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Abstract

The failure of LASSO to identify groups of
correlated predictors in linear regression has
sparked significant research interest. Re-
cently, various norms [1, 2] were proposed,
which can be best described as instances of
ordered weighted ℓ1 norms (OWL) [3], as
an alternative to ℓ1 regularization used in
LASSO. OWL can identify groups of cor-
related variables but it forces the model to
be constant within a group. This artifact
induces unnecessary bias in the model esti-
mation. In this paper we take a submodu-
lar perspective and show that OWL can be
posed as the Lovász extension of a suitably
defined submodular function. The submodu-
lar perspective not only explains the group-
wise constant behavior of OWL, but also sug-
gests alternatives. The main contribution of
this paper is smoothed OWL (SOWL), a new
family of norms, which not only identifies the
groups but also allows the model to be flexi-
ble inside a group. We establish several algo-
rithmic and theoretical properties of SOWL
including group identification and model con-
sistency. We also provide algorithmic tools
to compute the SOWL norm and its proxi-
mal operator, whose computational complex-
ity O(d log d) is significantly better than that
of general purpose solvers in O(d2 log d). In
our experiments, SOWL compares favorably
with respect to OWL in the regimes of inter-
est.
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1 Introduction

Parsimonious models have proven to be extremely
successful in many applications such as computer vi-
sion [4], neuroimaging [5], bioinformatics [6, 7], etc. To
promote parsimony one often resorts to regularization
with appropriate norms. Consider the problem,

min
w∈Rd

1

2n
‖Xw − y‖22 + λΩ(w), (1)

where X ∈ R
n×d, y ∈ R

n with λ ≥ 0. Lasso [8] is a
classic approach which advocates Ω(w) = ‖w‖1, the
ℓ1-norm of w, as a suitable regularizer for discovering
sparse models; many coordinates of w are then encour-
aged to be set to zero. Since then, it has been exten-
sively studied and there exists a large body of work
analyzing the model consistency of Lasso [9, 10]. One
of the major drawbacks of Lasso is that it tends to se-
lect only a small subset from a large group of strongly
correlated co-variates [11, 1]. There has been recent
interest in addressing this issue: [11] suggests a two-
stage process where one uses clustering of the columns
of X to identify the correlated variables and then ap-
ply Lasso-type penalties to learn the model. Recently
there has been attempts to avoid the two-stage pro-
cedure by simultaneously discovering the correlated
groups and learning the model by designing alternate
norms for Ω(w). To achieve this, [1] devised an inter-
esting norm which has been generalized in [12, 3, 2] and
is called an ordered-weighted-ℓ1 (OWL). When OWL
is used as a regularizer it discovers groups of strongly
correlated variables unlike Lasso. However OWL pro-
motes models, where w is group-wise constant, i.e., it
tends to set |wi| = |wj | whenever i and j are in the
same group. This is undesirable as it introduces un-
necessary bias in the model.

The question of finding a norm Ω(w) which can si-
multaneously identify correlated groups and have the
ability to learn w remains an open issue. In this paper
we wish to address this problem and make the follow-
ing contributions.



Identifying groups of strongly correlated variables through Smoothed Ordered Weighted ℓ1-norms

1. We study OWL from a submodular perspective
and show that it can be interpreted as the Lovász
extension of a cardinality based set-function of the
support of w (see Proposition 3.1). Lovász ex-
tensions can be viewed as ℓ∞-relaxations [13, 14]
of cardinality-based submodular penalties, which
explains the tendency of OWL to promote group-
wise constant w. This can be restrictive, and we
introduce the novel alternative smoothed-OWL
norms (SOWL) which are ℓ2 relaxations (in the
sense of [13]) of cardinality-based combinatorial
penalties.

2. We give an O(d log d) algorithm to evaluate the
norm (Theorem 4.4) and compute its proximal op-
erator (Corollary 4.6) which compares favourably
with existing off-the-shelf algorithms which have
O(d2 log d) complexity.

3. We study the proximal denoising problem in
Section 6 where we empirically show that
the normalized-mean-squared-error (NMSE) of
SOWL is better than that of OWL in the regimes
of interest. This also shows that the proposed
norms do not suffer from the group-wise constant
property of OWL.

4. For orthogonal designs, we show that our norms
control the false discovery rate (FDR), similar to
SLOPE [2], a special case of OWL.

5. We show in Theorem 5.1, that correlated columns
in the data matrix X for the problem (1) would
lead to grouping of the corresponding model vari-
ables as the regularization parameter λ increases.
A major difference of this result with that of OWL
is that the model is not restricted to be piece-wise
constant within each identified group. This leads
to reduction in the bias of the model, which is
empirically shown in our simulations.

6. In Theorem 5.3, we derive irrepresentability con-
ditions for the problem (1), and show that the
learnt models lead to consistent solutions.

Notations. Given x ∈ R
d, we denote by |x| ∈ R

d

the vector of item-wise absolute values of x, and de-
note by |x|(i) the ith largest absolute entry of |x|.
D(x) denotes a diagonal matrix with x as diagonal
entries. supp(x) denotes the support set of x, which is
{i|xi 6= 0}. Id denotes the identity matrix of size d×d.
Given a ∈ R, we denote by ad the d-dimensional vec-
tor of all a’s. Given x ∈ R

d and G ⊆ {1, . . . , d}, xG
refers to the sub-vector of x restricted to G. Given a
matrix X ∈ R

n×d, xi ∈ R
n denotes the ith column

of X ; and for any A ⊆ {1, . . . , d}, XA denotes the
n × |A|-dimensional submatrix formed by extracting
the columns in X given by A.

2 Related Work: OWL, OSCAR, and

SLOPE

Given c ∈ R
d
+ satisfying c1 ≥ · · · ≥ cd ≥ 0, the

ordered-weighted-ℓ1 norm [3] is defined as

ΩO(w) =
d∑

i=1

ci|w|(i). (2)

This reduces to the OSCAR penalty [1] for the choice
of weights ci = λ1 +λ2(d− i) for λ1, λ2 ≥ 0, which re-
duces to the ℓ1-norm for λ2 = 0. It is easy to see that
one can generate all possible decreasing arithmetic
progressions (AP) by varying λ1 and λ2. Through-
out this paper, we assume WLOG that c1 = 1 and
hence we can parametrize the OSCAR penalty using
the common difference 0 ≤ α ≤ 1/(d − 1) giving rise
to

c = [1, 1− α, . . . , 1− (d− 1)α]⊤. (OSCAR)

[3] gives efficient proximal operator in O(d log d) time
for these norms, which make it easy to apply these
norms using the proximal gradient algorithms like
FISTA.

The other particular choice of weights studied by [2]
is ci = Φ−1(1 − iq

2d ), where q ∈ (0, 1) and Φ is the cu-
mulative distribution function of the standard normal
distribution. [2] studies these weights in the context of
variable discovery, and for the case of orthogonal de-
signs, i.e., X⊤X = Id in (1), they have shown that the
false discovery rate (FDR) is upper bounded by qd0/d,
where d0 = d − |supp(w∗)| and w∗ is the true model.
In the next section, we show how the OWL penalties
are interpreted as convex relaxations of submodular
penalties [13].

Other norms. Elastic nets [15] combine the ℓ1 and
ℓ2 norm in a linear combination, which addresses the
issue of ℓ1 selecting only few of the correlated pre-
dictors, by selecting more variables in the model and
leading to better predictive performance in correlated
settings. The k-support norm [16] which is obtained
as a tighter convex relaxation of ℓ0 and ℓ2 norms is
also related to the elastic nets, but selects sparser so-
lutions than elastic nets without losing the predictive
accuracy. But both elastic nets and k-support norms
do not explicitly provide results in identifying groups
in the data. In this paper, we shall be interested in
norms which simultaneously identify groupings within
the predictors and learning the model.

3 The relationship of OWL with

support: A submodular perspective

The relationship of OWL, ΩO(w), with supp(w), the
support of w is not clear. In this section we take a sub-
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modular perspective of OWL and establish that OWL
can be understood as ℓ∞ relaxations of a submodu-
lar function of its support set. Let P : {0, 1}d → R

be a submodular function [14], and p : Rd → R be
the Lovász extension of P . In this paper, we con-
sider only non-decreasing submodular penalties which
depend only on the cardinality of input: that is, we as-
sume that there exists a concave function f : R+ → R+

such that P (A) = f(|A|) where f satisfies f(0) =
0, f(i) ≥ f(i−1), i = 1, . . . , d. Popular choices include
P (A) = |A|, ∀A ⊆ V , which leads to p(w) = ‖w‖1.
The following proposition expresses the OWL penalty
as the convex relaxation of P .

Proposition 3.1. Let w ∈ R
d and A = supp(w).

1. Consider P (A) = f(|A|), a cardinality-based non-
decreasing submodular function and let p(w) de-
note its Lovász extension. Define ci = f(i)−f(i−
1). Then ΩO(w) = p(|w|).

2. Conversely, given c1 ≥ · · · ≥ cd ≥ 0 and its
associated OWL norm (2), we can derive a car-
dinality based non-decreasing submodular penalty
P (A) = f(|A|) as f(0) = 0, f(i) = c1 + · · ·+ ci.

Proof. Proven in the supplementary material as a
corollary to [13].

The choice of regularizer based on submodular func-
tions (without taking absolute values) has been shown
by [17, Prop. 6] in the orthogonal case, X = I, to
lead to piecewise constant weight vectors, with a set
of allowed piecewise constant partitions which depend
on the choice of P . We consider here an extension to
groupings of absolute values.

3.1 Examples

Equating OWL (2) to submodular penalties thus opens
up ways to design particular choices of c, which are
not restricted to choices like OSCAR, SLOPE [1, 2].
We present below a few examples of the submodular
penalties from [17] which promote piecewise constant
patterns in the model.

1. P (A) = f(|A|), where f(x) = µ̃x + µx(d − x).
The Lovász extension is then such that p(|w|) =
µ̃‖w‖1 + µ

∑

i<j |(|wi| − |wj |)| =
∑d

i=1 ci|w|(i),
where ci = f(i) − f(i − 1) = µ(d − 2i + 1) + µ̃.
We choose µ and µ̃ such that c1 = 1 (to make
sure that the norm value of the unit vector along
any axis equals 1) and cd ≥ 0. This is satisfied
if µ ∈ [0, 1/(2(d − 1))] and µ̃ = 1 − µ(d − 1).
This penalty leads to c which forms an arithmetic
progression and hence equivalent to the OSCAR
penalty [1].

2. P (A) = f(|A|) where f(x) = (1 − µ)x + µf̂(x),

where f̂(x) = 0 if x = 0 or x = d and f̂(x) =
1 otherwise. The Lovász extension p(w) sat-
isfies p(|w|) = (1 − µ)‖w‖1 + µmaxi,j |(|wi| −
|wj |)|. Choosing µ ∈ [0, 0.5], we get c =
[1, 1− µ, . . . , 1− µ

︸ ︷︷ ︸

d−2

, 1 − 2µ]. Because of the

term maxi,j |(|wi| − |wj |)|, this penalty will pro-
mote grouping of |w| to piece-wise constant values
more than the previous example does, which had
a similar term, but summation of the differences
|(|wi| − |wj |)| instead of the max operator (See
[17] for a comparison).

Discussion. From [13] we see that the Lovász ex-
tension of P can be reinterpreted as ℓ∞ relaxations,
which form the reason behind promoting piece-wise
constant w. This can be understood from the norm
balls of OWL, which have sharper corners (see Fig-
ure 1); see [14] for a further discussion. In the next
section, we propose SOWL which are ℓ2 relaxations
(in the sense of [13]) of the corresponding penalty P
which do not have sharp edges and hence allows for
more variation of values within a group.

4 SOWL - Definition and Properties

Given a cardinality-based non-decreasing submodular
penalty P , we consider its ℓ2 relaxations [13, Lemma
8] leading to a smoothed version of OWL which we call
smoothed ordered weighted ℓ1 (SOWL) and is defined
as follows:

Definition 4.1. Let w ∈ R
d and c ∈ R

d
+ satisfying

c1 ≥ · · · ≥ cd > 0. Define

ΩS(w) =
1

2
min
η∈R

d
+

d∑

i=1

(
w2

i

ηi
+ ciη(i)

)

︸ ︷︷ ︸

g(w,η)

. (SOWL)

Recall that, the penalty P (A) = f(|A|) is related to c
through ci = f(i) − f(i − 1), ∀i = 1, . . . , d. See sup-
plementary material for the proof that (SOWL) is a
valid norm, and the conditions on c which guarantee
that. We shall also discuss in the supplementary that
the condition cd > 0 can also be relaxed to

∑

i ci > 0
without loss of generality.

The SOWL norms belong to the broad category of sub-
quadratic norms where the term

∑d
i=1 ciη(i) is general-

ized with any convex and positively homogeneous func-
tion Γ on η [18, 19, 13]. Norms of the form (SOWL) as
well as more general ℓp-relaxations are studied by [13]
for general submodular functions. They studied the al-
gorithms to compute the norm Ω and its proximal op-
erator using submodular function minimization, which
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scales typically as O(d2 log d), using the divide-and-
conquer algorithm, which takes O(d) steps of complex-
ity O(d log d) [13].

SOWL vs OWL. It is easy to see that both OWL
and SOWL coincide with the ℓ1 norm for the choice c =
1d. In the other extreme, for the choice c = [1, 0d−1] ∈
R

d, OWL equals the ℓ∞ norm and SOWL coincides
with the ℓ2 norm. Hence we can interpret SOWL as a
family of norms which span from the ℓ1 to ℓ2-norm. We
plot the norm balls (d = 2) for ℓ1, OWL and SOWL
in Figure 1. While in OWL, the set {i | |wi| = a} for
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(b) SOWL

Figure 1: Norm balls for OWL, SOWL. For each norm,
plotted for the choices of c (from inner most to outer
most ball) c = [1, 0.8]⊤, c = [1, 0.5]⊤, c = [1, 0.2]⊤.

some a > 0 is said to form a group, we build a notion
of clusters through the proxy variable η: a group of
indices G ⊆ {1, . . . , d} is said to form a cluster if ηG is
constant-valued. Hence throughout the paper, we refer
to η as a “grouping variable”. This way we abstract
out the notion of groups and the values of the model
variable w.

4.1 Properties

Define ηw ∈ R
d such that ΩS(w) = g(w, ηw). We shall

derive the necessary and sufficient conditions which
guarantee the grouping of the variables in w through η.
The following definition of a lattice helps us in estab-
lishing the forthcoming results.

Definition 4.2. (1) For any η ∈ R
d
+, we say that η

belongs to the lattice D(k) with a partition {Gj}kj=1 of
{1, . . . , d} when ηGj

= δj1|Gj| with δ1 > · · · > δk ≥ 0.

(2) Given a lattice D(k), we define the variables τ1 = 0,
τj = |G1|+ · · ·+ |Gj−1| for j = 1, . . . , k− 1. And given
the sequence c1 > · · · > cd, we define the function
Aj(i) = cτj+1 + · · · + cτj+i, which is valid for i =
1, . . . , |Gj |.

With these notations, we now characterize the mini-
mizer ηw.

Proposition 4.3. Let w ∈ R
d, and let ηw be such that

ΩS(w) = g(w, ηw). Let ηw ∈ D(k) with unique values
δ1 > · · · > δk. Then ηw is optimal if and only if the
following conditions hold.

1. δj =
‖wGj

‖2√
Aj(|Gj |)

, ∀j = 1, . . . , k and satisfies the or-

dering constraints δ1 > · · · > δk ≥ 0.

2. ∀j = 1, . . . , k, ∀i = 1, . . . , |Gj |, the following in-
equality holds for all Cj ⊆ Gj.

‖wCj
‖22

‖wGj
‖22

≤ Aj(|Cj |)
Aj(|Gj |)

. (3)

Proof. Provided in the supplementary material.

Discussion.

1. The first condition guarantees the ordering of ηw
in the lattice D(k). This ensures that the values
‖wGj

‖2 corresponding to the groups are well sepa-
rated. The second condition (3) means that values
within wGj

are tight enough, and that the group
can not be split into two, leading to a different
partition of ηw.

2. We compare the grouping identified by (SOWL)
with that of OWL. Given w ∈ R

d, let |w| ∈ D(k)

with unique values w̄1 > · · · > w̄k in groups
G1, . . . ,Gk respectively. Note that SOWL iden-
tifies the same grouping in w if ηw ∈ D(k), which
happens if and only if the conditions of Propo-
sition 4.3 are satisfied. When |w| ∈ D(k), ηw
satisfies condition (3) for all non-increasing se-
quences of c. Now, η satisfies the ordering prop-

erty (Proposition (4.3), condition 1), if
w̄2

j

w̄2
j+1

>
(∑

i∈Gj
ci

|Gj |

)

/
(∑

i∈Gj+1
ci

|Gj+1|

)

, ∀j = 1, . . . , k − 1. This

implies that SOWL requires w̄j and w̄j+1 to be
separated enough to be recognized as separate
groups, otherwise which they will identified as
part of the same group. See Figure 2 (bottom-
left), in which we plot ηw, which illustrates this.

3. Let ηw ∈ D(k), then ΩS(w) =
∑k

j=1

√
Aj(|Gj |)‖wGj

‖2. This is equiva-
lent to the grouped-Lasso [20] and Cluster-
Group-Lasso [11] penalties with respect to the
groups identified through ηw. In addition, if
|w| ∈ D(k) with unique values w̄1 > · · · > w̄k and

ηw ∈ D(k), ΩS(w) =
∑k

j=1

√

Aj(|Gj |)|Gj ||w̄j |,
which compares with the OWL norm
ΩO(w) =

∑k
j=1 Aj(|Gj |)|w̄j |. This means

that for the piece-wise constant w, if both
|w|, ηw ∈ D(k), SOWL is equivalent to OWL (up
to a difference in the weights).

Also, see Proposition 4.C in the supplementary mate-
rial, which shows that ΩS is more robust in identifying
groups within the model w even if w is perturbed away
from a piece-wise constant partition.
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4.2 Computation of SOWL, ΩS

Algorithm 1 PAV Algorithm for computing proxΩS

Require: w, c ∈ R
d, such that c1 ≥ · · · ≥ cd.

Sort w to ensure |w1| ≥ · · · ≥ |wd|;
Set I - permutation to regenerate the original order
of w.
Initialize j = 1, W1 = w2

1 , C1 = c1, G1 = {1}, η1 =
√

W1/C1

for (i = 2, . . . , d) do
j = j + 1.
Wj = w2

i , Cj = ci, Gj = {i}, ηj = ∞
if Cj > 0 then

ηj =
√
Wj/Cj

end if

while ηj−1 < ηj do

Wj−1 = Wj−1 +Wj , Cj−1 = Cj−1 + Cj

Gj−1 = Gj−1 ∪ Gj , j = j − 1.

ηj =
√
Wj/Cj

if j = 1 then

Break;
end if

ηj−1 =
√

Wj−1/Cj−1

end while

end for

v =
∑j

k=1

√
CkWk.

Permute v, η according to I.
return v, η.

We present in Algorithm 1, a procedure to com-
pute ΩS , which will also lead to an efficient algorithm
to compute its proximal operator.

Theorem 4.4. For any w ∈ R
d, ΩS(w) can be com-

puted in O(d log d) time using Algorithm 1.

Proof. Provided in the supplementary material.

Algorithm 1 is similar to the pool-adjacent-violator al-
gorithm [21] in constructing the solution by merging
violating pairs. Next, we show that Algorithm 1 can
be used for computing the proximal operator for ΩS .

4.3 Proximal operator for SOWL

The proximal operator is key to designing efficient al-
gorithms for solving problems of the form (1). The
proximal operator of any norm Ω is defined as follows:

proxΩλ (z) = argmin
w∈Rd

1

2λ
‖w − z‖22 +Ω(w). (4)

The following theorem, shows that the computational
complexity for the prox operator is same that of com-
puting the norm.

Theorem 4.5. (Proximal Problem). Let z ∈ R
d,

w(λ) = proxΩS

λ (z), η
(λ)
w satisfy ΩS(w) = g

(

w(λ), η
(λ)
w

)

.

For a given λ = µ > 0, let η
(µ)
w ∈ D(k) with unique

values
(
δ
(µ)
w

)

1
> · · · >

(
δ
(µ)
w

)

k
> 0. Then,

1. For any given λ > 0, if
(
η
(λ)
w

)

i
> 0, ∀i = 1, . . . , d,

the solution η
(λ)
w ∈ D(k).

2. Let j be smallest integer such that
(

δw
(λ)
)

j
= 0

for any λ > µ. Then the ordering
(
δ
(λ)
w

)

1
>

· · · >
(
δ
(λ)
w

)

j−1
is consistent with that of the lat-

tice D(k).

Proof. Provided in the supplementary material.

The above result along with Algorithm 1 gives us a
simple algorithm to compute the proximal operator
for ΩS in O(d log d) time.

Corollary 4.6. (Computing ProxΩ) Given any z ∈
R

d, let w = proxΩS

λ (z). Let ηz satisfy ΩS(z) = g(z, ηz),
then ηw satisfying ΩS(w) = g(w, ηw) is given by
max(ηz − λ, 0) and wi = zi ((ηw)i / ((ηw)i + λ)).

Proof. Provided in the supplementary material.

This contrasts with the general algorithm with
O(d2 log d) provided in [13] to compute proxΩλ .

5 Regularization with SOWL

In this section we discuss the group identification and
the consistency of learnt model obtained from SOWL.
We will assume a fixed design setting, and assume
that the columns xi of X are normalized such that
‖xi‖2 = 1. Let us consider the learning problem (1)
with the norm ΩS :

min
w∈Rd,η∈R

d
+

1

2n
‖Xw − y‖22 +

λ

2

(
d∑

i=1

w2
i

ηi
+ ciη(i)

)

.

(5)

5.1 SOWL regularization for Fixed Design

In this subsection we discuss the case for general X .
First we shall discuss the identification of correlated
groups, and then discuss recovery of the support of
the true model.

5.1.1 Identification of correlated groups

We shall first show that the correlated predictors will
be grouped together, through the grouping variable η
assuming piece-wise constant values over the identified
groups. In this discussion, we assume that c forms a
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strictly decreasing sequence c1 > · · · > cd > 0 and
define C = mind−1

i=1 {ci − ci+1}. The following result,
shows that as the regularization parameter λ increases,
values in η will be grouped together. This implies that,
the more the correlation between any pair of variates,
the more they will be clustered together very early in
the regularization path.

Theorem 5.1. Let ŵ(λ), η̂(λ) denote the optimal so-
lution of (5) for a given λ > 0. Given the indices

i, j, let ρij = x⊤
i xj > 0. Let us assume that η̂

(λ)
i > 0

and η̂
(λ)
j > 0 are distinct from η̂

(λ)
k for k 6= i, j. Then

there exists 0 < λ0 ≤ ‖y‖2√
C
(4− 4ρ2ij)

1
4 such that for all

λ > λ0, η̂
(λ)
i = η̂

(λ)
j .

Proof. Provided in the supplementary material.

Remarks

1. The above statement is similar to Theorem 1 in
[1]. Whereas in OSCAR, the predictors w get
clustered into constant valued partitions. In our
formulation, η are being clustered into constant
valued partitions. From the optimality conditions
for (5), we can show that when η̂i > 0, ŵ2

i = ciη̂
2
i .

This implies that ŵi and ŵj will take different
values even when η̂i and η̂j gets clustered, when
the vector c takes unique values.

2. As discussed in [1], the assumption made in The-
orem 5.1 that η̂i and η̂j to be distinct from the
remaining η̂ values is not very restrictive. When
η̂ has groups with k unique values δ1 > · · · > δk,
we can redefine the problem (5) with new vari-

ables δ̂ replacing η̂ and appropriately redefining c
values. The statements of Theorem 5.1 extend to
the new problem seamlessly for the newly defined
variables δ.

5.1.2 Consistency and Support Recovery

We assume the following linear model for data y =
Xw∗ + ε, where ε ∼ N (0, σ2I). Let us denote by
(ŵ, η̂) the optimal solution of (5).

Proposition 5.2. (Optimality Conditions for
(5)) Consider the problem (5) and let (ŵ, η̂) be the

solution. Let η̂ ∈ D(k) with unique values δ̂1 > · · · >
δ̂k ≥ 0 over the partition {G1, . . . ,Gk}. Then (ŵ, η̂) is
optimal if and only if the following conditions hold.

1. ∀δ̂j > 0, X⊤
Gj

(Xŵ − y)+λn
√

Aj(|Gj |)
ŵGj

‖ŵGj
‖2

= 0.

2. If δ̂k = 0, ‖X⊤
Gk

(Xŵ − y) ‖2 ≤ λn
√
Aj(|Gk|).

3. δ̂ is optimal for ŵ as per Proposition 4.3.

Proof. Provided in the supplementary material.

For the true model w∗, let η∗ be the mimimizer of
(SOWL). Let η∗ ∈ D(k) with unique values δ∗1 > · · · >
δ∗k in the sets G1, . . . ,Gk. We denote by J the set
{i|wi 6= 0} (and by J c the set {i|wi = 0}). Similarly
we denote by Ĵ the sparsity pattern of ŵ the solution
of (5). It would be necessary to derive conditions on
which Ĵ equals J . In the theorem below, we denote

by D
(√

Aj(|Gj |)/‖w∗
Gj
‖2
)

, a block diagonal matrix

with blocks sizes |Gj | in which each diagonal blocks is

defined to be
(√

Aj(|Gj |)/‖w∗
Gj
‖2
)

I|Gj | for all δ
∗
j > 0.

Theorem 5.3. Assume the model y = Xw∗ + ε with
the rows in X sampled from a multivariate Gaussian
with covariance matrix Σ. We assume that ΣJ ,J is
invertible. Consider the problem defined in (5) and let
(ŵ, η̂) be the solution. As λ → 0, and λ

√
n → ∞, the

estimate ŵ converges in probability to w∗ and P(Ĵ =
J ) → 1 if the following conditions hold.

1. δ∗k = 0 if |J c| 6= ∅.

2.

∥

∥

∥
ΣJ c,J (ΣJ ,J )−1D

(√
Aj(|Gj |)/‖w∗

Gj
‖2

)

w∗
J

∥

∥

∥

2√
Ak(|Gk|)

< 1.

Proof. Provided in the supplementary material.

Discussion.

1. Note that the results from [13, Section 6.5] for
model consistency and support recovery can be
directly applied to (5), whose bounds are not de-
pendent on the true model w∗, and the grouping
information. Whereas, the irrepresentability con-
ditions in Theorem 5.3 explicitly depends on w∗

leading to better bounds than in [13].

2. Theorem 5.3 is analogous to that of grouped-Lasso
by [20], which means that the regularizer has sim-
ilar guarantees as the grouped-Lasso penalty, but
without explicitly specifying the groups.

5.2 Orthogonal Design Case

In this subsection, we shall consider the special case
of orthogonal design matrix : X⊤X = Id. Minimiz-
ing with respect to w from (5) leads to the following
program:

min
η≥0

d∑

i=1

(
z2i

ηi + λ
+ ciη(i)

)

(6)

Theorem 5.4. Condider problem (6), with c chosen
as ci = Φ−1(1 − iq

2d ) where q ∈ [0, 1] is the the level
desired. Then the procedure (6) rejecting hypothesis
for which ηi 6= 0 has FDR upper bounded by q d0

d , where
d0 = |{i|ηi = 0}|.
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Proof. Provided in the supplementary material.

The above result guarantees that we do not lose the
FDR guarantees provided by SLOPE [2], by extending
it to SOWL.

6 Simulations

We demonstrate the benefits of using SOWL through
the following numerical simulations. First we consider
the proximal problem, which illustrates the differences
these norms have against the OWL penalties. Next
we quantitatively measure the normalized mean square
error for the proximal denoising problem and compare
the performances of ΩO and ΩS . Last, we illustrate
the benefit of SOWL in in predictive experiments.

6.1 Effective group discovery using SOWL

Consider the problem (4) and let ŵ be the mini-
mizer. We intend to understand the evolution of so-
lutions ŵ for different norms as λ varies. We chose
z = [0, . . . , 0

︸ ︷︷ ︸

10

, 1, . . . , 2
︸ ︷︷ ︸

5−equispaced

, 2, . . . , 1
︸ ︷︷ ︸

5−equispaced

] in (4) in exper-

iments. We chose the first example given in Section
3.1 to generate the values of c. Figure 2 which shows
the plots of the regularization paths for the norms ℓ1,
OWL and SOWL. we also plot the path of the grouping
variable η in order to highlight the difference SOWL
has over OWL. It is clear from Figure 2 that ΩS dis-

0 50 100 150

Lasso w

0

1

2

0 50 100 150

OWL w

0

1

2

0 50 100 150

SOWL w

0

1

2

0 100 200

SOWL η

0

2

4

Figure 2: Regularization path for the proximal prob-
lem (4). In each plot, the x-axis refers to λ, the curves
correspond to individual variables in ŵ.

covers the groups very early in the regularization path
than ΩO. This is consistent with Proposition 4.3 with
respect to identification of groups. The plots for the
other examples are similar and hence skipped.

6.2 Structure recovery using OWL and

SOWL

Next, we quantitatively evaluate the differences be-
tween the norms with respect to recovering structured

data. The mean square error (MSE) of the proxi-
mal denoising problem [22] is a popular measure used
for this purpose. Formally, assuming w∗ ∈ R

d as
the true model, which is perturbed to w̃ = w∗ + ǫ,
where ǫ ∼ N (0, σ2I), the denoising problem com-
putes ŵ = proxΩσλ(w̃). The normalized-mean-squared-
error (NMSE) defined as βΩ(σ) = E[‖ŵ − w∗‖22]/σ2

is used to evaluate the effectiveness of recovering the
true model. In experiments, we use the signals (d
= 400) plotted in Figure 3. We have included two
different signals, Figure 3a would favour OWL more
since the groups are piece-wise constant, whereas Fig-
ures 3b SOWL more. We evaluate the performance of

0 100 200 300 400

i - indices
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1.5

2

w
i

(a)

0 100 200 300 400

i - indices

0

0.5

1

1.5

2

w
i

(b)

Figure 3: Signals used in the denoising experiment.

OWL and SOWL with reference to the ℓ1-norm. Given
σ > 0, let us denote by γΩ(σ) = βΩ(σ) − βℓ1(σ). For
both OWL and SOWL, to maintain fairness, we ex-
perimented with c chosen from the examples given in
Section 3.1 and chose the best performing one for each
algorithm. The experiments were repeated 100 times
and we plot the mean error values in Figure 4. We
include the same plot with error bars in the supple-
mentary material. We see from Figure 4a and 4b that

0 1 2 3

σ

-50

0
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100

γ
Ω

(σ
)

OWL
SOWL

(a)

0 1 2 3

σ

-60

-40

-20

0

20

γ
Ω

(σ
)

OWL
SOWL

(b)

Figure 4: Proximal denoising plots (a), and (b) refer
to examples in Figures 3a, 3b respectively.

OWL performs better1 as expected for case in Figures
3a when the signal is piece-wise constant. SOWL is
worse than ℓ1 when the error variance σ is very small,
and does better as σ increases. But overall OWL does
better than SOWL in this case.

For the next case (Figure 3b), ℓ1-norm performs bet-
ter when σ is very small, and when σ crosses a thresh-

1Note that the performance is better if the curve goes
negative.
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Example Med. MSE MSE (10th Perc). MSE (90th Perc)
1 LASSO 2.83 / 2.80 / 2.79 1.41 / 1.40 / 1.41 4.54 / 4.53 / 4.53

OWL 1.54 / 1.55 / 1.56 0.26 / 0.27 / 0.27 3.79 / 3.84 / 3.86
El. Net 1.56 / 1.56 / 1.56 0.54 / 0.55 / 0.55 3.73 / 3.73 / 3.73

ΩS 1.59 / 1.57 / 1.55 0.58 / 0.55 / 0.54 3.83 / 3.83 / 3.79
2 LASSO 46.1 / 45.2 / 45.5 32.8 / 32.7 / 33.2 60.0 / 61.5 / 61.4

OWL 27.6 / 27.0 / 26.4 19.8 / 19.2 / 19.2 42.7 / 40.4 / 39.2
El. Net 30.8 / 30.7 / 30.6 21.9 / 22.6 / 23.0 42.4 / 43.0 / 41.4
ΩS 23.9 / 23.3 / 23.4 16.9 / 16.8 / 16.8 35.2 / 35.4 / 33.2

3 LASSO 36.8 / 39.2 / 39.1 16.1 / 16.4 / 15.9 85.9 / 87.0 / 83.7
OWL 35.6 / 35.7 / 35.3 14.0 / 15.0 / 14.2 82.4 / 86.4 / 85.0
El. Net 28.9 / 31.4 / 30.1 10.8 / 9.4 / 10.7 73.6 / 76.4 / 80.8

ΩS 28.2 / 30.1 / 29.1 10.3 / 9.2 / 10.1 71.9 / 73.3 / 83.2

Table 1: Comparison of MSE of algorithms for the examples quoted in Section 6.3. The three subcolumns
represent results for 3 levels of perturbation of the ground truth w∗.

old (typically around σ = 0.75), SOWL performs best
with consistently lesser error than OWL. This may
be understood as the prior information regarding the
structure makes more sense in the presence of more
noise than in low noise settings, and hence gives better
performance in terms of NMSE. And when the noise
is very low, both the structure enforcing norms do not
play a part in this case. Figure 3b, in contrast to
Figure 4a illustrates again the fact that OWL is so
heavily dependent on the piece-wise constant assump-
tion, which when violated, shows a sharp decrease in
the performance.

6.3 Evaluation of Predictive Accuracy

Next, we compare the norms quantitatively in the least
squares regression problem (1) similar to that of OS-
CAR [1]. We generate each sample x ∈ R

d as x ∼
N (0,Σ). We generate the responses as y = x⊤w∗ + ε,
where ε = N (0, σ2). The parameters for the algo-
rithms are chosen through cross validation. Following
[1] we calculate the mean square error (MSE), which is
defined to be the expectation E

[
‖x⊤(w − ŵ)‖22

]
where

the expectation is defined over the distribution of x,
which in our case equals (w − ŵ)⊤Σ(w − ŵ). Each
experiment is repeated for 300 datasets and we report
the median MSE. Following OSCAR [1], the scenarios
considered are:

1. We generate a non-sparse underlying model with
w∗ = (0.85) 18, with n = 20 samples, σ = 3. We
set Σi,j = 0.7|i−j|.

2. We set n = 100, d = 40 with w∗ =
[0⊤10, 2

⊤
10, 0

⊤
10, 2

⊤
10]

⊤. We use σ = 15 and Σi,j = 0.5
if i 6= j and 1 if i = j.

3. Here we set n = 5, d = 40 with the true model
w∗ = [3⊤15, 0

⊤
25]

⊤ and σ = 15. We then generate
i.i.d. N (0, 1) random variables Z1, Z2, Z3. The

ith entry of Each sample x is generated as xi =






Z1 + ǫxi , i = 1, . . . , 5

Z2 + ǫxi , i = 6, . . . , 10

Z3 + ǫxi , i = 11, . . . , 15

ǫxi , i = 16, . . . , 40,

where ǫxi ∼ N (0, 0.16).

In all the cases we also study random perturbations of
the vectorw∗ to see if the learnt models are robust. We
used w̃∗ = w∗ + ǫ̃, where ǫ̃i was chosen in a uniformly
random interval [−τ, τ ], where we set τ = 0, 0.2, 0.4 in
experiments. We report the results in Table 1. It is
clear from the numbers that ΩS compares favourably
against the compared norms ℓ1, OWL, and elastic nets.
This illustrates again the benefit the proposed SOWL
provide for the predictive experiments.

7 Conclusions

We derived SOWL as ℓ2 relaxations of cardinality
based submodular functions, which are helpful in si-
multaneous grouping and learning the model vari-
able w in a more robust way than the state-of-the-
art procedures. SOWL is shown to be beneficial in
the context of proximal denoising, and linear regres-
sion which leads to lesser MSE in the learnt model w
than the existing group identification procedures. This
opens up a large family of norms based on the sub-
modular penalty appropriate and the choice of best
submodular penalty for a particular domain is not well
understood, and will be the scope of future work.
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