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A Proof of Theorem 1

Let L(r) be the objective function of (9). Suppose
that n is sufficiently large and ‖r∗k,j‖H ≤ Mn holds.
Then, the inequality L(r̂k,j) ≤ L(r∗k,j) leads to

1

2
‖r̂ − r∗k,j‖2P ≤

1

2

∫
{(r̂)2 − (r∗k,j)2}d(P − Pn)

− (−1)k
∫
{∂k,j r̂ − ∂k,jr∗k,j}d(P − Pn),

(1)

where we used the equality∫
(r∗k,j)

2
dP = (−1)k

∫
∂k,jr∗k,jdP

that holds under the assumption of p(x).

We use the following theorem.

Theorem A (Proposition 4 in Cucker and Smale
[2002]). Let F ⊂ (C∞(D), ‖ · ‖∞) be a function set
defined on a compact set D endowed with the supre-
mum norm. Suppose that there exists B > 0 such that
‖f‖∞ ≤ B for any f ∈ F . Let Pn be the empirical
distribution of n i.i.d. samples from P . Then, for all
ε > 0

Pr

{
sup
f∈F

∣∣∣∣∫ f d(P − Pn)

∣∣∣∣ > ε

}

≤ 2N∞(F , ε/4) exp

(
− nε2

4(2σ2 +Bε/3)

)
holds, where N∞(F , ε) is the covering number of F
with the radius ε under the supremum norm and σ2 :=
supf∈F Var[f ] ≤ B2.

A.1 Bounds of Covering Entropy

Suppose that M = Mn for a fixed sample size n. Let
HM be HM = {r ∈ H | ‖r‖H ≤ M}. We derive upper

bounds for the covering numbers of the function sets
FM and GM defined as

FM = {r2 − (r∗k,j)2 | r ∈ HM}
GM = {∂k,jr − ∂k,jr∗k,j | r ∈ HM}.

The supremum norm is bounded above by the RKHS
norm, i.e., we have

|r(x)| ≤ ‖r‖H
√
K(x,x) ≤McK .

Firstly, let us consider FM . For any r2 − (r∗k,j)2 ∈
FM , the supremum norm is bounded above by 2M2c2K ,
since the inequality

‖r2 − (r∗k,j)2‖∞ ≤ ‖r2‖∞ + ‖(r∗k,j)2‖∞
= ‖r‖2∞ + ‖r∗k,j‖2∞
= 2M2c2K

holds. For r21 − (r∗k,j)2, r22 − (r∗k,j)2 ∈ FM , we have

‖(r21 − (r∗k,j)2)− (r22 − (r∗k,j)2)‖∞
= sup

x
|r1(x) + r2(x)| · |r1(x)− r2(x)|

≤ 2McK sup
x
|r1(x)− r2(x)|

= 2McK‖r1 − r2‖∞.

Hence, an upper bound of the covering number of FM
is given by

lnN∞(FM , 2McKε) ≤ lnN∞(HM , ε) ≤ C
(
M

ε

)2D/h

for all h > D. The second inequality is presented
in Cucker and Smale [2002], where C is a constant
independent of M and ε. Hence, we have

lnN∞(FM , ε) ≤ C
(
M2

ε

)2D/h

. (2)
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Secondly, let us consider GM . The assumption (10)
ensures that

|∂k,jr(x)− ∂k,jr∗k,j(x)| = |∂k,j(r(x)− r∗k,j(x))|

≤ ‖r − r∗k,j‖H
√
∂j∂′jK(x,x)

≤ 2McK

holds for any ∂k,jr − ∂k,jr∗k,j ∈ GM . The above in-
equality is shown in Zhou [2008]. In the same way we
have

|∂k
′,j′
r(x)− ∂k

′,j′
r∗k,j(x)| ≤ 2McK

for all j′ such that k′ = |j′| ≤ k + `. This means
that ∂k,j(r − r∗k,j) is included in the Sobolev space

(W `, ‖ · ‖`) endowed with the inner product∫
D

∑
|j′|≤`

∂k
′,j′
f(x)∂k

′,j′
g(x)dx,

where dx denotes the Lebesgue measure on the com-
pact set D ⊂ RD. The Sobolev norm of ∂k,j(r − r∗k,j)
is bounded above by

‖∂k,j(r − r∗k,j)‖2` =
∑

j′:k≤|j′|≤k+`

∫
D
|∂k

′,j′
(r − r∗k,j)|2dx

≤ 4vol(D)cK
2M2

k+∑̀
a=k

(
D − 1 + a

D − 1

)
≤ 12vol(D)cK

2M2(D + k + `)k+`,

where vol(D) is the volume of D. Hence, ‖∂k,jr −
∂k,jr∗k,j‖` ≤

√
12vol(D)cKM(D + k + `)(k+`)/2 for all

∂k,jr− ∂k,jr∗k,j ∈ GM . Let BR be the ball in W ` with
the radius R > 0 centered as the origin. Then, GM
is included in BR with R =

√
12vol(D)cKM(D + k +

`)(k+`)/2 in W `. Let I` : W ` → (C(D), ‖ · ‖∞) be
the embedding map. If ` > D/2 holds, the covering
entropy of I`(BR) is bounded above by

lnN∞(I`(BR), ε) ≤ C(R/ε)D/` + 1

as shown in Cucker and Smale [2002], where C is a
constant independent of R and ε. Hence, the upper
bound of the covering entropy of GM is given by

lnN (GM , ε) ≤ C
(
M

ε

)D/`
(3)

for M ≥ 1.

A.2 Uniform Law of Large Numbers

Theorem A is used to derive an upper bound of ‖r̂k,j−
r∗k,j‖2P in (1). Both FM and GM satisfy the assumption

in Theorem A. Hence, (2) and (3) lead to

sup
r∈HM

∣∣∣∣∫ {r2 − (r∗k,j)2}d(P − Pn)

∣∣∣∣
= Op

(
M2D/(D+h)

nh/(2h+2D)

)
, h > D

sup
r∈HM

∣∣∣∣∫ {∂k,jr − ∂k,j(r∗k,j)}d(P − Pn)

∣∣∣∣
= Op

(
MD/(2`+D)

n`/(2`+D)

)
.

Note that Theorem A holds even for any fixed sample
size n. Suppose that Mn is of the poly-logarithmic
order such as (log(n))γ . Then, for sufficiently large
h (> D) , the upper bound of ‖r̂k,j − r∗k,j‖2P is of the

order cn/n
1/(2+D/`) where cn is of the poly-logarithmic

order of n.
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