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Abstract

Motivated by online recommendation and
advertising systems, we consider a causal
model for stochastic contextual bandits with
a latent low-dimensional confounder. In our
model, there are L observed contexrts and K
arms of the bandit. The observed context
influences the reward obtained through a la-
tent confounder variable with cardinality m
(m < L,K). The arm choice and the la-
tent confounder causally determines the re-
ward while the observed context is correlated
with the confounder. Under this model, the
L x K mean reward matrix U (for each con-
text in [L] and each arm in [K]) factorizes
into non-negative factors A (L x m) and W
(m x K). This insight enables us to pro-
pose an e-greedy NMF-Bandit algorithm that
designs a sequence of interventions (select-
ing specific arms), that achieves a balance
between learning this low-dimensional struc-
ture and selecting the best arm to minimize
regret. Our algorithm achieves a regret of
O (Lpoly(m,log K)logT) at time T, as com-
pared to O(LK logT) for conventional con-
textual bandits, assuming a constant gap be-
tween the best arm and the rest for each con-
text. These guarantees are obtained under
mild sufficiency conditions on the factors that
are weaker versions of the well-known Statis-
tical RIP condition. We further propose a
class of generative models that satisfy our suf-
ficient conditions, and derive a lower bound
of O(KmlogT). These are the first regret
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guarantees for online matrix completion with
bandit feedback, when the rank is greater than
one. We further compare the performance of
our algorithm with the state of the art, on
synthetic and real world data-sets.

1 Introduction

The study of bandit problems captures the inherent
tradeoff between exploration and exploitation in online
decision making. In various real world settings, policy
designers have the freedom of observing specific samples
and learning a model of the collected data on the fly;
this online learning is instrumental in making future
decisions. For instance in movie recommendations, al-
gorithms suggest movies to users in order to meet their
interests and simultaneously learn their preferences in
an online manner. Similarly, for product recommen-
dations (e.g. in Amazon) or web advertisement, there
is an inherent tradeoff between collection of training
data for user preferences, and recommending the best
items that maximize profit according to the currently
learned model. Multi-armed bandit problems provide
a principled approach to attain this delicate balance
between exploration and exploitation [9].

The classic K-armed bandit problem has been studied
extensively for decades. In the stochastic setting, one
is faced with the choice of pulling one arm during each
time-slot among K arms, where the k" arm has mean
reward Uj. The task is to accumulate a total reward
as close as possible to a genie strategy that has prior
knowledge of arm statistics and always selects the op-
timal arm in each time-slot. The expected difference
between the rewards collected by the genie strategy
and the online strategy is defined as the regret. The ex-
pected regret of the state of the art algorithms [9] scales
as O(K logT) when there is a constant gap between
the best arm and the rest.
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When side-information is available, a popular model
is the contextual bandit, where the side information is
encoded through observed contexts. In the stochastic
setting, at each time an observed context s € [L] is
revealed, and the observed context influences the re-
ward statistics of the K arms. Thus, there are (K x L)
reward parameters {Us} (encoded through the reward
matrix U) that need to be learned, one per each arm
and observed context. Since there are (K x L) reward
parameters, it has been shown [9, 40| that the best
expected regret obtainable scales as O (K LlogT).

Netflix Example: Consider the task of recommend-
ing movies to user profiles on Netflix. A user profile
along with the past browsing history, social and demo-
graphic information is the observed context. The list
of movies that can be recommended to any user are
the arms of the bandit. In this setting with millions of
users and items, standard contextual bandit algorithms
are rendered impractical due to the K x L scaling.

Therefore, it is important to exploit that in most prac-
tical situations, the underlying factors affecting the re-
wards may have a low-dimensional structure. Although
this low dimensional structure is often not observable
(latent), we will show that it can be leveraged to obtain
better regret bounds. In the context of Netflix, there
are millions of user profiles but the preference of users
towards an item may be represented by a combination
of only a handful of moods, where these moods lie in a
much lower dimension. This is further corroborated by
the fact that the Netflix data-set, which has more than
100 million movie ratings, can be approximated surpris-
ingly well by matrices of rank as low as 20 [7]. Crucially
however, these moods cannot be directly observed by a
learning algorithm.

This problem of a contextual bandit with a latent struc-
ture has direct analogy with problem of designing struc-
tural interventions (forcing variables to take particular
values) in causal graphs, a class of problems that is
of increasing importance in social sciences, economics,
epidemiology and computational advertising [32, 8].

A Causal Perspective: A causal model [32] is a
directed graph that encodes causal relationships be-
tween a set of random variables, where each variable
is represented by a node of the graph (see Figure 1a).
This example has a directed graph with 3 variables,
where the variable Y has two parents {5, A}.

To illustrate the connection between contextual bandits
and causal models, consider again the Netflix example,
which can be mapped to the causal graph in Figure la.
Here, the reward Y (satisfaction of the user) is causally
dependent on two quantities — the observed context
(user profile in Netflix) described by S, and the arm
selection (the recommended movie) described by the

variable A. Setting A to a particular value is equivalent
to playing a particular arm (act of recommending an
item). In this example, A is the only variable that
can be directly controlled by the algorithm; in the lan-
guage of causality this is known as an intervention [32]
denoted by do(A = a).

More specifically, this contextual bandit setting maps to
the causal graph problem of affecting a target variable
Y (satisfaction of users), through limited interventional
capacity (only being able to recommend a movie) when
other observable causes (user profiles and contextual
information) affecting the target variable are present
but cannot be controlled. This is precisely the model
in Figure la. An identical structural equation model
has been defined in Figure 8 of [8].

Latent Confounder
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(a) Causal graph represent-
ing regular contextual ban-
dits

(b) Causal graph repre-
senting contextual bandits
with latent confounders.

Figure 1: Comparison between regular contextual ban-
dits and contextual bandits with latent confounders
through causal graphs.

Latent Confounders: In this causal framework, it is
possible to formally capture the implications of latent
effects, such as the moods in the context of Netflix.
Consider the modified causal model in Figure 1b. The
new variable Z denotes a latent confounder (mood) that
is causally connected to the observed contert and also
causally affects the reward Y. The latent confounder
Z takes values in {1,2,...,m}, where m < L, K.

The goal here is to develop an efficient algorithm that
chooses the sequence of limited interventions (i.e. a
sequence of do(A = a) actions) to achieve a balance
between learning this latent variable (indirectly learn-
ing Z) from observed rewards, and maximizing the
observed reward under the given (but not intervenable)
observed context S.

In the setting of contertual bandits with L observed
contexts and K arms, we note that the presence of the
m-dimensional latent confounder leads to a factoriza-
tion of the L x K reward matrix U into non-negative
factors A (an L x m matrix) and W (a m x K matrix).
We leverage this latent low-dimensional structure to de-
velop an e-greedy NMF-Bandit algorithm that achieves
a balance between learning the hidden low-dimensional



Sen, Shanmugam, Kocaoglu, Dimakis, Shakkottai

structure (indirectly learning Z), and selecting the best
arm to minimize regret. In the setting of causality, this
result thus demonstrates an approach to designing a se-
quence of interventions with limited capacity to control
a reward variable, in the presence of other (possibly
latent) variables affecting the reward that cannot be
intervened upon.

1.1 Main Contributions

The main contributions of this paper are as follows:

1. (Model for Latent Confounding Contexts)
We investigate a causal model for contextual ban-
dits (Figure 1b), which, compared to the conventional
model, allows more degrees of freedom through the
unobservable context variable. This allows us to better
capture real-world scenarios. In particular, our model
has (a) Latent Confounders representing unobserved
low-dimensional variables affecting the mean rewards
of the bandit arms under an observed context; and ()
Limited Interventional Capacity signifying that the ob-
served contexts (eg. user profiles) cannot be intervened
upon.

In the contextual bandit setting with L observed con-
texts and K arms, this translates into a decomposition
of the L x K reward matrix U = AW, where A (non-
negative L x m matrix) represents the relation between
X (observed contexts) and Z (hidden confounder),
while W' (non-negative m x K matrix) encodes the
relation between Y (reward) and Z.

2. (NMF-Bandit Algorithm) We propose a latent
contextual bandit algorithm that, in an online fashion,
multiplexes two tasks. The first task refines the current
estimate of matrix A by performing a non-negative
matrix factorization (NMF) on the sampled version
of a carefully chosen sub-matrix of the mean-reward
matrix U. The second task uses the current estimate of
A and refines the estimate of W from sampled versions
of several sub-matrices of U.

A direct application of results from existing noisy ma-
trix completion literature is infeasible in the bandit
setting. In the literature, one of the key conditions
to derive spectral norm bounds between the recovered
matrix and the ground truth is that the noise in each
entry should be O(1/K) in a L x K matrix [20]. In
the bandit setting where errors occur due to sampling,
this would lead to a regret of at least would lead to
O(LKlogT) in the presence of sampling errors. We
provide further insights in Section A.2 in the appendix.

In contrast, our algorithm has much stronger re-
gret guarantees that scale as O(Lpoly(m,log K)logT).
We show that our algorithm succeeds when the non-
negative matrices A and W satisfy conditions weaker

than the well-known statistical RIP property [36]. Fur-
ther, we prove a lower bound for this setting which
is only poly(m,log K) factors away from our upper
bound. This the the first work which has provable
guarantees for matrix completion with bandit feedback
for rank greater than one.

3. (Generative Models for A and W) We propose
a family of generative models for the factors A and W
which satisfy the above sufficient conditions for recov-
ery. These models are extremely flexible, and employ a
random + deterministic composition, where there can
be large number of arbitrary bounded deterministic
entries (see Section 2.4 for details). The remaining ran-
dom entries in the matrices are generated from mean-
shifted sub-gaussian distributions (commonly used in
the compressive sensing literature [16]).

Finally, we numerically compare our algorithm with
contextual versions of UCB-1, Thompson Sampling
algorithms [9] and online matrix factorization algo-
rithms [25] on synthetic and real-world data-sets.

1.2 Related Work

The current work falls at the intersection of learning of
low-dimensional causal structures and multi-armed ban-
dit problems. We briefly review the areas of literature
that are most relevant to our work.

Contextual Bandit Problems: There has been sig-
nificant progress in contextual bandits both in the
adversarial setting and in the stochastic setting. In
the adversarial setting, the best known regret bounds
scale as O(v/LKTlog K) [9, 39] where L is the num-
ber of contexts and K is the number of arms. In the
stochastic regime where there is a constant gap from
the best arm, it can be shown that the regret scales
as O (LK logT) [40]. Contextual bandits with linear
payoff functions have been analyzed in [2, 12] in the ad-
versarial setting, while in [1] it has been analyzed in the
stochastic setting. In [15] the authors have expanded
this model for the generalized linear model regime.

However, these models require one of the low-
dimensional features to be known a priori, while our
algorithm learns both the features from sampled data.
Another related line of work is in the online clustering
of bandits [17, 31, 30]. In this framework, the features
of the arms can be directly observed, which is the
fundamental difference from our paper.

Causality and Bandits: Recently, contextual bandit
algorithms have found use within the framework of
causality. In [5], the authors investigate a similar latent
confounder model. However [5] does not consider our
scaling regime nor provide theoretical guarantees (and
has a very different algorithm).
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In [29], a causal model for observing feedback has been
introduced in the best arm identification regime. How-
ever, in their model all the variables can be intervened
upon. Moreover, the states of all the non-intervened
variable including the reward is revealed after the in-
tervention is made. In this work, we focus on a more
realistic case where only some of the variables can be in-
tervened upon and in fact some of the variables cannot
be observed directly. Further, side information about
the observed variables are revealed before an interven-
tion has to be made. The reward is the only extra
information that is revealed after each intervention.

Online Matrix factorization : The non-negative
matrix factorization (NMF) problem has generated
a lot of interest in the area of semi-supervised topic
modeling. Arora et al. have shown that if the matrix
is separable and has some robustness properties [4],
then NMF is solvable efficiently. Since then, there
has been a lot of work in proposing efficient scalable
algorithms for NMF, out of which [18, 13, 33] are of
particular interest. There has been some progress in
online NMF [14, 19] which aims to update the features
efficiently in a streaming sense. To the best of our
knowledge there has been no work in NMF with bandit
feedback with theoretical guarantees. [27, 25| propose
algorithms for online matrix factorization, however they
only have theoretical analysis for the rank 1 case.

2 Problem Statement and Results

2.1 System Model

Observed Contexts and Latent Confounders:
We consider a stochastic bandit model represented by
the causal graph in Figure 1b. The variable S denoting
the observed context takes values in § = {1,2,---, L},
while the variable A determines the arm that has been
pulled taking values in A = {1,2,--- , K'}. The variable
Z denotes the latent confounding contexts and takes
values in Z = {21,292+ z;m}t C S, where m < L, K.
The causal model results in the bayesian factorization
of the joint distribution of S,Y and Z. A natural inter-
pretation is that, at any time nature chooses a latent
context z € Z, and based on that, a context s € S is
actually observed. We denote the posterior probability
of a latent context z given an observed context s as,

P(Z =z|S=3)=as, VseS\ 2,z € Z,
agj=1{s=2z2;} Vs,z; € Z

Let A be the matrix with elements «a, where s €
{1---L} and ¢ € {1,2---m}. Please note that the
sub-matrix corresponding to the row indices in Z from
an identity matrix I,,«,,. This is essentially the well-
known separability condition [33]. We also define the

marginal probability of observing a context s € §
as P(S=s) = s, Vs € S. This specifies the joint
distribution of the latent context Z and the observed
context S.

Bandit Setting: In this setting the contextual bandit
problem can be described as follows: (i) At each time
t the algorithm observes a context S; = s; € S; (i)
After observing the context the algorithm selects an
arm A; = a; € A which is the intervention do(A = a;);
and (ii1) The algorithm then obtains a Bernoulli reward
Y, with mean Ug, 4,. The mean rewards Us, 4, have a
latent structure described in the next subsection.

Rewards: When an observed context s is provided,
the reward for arm k£ depends only on the latent vari-
ables. Consider an m x K reward matrix W. W;,
specifies the mean reward for arm k& when the latent
context is z;. For all observed contexts s € S, the mean
rewards are given by the matrix U. This is given by:

Usk: = ZP(Z = ZZ|S = S) Wik = ZasiWik.

Therefore, we have U = AW. Since the latent contexts
Z are also a subset of observed contexts, the matrix A
contain a I, «,, sub-matrix. This is equivalent to the
separability condition and is widely used in the NMF
literature (see [18]). A represent the relation S +— Z
while the matrix W denotes the relation Z — Y in
the causal model of Figure 1b.

Regret: The goal is to minimize regret (also known as
pseudo-regret [9]) when compared to a genie strategy
which knows the matrix U. Let us denote the best arm
under a context s € S by k*(s) and the corresponding
reward by u*(s). Now, we are at a position to define
the regret of an algorithm at time T,

RT)=), > (W()-EN) (O

s€S {te[T):S¢=s}

Note that the genie policy always selects the arm k*(s)
when S; = s. The class of policies we optimize over are
agnostic to the true reward matrix U and Z, however
we assume that m (the latent dimension) is a known
scalar parameter. We work in the problem dependent
setting, where there is a gap (bounded away from zero)
between the mean reward of the best arm and the
second best for every observed context. Let the gap
(A), be defined as, A = minge(r) mingzp« () w*(5)—Usk-

2.2 Notation

We denote matrices by bold capital letters (e.g. U )
and vectors with bold small letters (e.g. x ). For an
L x K matrix Ug denotes the sub-matrix restricted
to the rows in S C [L], while U. r denotes the sub-
matrix restricted to the columns in R C [K]. 0,,(P)
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denotes the m-th smallest singular value of P. [|x||,
denotes the £,-norm of x. For, a matrix [|UJ|, ; refers
to the maximum ¢;-norm among all the rows while
IU||, and [|U|z denotes its spectral and Frobenius
norms respectively. [[U[ ., denotes the maximum
absolute value of an element in the matrix. Ber(p)
denotes a Bernoulli random variable with mean p.

2.3 Main results

We first provide few definitions before presenting our
main results.

Definition 1. Consider an m x m’ ;natm’a: P with
/ _ ; la" P>

m' > m. Define 1, (P) = a;éo:le??flzo -

Definition 2. Consider an m x m’ matriz P with

, R T
m’ = m. Define fy, (P) = a;éo:lgﬂfl:o lafl

In our work, we require the matrices (W and A) to
satisfy some weaker versions of the ‘statistical RIP
property’ (RIP - restricted isometry property). This
property has been well studied in the sparse recovery
literature [6, 11, 37, 36, 10]. Statistical RIP property is
a randomized variant of the well-known RIP condition
[16]. RIP requires the extreme singular values to be
bounded for sub-dictionaries formed by any k columns
(or rows) of a dictionary for a suitable k. Statistical
RIP property is a weaker probabilistic version where
extreme singular values need to be bounded for random
sub-dictionaries with high probability when k£ random
columns are chosen out of a dictionary to form the
random subdictionary. We note that this same property
goes by different names such as weak RIP property [11]
and quasi-isometry property [10] in the literature. The
terminology we adopt in this work is from [6].

Definition 3. (Statistical RIP Property -
StRIP) An L x m matriz (L > m) P, whose rows
have unit {5 norm, satisfies the l-Statistical RIP Prop-
erty (£2-StRIP) with constants (e, p,m’), if

Pr\S|:m’(1 —pP S Omin (PS,:) S Omax (PS,:) S 1 + l))
Z 1- €,

where the probability is taken over sampling a set S of
size m' uniformly from [L].

In our work, we only need a weaker version of StRIP
condition to hold. We only need that the smallest sin-
gular value be bounded below for random sub-matrices
and we work with un-normalized matrices. Hence, we
have the following version which we will use:

Definition 4. ({; Weak Statistical RIP Property
- (5-WStRIP) An L x m matriz (L > m) P satisfies
the lo-Weak Statistical RIP Property (f2-WStRIP) with
constants (€, p,m’) if Pr|g|—pm (Omin (Ps,:) > p) > 1—€

where the probability is taken over sampling a set S of
size m’ uniformly from [L].

For one of the matrices among W and A, we need
its random sub-matrices to satisfy weaker RIP-like
conditions in the /1 sense.

Definition 5. (¢, Weak Statistical RIP Property
- £1-WStRIP) An m x K matriz (K > m) P satisfies
the £1-weak statistical RIP property (1-WStRIP) with
constants (€, p,m’) if Prigj=m: (5, (P.5) > p) > 1 —¢
where the probability is taken over sampling a set S of

size m’ uniformly from [K].

In what follows, we assume that W satisfies £;-WStRIP
and A satisfies /o-WStRIP. Note that in Section 2.4
we provide reasonable generative models for W and A
that satisfy these conditions with high probability.

Now we are at a position to state Theorem 1 which
shows the existence of an algorithm for the latent con-
textual bandit setting, with regret that scales at a much
slower rate than the usual O (LK logT) guarantees.

Theorem 1. Consider the bandit model with reward
matric U = AW. Suppose A is separable [33].
Let A satisfy lo-WStRIP with constants (6/L, pa, m})
while W satisfies £1-WStRIP with constants (8, p1,mb).
Let m' = max(m},mb) = O(mlog(K)). Suppose
Bs = Q(1/L) for all s € [L]. We also assume that
L = Q(Klog(K)). Then there exists a randomized
algorithm whose regret at time T s bounded as,

poly(mA,gog(K ) 10g(T)> @)

K)) =

R(T) =0 (L

with probability at least 1 —§. Here, poly(m, log(
O (m°log” K).

We present an algorithm that achieves this performance
in Section 3. This theorem is re-stated as Theorem 8
in the appendix which has greater details specific to
our algorithm. It should be noted that in practice our
algorithm has much lesser regret than O(Lm?logT).
This can be observed in Section 4, where our algorithm
performs well even if we set the explore rate much lower
than what is prescribed.

Remark: In prior works [6, 11, 37, 36, 10] the statis-

tical RIP property was established by relating it to the

incoherence parameter p of a matrix B which is defined

as u(B) = m£x|bfbj|. In some works, the average of
i#]

these incoherence parameters has been used instead.
We note that matrices A and W are non-negative.
Hence, directly using analysis based on controlling dot-
products among rows and columns is not useful in this
scenario. Hence, we propose generative models for A
and W that satisfy the properties listed above with
high probability even when they are not incoherent. We
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also explain why these generative models are extremely
reasonable for our setting.

2.4 Generative Models for W and A

We briefly describe our semi-random generative models
for W and A that satisfy the weak statistical RIP
conditions. We refer to Section A.3 for a more detailed
discussion of the generative models.

1. Random+Deterministic Composition: A signifi-
cant fraction of entries of W and A are arbitrarily
deterministic. O (1/m) fraction of columns of W
and O (1) fraction of rows of A are deterministic.
In addition, we assume that a sub-matrix in the
deterministic part of A is an identity matrix to
account for the separability condition [33]. The
rest of the entries are mean shifted, bounded sub-
gaussian random variables with some additional
mild conditions. Uniform prior on reward that
has been used in bandit setting [26] reduces to a
special case of this model.

2. Bounded randomness in the random part: The
random entries of both W and A are in “general po-
sition”, i.e., they arise from mean shifted bounded
sub-gaussian distributions (see Section A.3, and
also [16] for similar conditions in compressed sens-
ing literature). The mean shifts in the random
parts of A and W, the support of the sub-gaussian
randomness satisfy technical conditions to make
sure that row sum of A is 1 and to ensure that
the weak statistical RIP conditions are satisfied.

One of our main results is stated as Theorem 2, which
implies that if W comes from our generative model then
with high probability projecting it onto a small random
subset of its columns preserves the a-robust simplical
property [33] which is a key step in our algorithm.

Theorem 2. Let m’ > 32mlog(eK). Let
W follow the in Section A.3.

random model

W satisfies  (01-WStRIP)  with  constants
(2exp(—cy log(eK)), (£3) V\};’%ﬂﬂm’) with  proba-

bility at least 1 — exp(—c} log(eK)). Here, c1,¢| are
constants that depend on the sub-gaussian parameter
c(q) that depends on the variance in the model for W.

In Theorem 3, we follow very similar techniques to
prove that small random subsets of rows of A have
singular values bounded away from zero with high
probability if A is drawn from our generative model.

Theorem 3. Let m’ > 522mlog(eL). Let A follow the

random model in Section A.3. A satisfies (la-WStRIP)
with constants (2 exp(—camlog(eL)), 55 \/7;7, 2m') with

probability at least 1 — exp(—chmlog(eL)). Here, ¢, co

are constant the depends on the sub-gaussian parameter
c(q) that depends on the variance in the model for A.

The proof of these theorems are available in the ap-
pendix in Section A.4.

2.5 Lower Bound

We prove a problem-specific regret lower bound for a
specific class of parameters (U, W, A) which is only a
poly(m,log(K))/A factor away from the upper bound
achieved by our algorithm. The lower bound holds
for all policies in the class of a-consistent policies [34]
defined below.

Definition 6. A scheduling policy is said to be a-
consistent if given any problem instance U we have,

E [ qeprsi—e 1Xi = kY| = O(T()) for all k #
k*(s), s € S, wherea € (0,1), T(s) = ZtT:1 1{S; =s}
Theorem 4. There exists a problem instance
(U, A, W) with By = Q(1/L) for all s € S such that
the regret of any a-consistent policy is lower-bounded
as follows,

R(T) 2 (K — )mD(U)((1 — a)(log(T/2m)
—log(L/m)) — log(4K ()

for any T > 7, where C, 7 are universal constants in-
dependent of problem parameters and D(U) = O (1/A)
is a constant that depends on the entries of U and is
independent of L, K and m.

The proof of this theorem has been deferred to the
appendix in Section A.11 where we specify the class of
problem parameters for which we construct this bound.

3 NMF-Bandit Algorithm

In this section we present an e-greedy algorithm that
we call NMF-Bandit algorithm. Our algorithm takes
advantage of the the low-dimensional structure of the
reward matrix. The algorithm explores with probability
€:; in this case it samples from specific sets of arms (to
be specified later). Otherwise w.p. (1 — ) it exploits,
i.e., chooses the best arm based on current estimates
of rewards to minimize regret. A detailed pseudo-code
of our algorithm has been presented as Algorithm 1 in
the appendix. The key steps in the algorithm are:

(a) At each time ¢ and with probability €;, the algorithm
explores, i.e. it randomly performs one of these two
steps:

Step 1 — (Sampling for NMF in low dimensions
to estimate A): Given that it explores, with probabil-
ity « it samples a random arm from a subset S C [K]
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of arms. |S| = 2m' for m’ = O(mlog(K)). The set S
is a randomly chosen at the onset and kept fixed there
after. This is Step 6 of Algorithm 1.

Step 2 — (Sampling for estimating W): Other-
wise with probability (1 — «), it samples in a context
dependent manner. If the context at the time is s¢, the
algorithm samples one arm at random from a set of
m arms given by R(s;) (the selection of these sets are
outlined below). The context specific sets of arms are
designed at the start of the algorithm and held fixed
there after. This is Step 7 of Algorithm 1.

(b) Otherwise with probability (1 — €;) it exploits by
performing Step 3 below.

Step 3 — (Choose best arm for current observed
context): Compute estimate A(t) as detailed in
Step 10 of Algorithm 1, using Hottopix. Estimate
W (t) as detailed in Step 11 of Algorithm 1. Let

U(t) = A(t)W(t). The algorithm plays the arm given

by argmaxc g U(t)s, k, i.e., the best arm for the ob-
served context according to current estimates.

For solving the NMF to obtain A(t), we use a robust
version of Hottopix [33, 18] as a sub-routine. Now,
we briefly touch upon the construction of the context
specific sets of arms in Step 2 of the explore phase.
These sets have been defined in detail in Section A.1.
Let I = [K/m]|. A set R C [L] of contexts is sampled
at random, such that |R| = 2(I + 1)m’ at the onset of
the algorithm. We partition R into [ + 1 contiguous
subsets {S(1),5(2),...,S({+ 1)} of size 2m’ each. In
Step 2 of explore, if s, € S(i), then R(s¢) = {(i —
Dm,(i—1)m+1, - -max(tim — 1, K)}. If s, ¢ S(3) for
all ¢ € [l + 1], then the algorithm is allowed to pull any
arm at random, and these samples are ignored.

A more detailed version of our main result (Theorem 1)
has been provided in (Theorem 8) in the appendix,
along with a detailed proof. Theorem 8 exactly specifies
the algorithm parameters €;,  and m’ under which
we obtain the regret guarantees. We provide some
key theoretical insights and a brief proof sketch in
Section A.2 in the appendix. In particular we discuss
in detail why usual matrix completion techniques would
fail to provide regret guarantees that are o(K Llog(T)).
We explain the challenges of dealing with sampling
noise and how we overcome them through careful design
of the arms to explore.

4 Empirical Validation

We validate the performance of our algorithm against
various benchmarks on real and synthetic datasets. We
compare our algorithms against contextual versions of

UCB-1 [9] and Thompson sampling [3]. To be more pre-
cise, these algorithms proceed by treating each context
separately and applying the usual K-armed version
of the algorithms to each context. We also compare
the performance of our algorithm to this recent algo-
rithm [25] for stochastic rank 1 bandits. In [25] the
problem setting is different. Therefore, whenever we
compare the performance with this algorithm the ex-
periments have been performed in the setting of [25],
which we call S2. The more realistic setting of our
paper will be denoted by S1. The two settings are, (i)
S1 : The arrival of the contexts cannot be controlled
by the algorithm and the regret is w.r.t the best arm
which is context dependent. This is strongly motivated
by the causal setting discussed with real world scenar-
ios in Section 1; (ii) S2 : This is in accordance with
the model in [25]. The contexts and the arms both can
be chosen by the algorithm and the aim is to compare
regret w.r.t the best arm out of all KL entries.

Synthetic Data-Sets : In order to generate the
synthetic reward matrix U, the parameter L, K,m
are chosen. The L X m matrix A is then generated
by picking each row uniformly at random from the m-
dimensional simplex. The mx K matrix W is generated
with each entry uniformly generated in the interval [0, 1].
We further corrupt 5 % of the entries in each row of
W with completely arbitrary noise while ensuring that
they still lie in [0, 1].

In Figure 2a,2b, we compare our algorithm to UCB-1
and Thompson in S1 under different values of problem
dimensions. In Figure 2a, the rewards are uniform
with means given by U, while they are Bernoulli in
Figure 2b. We observe that UCB-1, Thompson have
linear regret as they do not get sufficient concentration
for the L x K mean parameters. However, our algorithm
is able to enter the sub-linear regime much faster. We
mention the choice of the parameters 6§ and m’ below
the corresponding figures. It should be noted that our
algorithm performs well even for values of the explore
parameter 6, which are much lower than prescribed. In
Figure 2e the experiments are performed under S2. We
can see that our algorithm’s regret is better compared
to the others by a large margin, even though it has not
been designed for this setting.

Real World Data-Sets : We use the Movielens
1M [21] and the Book Crossing [41] data-sets for our real
world experiments. A subset of dimension 2000 x 2000
is chosen from the Movielens 1M dataset, such that we
have at least 20 ratings in each row and each column.
Similarly a subset of 3000 x 3000 is chosen from the
Book Crossing data-set with the same property. Both
these partially incomplete rating matrices are then
completed using the Python package fancyimpute [22]
using the default settings. These completed matrices
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(b) Synthetic data-set with L = 300, K =
145 and m = 3; the rewards are Bernoulli

with the given means. Setting : S1
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(e) Synthetic data-set with L = 90, K =
30 and m = 3. The rewards are Uniform
around the means with a support of length

0.4. Setting : S2
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(C) A random subset of Movielens data-set
with L = 1600, K = 750. The rewards are
Uniform around the means with a support
of length 2. In our algorithm we set m =

10,m’ = 20 and 0 = 3. Setting : S1
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(f) A random subset of Book Crossing
data-set with L = 1000, K = 450. The re-

wards are Uniform around the means with

15,m’ = 30 and # = 3. Setting: S1

a support of length 4. Setting : S2

Figure 2: Comparison of contextual versions of UCB-1,Thompson sampling and Rank 1 Stochastic bandits with
Algorithm 1 (NMF-Bandit) in S1 and S2 on real and synthetic data-sets.

are used in place of the reward matrix U without
any further modifications, and all the algorithms are
completely agnostic to the process through which these
matrices have been completed. The experiments have
been performed in a setting where the rewards observed
are uniform around the given means. The support of
the uniform distributions are given below each figure.

In Figure 2c¢ and 2d, we compare our algorithm to
UCB-1 and Thompson in S1 on the MovieLens and
Book Crossing data-set respectively. As before, our
algorithm has superior performance. In Figure 2f, we
compare the algorithms on the Book Crossing data-
set under S2. NMF-Bandit outperforms all the other
algorithms, even on the real datasets.

5 Conclusion

In this paper we investigate a causal model of contex-
tual bandits (as shown in Figure 1b) with L observed
contexts and K arms, where the observed context in-
fluences the reward through a latent confounder. The
latent confounder is correlated with the observed con-
text and lies in a lower dimensional space with only m
degrees of freedom. We identify that under this causal
model, the reward matrix U naturally factorizes into

non-negative factors A and W.

We propose a novel e-greedy algorithm (NMF-
Bandit), which attains a regret guarantee of
O(Lpoly(m,log K)logT/A?). Our guarantees are
under statistical RIP like conditions on the non-
negative factors. We also establish a lower bound of
O(KmlogT/A) for our problem. To the best of our
knowledge, this is the first achievable regret guaran-
tee for online matrix completion with bandit feedback,
when rank is greater than one.

This work opens up the prospect of investigating gen-
eral causal models from a bandit perspective, where
the goal is to control the regret of a target variable,
when the algorithm can intervene only on some of the
variables (limited interventional capacity), while other
variables (possibly latent) can causally influence the
reward.
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