missing were dropped. If the
total number of remaining observations was less than
three, the null hypothesis of independence was not
rejected due to degeneracy of these methods at very
small sample sizes. Hypothesis tests were performed
at the α = 0.05 significance level. To account for mul-
tiple testing (a total of

(
320
2

)
= 51040), a standard

Bonferroni correction was applied to ensure a family-
wise error rate of at most α.

We used an open source MATLAB implementation for
HSIC (function hsicTestBoot from http://gatsby.
ucl.ac.uk/~gretton/indepTestFiles/indep.htm).
1000 permutations were used to approximate the null
distribution, and kernel sizes were determined using
median distances from the dataset. From Figure 6b,
HSIC detects a large number of statistically signifi-
cant dependencies. Figures 8 and 9 report spurious
relationships reported as dependent by HSIC but
have a low dependence probability of less than 0.15
according to posterior CMI (Eq 7), and common-sense
relationships reported as independent HSIC but have
a high dependence probability.

Figure 8: Spurious relationships detected as depen-
dent by HSIC (p � 10−6) but probably independent
(P[IG(xi:xj) > 0] < 0.15) by the MI upper bound.

variable A variable B

body mass index (men) privately owned forest (%)
energy use (per capita) 50+ yrs sex ratio
homicide (15-29) inflation (annual %)
children out of primary school male above 60 (%)
income share (fourth 20%) suicide rate age 45-59
personal computers arms exports (US$)
billionaires (per 1M) mobile subscription (per 100)
residential elec. consumption smear-positive detection (%)
coal consumption (per capita) age at 1st marriage (women)
coal consumption (per capita) dead kids per woman
underweight children murder (per 100K)
female 0-4 years (%) 15+ literacy rate (%)
broadband subscribers (%) dots new case detection (%)
crude oil prod. (per capita) TB incidence (per 100K)
dependency ratio people living with hiv
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Figure 9: Common-sense relationships detected as in-
dependent by HSIC (p � 10−6), but probably dependent
(P[IG(xi:xj) > 0] > 0.85) by the MI upper bound.

variable A variable B

motor vehicles per 1k pop urban agglomerations (%)
car mortality (per 100K) road incidents 45-59
wood removal (cubic m.) primary forest land (ha)
forest products total (US$) primary forest land (ha)
15-24 yrs sex ratio 50+ yrs sex ratio
gdp per working hr (US$) urban population (%)
dots pop. coverage (%) dots new case detection (%)
total 15-24 unemp. (%) long term unemp. (%)
female self-employed (%) female service workers (%)
female agricult. workers (%) total industry workers (%)
female industry workers (%) male industry workers (%)
road incidents age 60+ road incidents age 15-29
suicide rate age 15-29 suicide rate age 60+

0 200 400 600 800 1000

motor vehicles

−20

0

20

40

60

80

100

120

ur
ba

n
po

p.

0 2 4 6 8 10 12 14

car mortality

0

5

10

15

20

25

30

ro
ad

in
ci

de
nt

s

−1 0 1 2 3 4 5 6

wood removal×108

−1

0

1

2

3

4

5

fo
re

st
la

nd

×108

0 5 10 15 20 25 30 35

suicide (15-29)

0

10

20

30

40

50

60

su
ic

id
e

(6
0+

)



Detecting Dependencies in Sparse, Multivariate Databases

C Application to a database of mathematics marks

mech vectors algebra analysis stats
77 82 67 67 81
23 38 36 48 15
63 78 80 70 81
55 72 63 70 68
. . . . . . . . . . . . . . .

(a) Database of mathematics marks
for 88 students, where rows are stu-
dents and columns are exam scores.

M V G L S
M 1.00 0.33 0.23 0.00 0.03
V 0.33 1.00 0.28 0.08 0.02
G 0.23 0.28 1.00 0.43 0.36
L 0.00 0.08 0.43 1.00 0.26
S 0.02 0.02 0.36 0.26 1.00

(b) Partial correlation matrix; red
entries indicate statistically significant
conditional independences.

vectors (V)

mechanics (M)

algebra (G)
statistics (S)

analysis (L)

(c) Undirected (Gaussian) graphical
model implied by the partial correla-
tion matrix.
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(d) Histograms from the raw dataset (top); and pre-
dictive distributions from CrossCat (bottom).
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(e) Posterior distribution of CMI(vectors, analysis) given
various conditions of algebra show context-specific dependence.

Figure 10: Using posterior CMI distributions to discover context-specific predictive relationships in the math-
ematics marks dataset [20, 34, 6] which are missed by partial correlations. (a) The database contains scores of
88 students on five mathematics exams: mechanics, vectors, algebra, analysis, and statistics. (b) Mod-
eling the variables as jointly Gaussian and computing the partial correlation matrix indicates that (mechanics,
vectors) are together conditionally independent of (analysis, statistics), given algebra. (c) A Gaussian
graphical model which expresses the conditional independences relationships is formed by removing edges whose
incident nodes have statistically-significant partial correlations of zero. The graph suggests that when predicting
the vectors score for a student whose algebra score is known, further conditioning on the analysis score
provides no additional information. We will critique this finding, by showing that the predictive strength of
analysis on vectors given algebra varies, depending on the conditioning value of algebra. (d) The left panel
shows that when algebra = 50, conditioning on analysis = 70 appears to have little effect on the prediction
for vectors. The right panel shows that when algebra = 60, however, conditioning on analysis = 70 results
in a sizeable shift of the posterior mean of vectors from 52 to just under 70. This shift is consistent with the
top right histogram, where knowing that analysis = 70 eliminates all the vectors scores in the heavy left tail.
(e) We formalize this “context-specific” dependence by computing the distribution of the CMI of vectors and
analysis under two conditions: algebra = 50 (green curve), and algebra = 60 (red curve). The red curve
places great probability on higher values of mutual information than the green curve, which explains the shift in
predictive density from (d). Finally, we observe that the CMI is weakest when marginalizing over all values of
algebra (blue curve), which explains why the partial correlation of vectors and analysis, which only considers
marginal relationships, is near zero.


