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Abstract

Estimation of density ridges has been gath-
ering a great deal of attention since it enables
us to reveal lower-dimensional structures hid-
den in data. Recently, subspace constrained
mean shift (SCMS) was proposed as a practi-
cal algorithm for density ridge estimation. A
key technical ingredient in SCMS is to ac-
curately estimate the ratios of the density
derivatives to the density. SCMS takes a
three-step approach for this purpose — first
estimating the data density, then comput-
ing its derivatives, and finally taking their
ratios. However, this three-step approach
can be unreliable because a good density es-
timator does not necessarily mean a good
density derivative estimator and division by
an estimated density could significantly mag-
nify the estimation error. To overcome these
problems, we propose a novel method that
directly estimates the ratios without going
through density estimation and division. Our
proposed estimator has an analytic-form so-
lution and it can be computed efficiently.
We further establish a non-parametric con-
vergence bound for the proposed ratio esti-
mator. Finally, based on this direct ratio
estimator, we develop a practical algorithm
for density ridge estimation and experimen-
tally demonstrate its usefulness on a variety
of datasets.
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1 Introduction

Estimating the ridge of the data density possesses a
wide range of real-world applications, including esti-
mation of filamentary structures formed by galaxies
in cosmology [Chen et al., 2016], extraction of curvi-
linear structures (e.g., blood vessels in eye balls) in
medical imaging [You et al., 2011], skeletonization of
optical characters for feature extraction and compres-
sion [Kégl and Krzyźak, 2002], traffic pattern analy-
sis [Einbeck and Dwyer, 2011], and shape analysis in
computer vision [Su et al., 2013] (see Pulkkinen [2015]
for more applications). For this reason, density ridge
estimation has been gathering a great deal of atten-
tion recently [Ozertem and Erdogmus, 2011, Genovese
et al., 2014, Chen et al., 2015b,a, Ghassabeh et al.,
2013].

Extending the classical concept of principal
curves [Hastie, 1984, Hastie and Stuetzle, 1989],
a practical algorithm for density ridge estimation
called subspace constrained mean shift (SCMS) [Oz-
ertem and Erdogmus, 2011] has been proposed
recently. SCMS is essentially a projected gradient
ascent algorithm over an estimated data density: At
each iteration, a gradient vector of the estimated den-
sity is computed as in mean shift clustering [Fukunaga
and Hostetler, 1975, Cheng, 1995, Comaniciu and
Meer, 2002], and then it is projected to the subspace
orthogonal to the density ridge. Along this projected
gradient vector, data points are updated toward the
density ridge until they converge. See Genovese et al.
[2014], Chen et al. [2015b], Chen et al. [2015a] and
Ghassabeh et al. [2013] for theoretical properties of
SCMS.

Technically, the key ingredients to obtain such pro-
jected gradient vectors are the ratios of density deriva-
tives to the density. SCMS takes a three-step approach
to estimate the ratios: First, estimate the data density



Estimating Density Ridges by Direct Estimation of Density-Derivative-Ratios

by kernel density estimation, then compute its deriva-
tives, and finally take their ratios. However, this three-
step approach can be unreliable because a good den-
sity estimator does not necessarily mean a good den-
sity derivative estimator, and division by an estimated
density could significantly magnify the estimation er-
ror.

To cope with these problems, we propose a novel esti-
mator called the least-squares density-derivative-ratios
(LSDDR). In stark contrast to the three-step approach
in SCMS, LSDDR neither performs density estimation
nor involves division by an estimated quantity; rather,
it directly estimates the density-derivative-ratios. Pre-
viously, a method to directly estimate the log-density
derivatives (which is equal to the ratio of the first-
order density derivative to the density) has been pro-
posed [Cox, 1985, Sasaki et al., 2014]. LSDDR can be
regarded as its generalization to higher-order deriva-
tives. LSDDR has an analytic-form solution and it can
be computed efficiently. Furthermore, we establish a
non-parametric convergence bound for LSDDR.

Based on this LSDDR, we then develop a new algo-
rithm for density ridge estimation called the least-
squares density ridge finder (LSDRF). We experi-
mentally demonstrate the advantages of LSDRF over
SCMS on a variety of datasets.

2 Density Ridge Estimation

In this section, we formulate the problem of density
ridge estimation and review an existing method.

2.1 Problem Formulation

Suppose that independent and identically distributed

samples X = {xi | xi = (x
(1)
i , x

(2)
i , . . . , x

(D)
i )>}ni=1

drawn from an unknown probability distribution with
density p(x) are available, where > denotes the trans-
pose. For positive integer d such that d < D, the
goal is to estimate from X the d-dimensional den-
sity ridge [Eberly, 1996, Ozertem and Erdogmus, 2011,
Genovese et al., 2014], which is defined as a collection
of points satisfying

R = {x ∈ RD | V(x)V(x)>∇p(x) = 0, ηd+1(x) < 0},
(1)

where ∇ denotes the differential operator w.r.t. x,
V(x) = (vd+1, . . . ,vD), and vi is the eigenvector asso-
ciated with the eigenvalue ηi(x) of the Hessian matrix
∇∇p(x). We assume that the eigenvalues are sorted
in descending order such that η1(x) ≥ η2(x) ≥ · · · ≥
ηD(x).

2.2 Subspace Constrained Mean Shift
(SCMS)

According to definition (1), a practical algorithm for
finding density ridges called subspace constrained mean
shift (SCMS) was proposed in Ozertem and Erdog-
mus [2011]. SCMS is based on mean shift (MS) clus-
tering [Fukunaga and Hostetler, 1975, Cheng, 1995,
Comaniciu and Meer, 2002] and the inverse local-
covariance matrix.

MS is a mode-seeking clustering method based on ker-
nel density estimation (KDE):

p̂KDE(x) =
1

nZ

n∑
i=1

KKDE

(
‖x− xi‖2

h2

)
,

where Z is the normalizing constant, KKDE is a kernel
function for KDE, and h denotes its bandwidth. MS
updates data points toward the nearest mode (i.e., a
local maximum) of p̂KDE(x) by

x← x+ m̂MS(x) =

∑n
i=1 xiGKDE

(
‖x−xi‖2

h2

)
∑n

i=1GKDE

(
‖x−xi‖2

h2

) ,

where GKDE(t) = −K ′KDE(t) = − d
dtKKDE(t).

m̂MS(x) is called the mean shift vector which is shown
to be parallel to ∇p̂KDE(x) [Comaniciu and Meer,
2002]:

∇p̂KDE(x) =
2

nh2Z

n∑
i=1

(xi − x)GKDE

(
‖x− xi‖2

h2

)
= α(x)m̂MS(x),

where α(x) = 2
nh2Z

∑n
i=1GKDE

(
‖x−xi‖2

h2

)
. The

above equation indicates that MS performs gradient
ascent with adaptive step size 1/α(x).

The basic idea of SCMS is to perform MS-like gradi-
ent ascent on the subspace which is orthogonal to the
density ridge. SCMS obtains such a subspace as the
span of the eigenvectors of the Hessian matrix of the
log-density, which is called the inverse local-covariance
matrix [Ozertem and Erdogmus, 2011]:

Σ−1(x) = −∇∇ log p(x)

= −∇∇p(x)

p(x)
+
∇p(x)∇p(x)>

p(x)2
. (2)

As theoretically shown in Genovese et al. [2014], the
log-density is used instead of the (non-log) density be-
cause it has some advantages: In practice, a projec-
tor to the subspace is obtained by applying principal
component analysis (PCA) to the estimated inverse

local-covariance matrix Σ̂−1KDE(x) where p(x) in (2) is



Hiroaki Sasaki, Takafumi Kanamori and Masashi Sugiyama

Input: A data point x.

Step 1 Initialize t = 0 and y(t) = x.

Step 2 Evaluate the mean shift vector m̂MS(y(t)).

Step 3 Evaluate the inverse local-covariance matrix
using p̂KDE(y(t)).

Step 4 Construct a projector by applying PCA to
Σ̂−1KDE(x).

Step 5 Update y(t) as y(t + 1) = y(t) +

V̂KDEV̂>KDEm̂MS(y(t)).

Step 6 Stop if ‖y(t + 1) − y(t)‖2 < ε. Otherwise,
t← t+ 1 and go back to Step 2.

Output: ŷ = y(t)

Figure 1: An algorithm of subspace constrained mean
shift [Ozertem and Erdogmus, 2011, Ghassabeh et al.,
2013]. ‖ · ‖2 is the `2 norm and ε denotes a small pos-
itive constant. As an input data point, a data sample
itself is typically used.

replaced with p̂KDE(x). Then, the projected gradient
update rule of SCMS is given as

x← x+ V̂KDEV̂>KDEm̂MS(x). (3)

The entire algorithm of SCMS is summarized in Fig-
ure 1. The convergence of the SCMS algorithm is
proved in Ghassabeh et al. [2013].

In SCMS, one of the key challenges is to accurately es-
timate the inverse local covariance matrix (2). SCMS
takes a three-step approach, i.e., estimate p(x) by
KDE, compute its derivatives, and plug them into (2).
However, this approach can perform poorly because
a good density estimator does not necessarily mean a
good density derivative estimator. In addition, divi-
sion by an estimated density could significantly mag-
nify the estimation error. A more appropriate way
would be to directly estimate the ratios in (2) without
going through density estimation and division. Follow-
ing this idea, we next propose a novel direct estimator
of the ratios.

3 Direct Estimation of
Density-Derivative-Ratios

In this section, we propose a direct estimator of
density-derivative-ratios. Then, the estimator is theo-
retically analyzed.

3.1 Least-Squares Density-Derivative-Ratios

Here, our tentative goal is to estimate the ratio of the
k-th order partial derivative of p(x) to p(x) from X =
{xi}ni=1:

∂k,jp(x)

p(x)
, (4)

where ∂k,j = ∂k

∂(x(1))j1∂(x(2))j2 ...∂(x(D))jD
, j =

(j1, j2, . . . , jD) and j1 + j2 + · · · + jD = k for ji ∈
{0, 1, . . . , k}. For instance, when k = 1 (or k = 2),
∂k,jp(x)/p(x) is a single element of ∇p(x)/p(x) (or of
∇∇p(x)/p(x)).

Our main idea is to directly fit a model rk,j(x) to
∂k,jp(x)

p(x) under the squared-loss:

Jk,j(rk,j)

=

∫ {
rk,j(x)− ∂k,jp(x)

p(x)

}2

p(x)dx− Ck,j

=

∫
{rk,j(x)}2 p(x)dx− 2

∫
rk,j(x)∂k,jp(x)dx,

(5)

where Ck,j =
∫ {∂k,jp(x)

p(x)

}2

p(x)dx. The first term

in (5) can be naively estimated from samples, but
it seems challenging to estimate the second term be-
cause it includes the derivative of the unknown density.
However, similarly to Sasaki et al. [2015], repeatedly
applying integration by parts allows us to transform
the second term as∫

rk,j(x)
{
∂k,jp(x)

}
dx

= (−1)k
∫ {

∂k,jrk,j(x)
}
p(x)dx, (6)

where we assumed that as for all j, |x(j)| → ∞, the
product of ∂k1,j1rk1,j(x) and ∂k2,j2p(x) approaches
zero for any pairs of k1 and k2 satisfying k1+k2 = k−1.
As a result, the right-hand side of (6) can be easily es-
timated from samples. Then, an empirical version of
(5) is given by

J̃k,j(rk,j) =

n∑
i=1

rk,j(xi)
2 − 2(−1)k∂k,jrk,j(xi). (7)

To estimate rk,j , we employ a linear-in-parameter
model:

rk,j(x) =

n∑
i=1

θ
(i)
k,jψ

(i)
k,j(x) = θ>k,jψk,j(x),

where we set ψ
(i)
k,j(x) = ∂k,jK(x,xi) and K(·, ·) is

a smooth kernel function such as the Gaussian ker-
nel. Substituting the model into (7) and adding the
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`2-regularizer yield the following quadratic objective
function:

J̃k,j(θk,j)

= θ>k,jGk,jθk,j − 2(−1)kθ>k,jhk,j + λk,jθ
>
k,jθk,j , (8)

where

Gk,j =
1

n

n∑
i=1

ψk,j(xi)ψk,j(xi)
>,

hk,j =
1

n

n∑
i=1

∂k,jψk,j(xi).

The minimizer of (8) can be computed analytically as

θ̂k,j = argmin
θk,j

J̃k,j(θk,j) = (−1)k (Gk,j + λk,jI)
−1
hk,j ,

where I denotes the identity matrix. Finally, a density-
derivative-ratio estimator is given by

r̂k,j(x) = θ̂>k,jψk,j(x).

We call this method the least-squares density-
derivative ratios (LSDDR). Note that when k = 1,
LSDDR is reduced to an existing log-density deriva-
tive estimator [Cox, 1985, Sasaki et al., 2014]. There-
fore, LSDDR can be regarded as its generalization to
higher-order derivatives.

3.2 Theoretical Analysis

Next, we perform theoretical analysis of LSDDR. Let
H be a reproducing kernel Hilbert space (RKHS) as-
sociated with the kernel K(·, ·). In our analysis, we
assume that the true density-derivative-ratio is con-
tained in H:

r∗k,j(x) :=
∂k,jp(x)

p(x)
∈ H.

According to Zhou [2008], ∂k,jK(x, ·) belongs to H
under regularity conditions. Thus, the linear-in-
parameter model employed for rk,j also belongs to H.
In this analysis, we define a slightly modified version
of the LSDDR estimator r̂k,j as the optimal solution
of

min
r∈H

1

n

n∑
i=1

{
1

2
r(xi)

2 − (−1)k∂k,jr(xi)

}
subject to ‖r‖2H ≤M2

n, (9)

where ‖ · ‖H denotes the norm in H and Mn is a con-
stant depending on the sample size n. Note that the
optimal solution of (9) can be expressed by the kernel-
ized LSDDR estimator with regularization parameter
λk,j .

In the following theorem, we establish the convergence
rate of LSDDR. The accuracy of the estimator is eval-
uated by the L2-norm under the distribution P defined
as

‖h‖2P =

∫
|h(x)|2dP (x).

Theorem 1 (Convergence rate of LSDDR). Let us as-
sume that the kernel function K(x,x′) of H is smooth
and that there exists a constant cK > 0 such that

∂j
′
∂

′j′K(x,x)

:=
∂|j

′|

∂j
′
1x1 · · · ∂j

′
DxD

∂|j
′|

∂j
′
1x′1 · · · ∂j

′
Dx′D

K(x,x′)

∣∣∣∣
x′=x

≤ cK

(10)

holds for any |j′| ≤ k + `, where |j′| is the sum of
the elements in j′ = (j′1, . . . , j

′
D) and ` is a natural

number greater than D/2. Suppose that Mn is of the
poly-logarithmic order of n. Then,

‖r̂k,j − r∗k,j‖2P = Op(cn/n
1/(2+D/`)),

where OP (·) denotes the probabilistic order and cn is
of the poly-logarithmic order of n.

Due to lack of space, we only provide a sketch of proof
below. The full proof is given in the supplementary
material.

Sketch of the proof of Theorem 1. Let L(r) be the ob-
jective function of (9). Suppose that n is sufficiently
large so that ‖r∗k,j‖H ≤Mn holds. Then, the inequal-
ity L(r̂k,j) ≤ L(r∗k,j) leads to

1

2
‖r̂ − r∗k,j‖2P ≤

1

2

∫
{(r̂)2 − (r∗k,j)

2}d(P − Pn)

− (−1)k
∫
{∂k,j r̂ − ∂k,jr∗k,j}d(P − Pn),

where the equality,
∫

(r∗k,j)
2
dP = (−1)k

∫
∂k,jr∗k,jdP ,

is used. Using Proposition 4 in Cucker and Smale
[2002], we find that the convergence rate of ‖r̂−r∗k,j‖2P
is closely related to the complexity of the function sets,

F = {r2 − (r∗k,j)
2 | ‖r‖H ≤Mn},

G = {∂k,jr − ∂k,jr∗k,j | ‖r‖H ≤Mn}.

Here, the complexity of the function set F ′ is measured
by the covering number N∞(F ′, ε), which is defined
as the minimal number n ∈ N such that there exist n
disks with radius ε covering F ′, i.e.,

N∞(F ′, ε) = min{n ∈ N | ∃S = {g1, . . . , gn} ⊂ F ′,
∀f ∈ F ′,∃g ∈ S, ‖f − g‖∞ < ε}.
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Under the assumption (10) with |j′| = 0, the standard
technique shown in Cucker and Smale [2002] can be
used to obtain an upper bound of N∞(F , ε). In order
to obtain an upper bound of N∞(G, ε), the formula on
the derivative in the RKHS [Zhou, 2008], i.e.,

|∂k
′,j′r(x)| ≤ ‖r‖H

√
∂j′∂′j′K(x,x),

is used up to the order k′ ≤ k + `. Then, the uni-
form convergence rates of

∫
(r2−(r∗k,j)

2)d(P−Pn) and∫
(∂k,jr−∂k,jr∗k,j)d(P−Pn) are respectively evaluated

by these covering numbers. Eventually, we obtain the
upper bound of ‖r̂ − r∗k,j‖2P .

3.3 Model Selection by Cross-Validation

In practice, the performance of LSDDR depends on
the choice of hyper-parameters such as parameters in

ψ
(i)
k,j(x) and the regularization parameter λk,j . Such

hyper-parameters can be chosen by cross-validation
with respect to the squared-loss criterion in a straight-
forward way as follows:

1. Divide the samples X = {xi}ni=1 into T disjoint
subsets {Xt}Tt=1.

2. Obtain the estimator r̂
(t)
k,j(x) from X \ Xt, and

then compute J̃k,j from the hold-out samples as

CV(t)

=
1

|Xt|
∑
x∈Xt

[{
r̂
(t)
k,j(x)

}2

− 2(−1)k∂k,j r̂
(t)
k,j(x)

]
,

where |Xt| denotes the number of elements in Xt.

3. Choose the model that minimizes CV =
1
T

∑T
t=1 CV(t).

4 Application in Density Ridge
Estimation

In this section, based on LSDDR proposed in Sec-
tion 3, we develop a novel density ridge estimator
called the least-squares density ridge finder (LSDRF).
For LSDDR, we employ the Gaussian kernel with
bandwidth σk,j .

1

The algorithm of LSDRF essentially follows the same
line as SCMS (see Figure 1), i.e., projected gradient
ascent is performed:

x← x+ V̂LSV̂>LSm̂LS(x).

1If the sample size n is large, we may only use a subset
of data samples as Gaussian centers in LSDDR.

However, compared with the update rule (3) used in

SCMS, V̂KDE and m̂MS(x) are replaced with V̂LS and
m̂LS(x), respectively.2

V̂LS is obtained by applying PCA to an estimate of
the inverse local-covariance matrix obtained based on
LSDDR, not KDE:

Σ̂
−1
LS (x) = −ĤLS(x) + ĝLS(x)ĝLS(x)>, (11)

where the elements in ĝLS(x) and ĤLS(x) are the LS-
DDR solutions r̂1,j(x) and r̂2,j(x), respectively.

m̂LS(x) is given by

[m̂LS(x)]` =

∑n
i=1 θ̂

(i)
1,`[xi]`K(x,xi)∑n

i=1 θ̂
(i)
1,`K(x,xi)

− [x]`

=
1∑n

i=1 θ̂
(i)
1,`K(x,xi)

[ĝLS(x)]`, (12)

where [x]` denotes the `-th element in x. This vector
comes from another mode-seeking clustering method
called least-squares log-density gradients (LSLDG)
clustering [Sasaki et al., 2014], which was experimen-
tally shown to work much better than MS especially
for higher-dimensional data.

5 Experiments

In this section, we experimentally demonstrate the
usefulness of LSDRF.

5.1 Illustration on Simulated Data

First, we investigate the performance of LSDRF and
compare it with SCMS on a variety of simulated
datasets.3 The i-th observation of data was generated

according to x
(j)
i = f (j)(ti) + n

(j)
i , where ti was taken

from some range at regular intervals, f (j)(·) denotes

some fixed function, and n
(j)
i was the Gaussian noise

with mean 0 and standard deviation γ. The band-
width h of the Gaussian kernel in SCMS was deter-
mined by least-squares cross-validation using ten can-
didates from 10−1.5 to 100 at regular intervals in log-
arithmic scale. For LSDDR, model selection was per-
formed by five-hold cross-validation using ten candi-
dates from 10−1 (or 10−4) to 100.5 (or 100) for σk,j

2To avoid numerical instability, we stop updating a data

point x if
∑n

i=1 θ̂
(i)
1,`K(x,xi) is less than a very small pos-

itive constant.
3Most of the datasets are generated using a MATLAB

package made by Jakob Verbeek, which is available
at http://lear.inrialpes.fr/people/verbeek/code/
kseg_soft.tar.gz.
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Figure 2: Density ridge estimation on simulated data. In (b) and (c), each point and error bar denote the
average and standard deviation of estimation errors over 50 runs, respectively. We set (n, γ) = (1000, 0.15) for
(a), n = 1000 for (b) and (d), and γ = 0.2 for (c).

(or λk,j) at regular intervals in logarithmic scale. The
estimation error was measured by

Error =
1

n

n∑
i=1

min
l
‖ŷi − f(tl)‖2,

where ŷi denotes an estimate of the den-
sity ridge obtained from xi and f(·) =
(f (1)(·), f (2)(·), . . . , f (D)(·))>.

Two density ridge estimates from LSDRF and SCMS
are visualized in Figures 2(a). LSDRF provides more
accurate and smooth ridge estimates than SCMS on
all datasets. Figures 2(b) show the noise tolerance
property of both methods. As the noise standard de-
viation γ increases, the performance of both LSDRF
and SCMS gets worse, but LSDRF still works better
than SCMS in all five cases. Figures 2(c) further indi-
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Figure 3: Performance comparison for higher-
dimensional data. We set (n, γ) = (1000, 0.2).

cates that the estimation error of LSDRF more quickly
decreases with respect to the sample size n.

Next, we investigate how LSDRF and SCMS per-
form in higher-dimensional cases. For this experiment,
to create higher-dimensional data, Gaussian variables
with mean 0 and standard deviation γ = 0.2 were ap-
pended to the three-dimensional spiral data in Fig-
ure 2. The result shown in Figure 3 indicates that LS-
DRF is more useful than SCMS especially for higher-
dimensional data.

LSDRF makes two major modifications from SCMS:
(a) m̂LS from a previously proposed mode-seeking

clustering method [Sasaki et al., 2014] and (b) Σ̂LS

from LSDDR. To understand how these modifications
improved the performance in ridge estimation, we
performed experiments with the following additional
methods:

• LSDRF: m̂LS and Σ̂LS are used.

• (LS+KDE): m̂LS and Σ̂KDE are used.

• (MS+LSDDR): m̂MS and Σ̂LS are used.

• SCMS: m̂MS and Σ̂KDE are used.

Figures 2(d) show that (LS+KDE) and (MS+LSDDR)
improve SCMS, while LSDRF performs better than
(LS+KDE) and (MS+LSDDR). Therefore, both Σ̂LS

and m̂LS surely contribute to improving the perfor-
mance of SCMS. However, the amount of performance
improvement obtained from m̂LS or from Σ̂LS seems
dependent on datasets.

5.2 Density Ridge Visualization on
Real-World Datasets

Finally, we apply LSDRF to real-world datasets. As
in Pulkkinen [2015], we employed the following two
datasets:

• New Madrid earthquake dataset: This seismo-
logical dataset was downloaded from the Cen-

ter for Earthquake Research and Information.4

The dataset contains positional information for
earthquakes around the New Madrid seismic zone
from 1974 to 2016, providing 11, 131 samples.
The three regions in Figures 4(a,b,c) were ex-
tracted according to (a) (−90.2,−89.25), (b)
(−92.5,−92.15) and (c) (−85.5,−83.5) degrees for
the latitude range. For the longitude range, (a)
(36, 36.8), (b) (35.2, 35.4) and (c) (34.5, 36.5) de-
grees were selected. The total number of the
original data samples and reduced data samples
in each region was (a) (n, n′) = (5902, 500), (b)
(n, n′) = (1548, 300) and (c) (n, n′) = (594, 200).

• Shapley galaxy dataset: This dataset was down-
loaded from the Center for Astrostatistics at
Pennsylvania State University.5 The dataset con-
tains information about the three-dimensional sky
angles and recession velocity of 4, 215 galaxies.
As done in Pulkkinen [2015], we transformed the
data samples into the three-dimensional Carte-
sian coordinates based on the fact that the re-
cession velocity is proportional to the radial dis-
tance [Drinkwater et al., 2004]. The three re-
gions in Figures 4(a,b,c) were extracted accord-
ing to a velocity range: (a) (6000, 20000) km/s,
(b) (1500, 6000) km/s and (c) (6000, 10500) km/s,
respectively. The total number of the original
data samples and reduced data samples in each
region was (a) (n, n′) = (2849, 500), (b) (n, n′) =
(595, 200) and (c) (n, n′) = (351, 150).

In each dataset, we focused on three regions containing
prominent features, and standardized data samples in
each region by subtracting the mean value and divid-
ing by standard deviation in a dimension-wise man-
ner. For performance comparison, we computed the
log-likelihood of density ridge estimates, which is de-

fined by L = 1
n′

∑n′

l=1 log p̂KDE(ŷl): The kernel centers
in p̂KDE were set at data samples {xi}ni=1 in each re-

gion, while density ridges estimates {ŷl}n
′

l=1 were ob-
tained from n′(< n) data samples randomly chosen
from {xi}ni=1. If L is larger, the performance can be in-
terpreted to be better because ridges are defined on rel-
atively high density areas. Unlike the last experiment,
we used the following adaptive-bandwidth Gaussian
kernel in LSDDR: The bandwidth parameter of each
Gaussian kernel was set at the Euclidean distance to
the m-nearest sample from the Gaussian center where
m was cross-validated. The regularization parameter
λk, which is supposed to be common to all j in this
section, was also determined by cross-validation as in

4http://www.memphis.edu/ceri/seismic/
5http://astrostatistics.psu.edu/datasets/

Shapley_galaxy.html
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Figure 4: Density ridge estimation to the (a,b,c) New Madrid earthquake and (d,e,f) Shapley galaxy datasets.
Three regions were extracted from each dataset according to (a,b,c) a range of latitude and longitude, and (d,e,f)
a range of recession velocity.

Section 3.3. The adaptive-bandwidth Gaussian kernel
was also used for SCMS, and a similar cross-validation
procedure was performed.

Ridges estimated by LSDRF are often smooth and
seem to well-match the ridges of the underlying data
(Figure 4). Table 1 quantitatively substantiates that
LSDRF overall performs better than SCMS.

6 Conclusion

In this paper, we proposed a new algorithm for density
ridge estimation. Our main contribution was the least-
squares density-derivative-ratios (LSDDR) estimator,
which avoids density estimation and division by an
estimated density. We theoretically established a non-
parametric convergence bound for LSDDR and exper-
imentally demonstrated the superior performance of
the density ridge estimator constructed based on LS-
DDR.
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Table 1: The average and standard deviation of the
log-likelihood of density ridges over 50 runs. A larger
value means a better result. Numbers in the parenthe-
ses are standard deviations. The best and comparable
methods judged by the unpaired t-test at the signifi-
cance level 5% are described in boldface.

New Madrid earthquake
LSDRF SCMS

Madrid 1 -0.611(0.109) -0.632(0.056)
Madrid 2 -0.004(0.108) -0.051(0.086)
Madrid 3 -1.097(0.146) -1.238(0.086)

Shapley galaxy
LSDRF SCMS

Shapley 1 0.125( 0.101) 0.038(0.082)
Shapley 2 -1.285(0.113) -1.216(0.089)
Shapley 3 -1.252(0.197) -1.550(0.086)
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