Sparse Randomized Partition Trees for Nearest Neighbor Search

Kaushik Sinha
Wichita State University
Wichita, KS, USA
kaushik.sinha@wichita.edu

Abstract

Randomized partition trees have recently been
shown to be very effective in solving nearest
neighbor search problem. In spite of enjoying
strong theoretical guarantee, it suffers from high
space complexity, since each internal node of
the tree needs to store a d dimensional projec-
tion direction leading to a O(nd) space complex-
ity for a dataset of size n. Inspired by the fast
Johnson-Lindenstrauss transform, in this paper,
we propose a sparse version of randomized parti-
tion tree where each internal node needs to store
only a few non-zero entries, as opposed to all d
entries, leading to significant space savings with-
out sacrificing much in terms of nearest neighbor
search accuracy. As a by product of this, query
time of our proposed method is slightly better
than that of its non-sparse counterpart for large
dataset size. Our theoretical results indicate that
our proposed method enjoys the same theoreti-
cal guarantee as that of the original non-sparse
RP-tree. Experimental evaluations on four real
world dataset strongly suggest that nearest neigh-
bor search performance of our proposed sparse
RP-tree is very similar to that of its non-sparse
counterpart in terms of accuracy and number of
retrieved points.

1 Introduction

Due to its wide variety of applications, nearest neighbor
search is an extremely important problem in the field of
machine learning in particular, and computer science in
general. The basic problem is as follows: given a set of
n d-dimensional data points S = {x1,z2,...,z,} C RY

Appearing in Proceedings of the 20*" International Conference on
Artificial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright 2017
by the authors.

Omid Keivani
Wichita State University
Wichita, KS, USA
oxkeivani @shockers.wichita.edu

and a query point ¢ € R?, one needs to build a data struc-
ture using S, so that nearest point (when measured us-
ing appropriate distance metric) to ¢ from S can be found
quickly. The naive linear time solution that requires to scan
through each data point x; € S often becomes impractical
for large n and d. Towards this end, in recent years there
has been a conscious effort towards designing sub-linear
time algorithms for solving this problem. Most of these
efforts can broadly be classified into two groups, namely,
(a) tree based methods ([19, 5, 12, 15, 13, 4, 20, 7, 8]) and
(b) methods based on hashing ([10, 2, 9, 16, 17]). Basic
principle for both these approaches is to quickly retrieve a
smaller subset S’ C S and perform linear scan within this
retrieved S’. Locality sensitive hashing (LSH) [10, 2, 9] is
a representative of these hashing based methods that pro-
vides a sub-linear time solution for nearest neighbor search.
Unfortunately, the LSH parameters (hash code length and
number of hash tables) do not allow the user to have fine-
grained control over the accuracy-efficiency tradeoff (for
example, specifying a particular hash code length and num-
ber of hash tables does not provide any information/control
on the number of retrieved points). To address these is-
sues, recently a tree based method, namely randomized par-
tition tree (RP-tree) has been proposed for nearest neighbor
search [7, 8]. RP-tree uses a random binary tree data struc-
ture that exploits random projection at the non-leaf nodes.
Unlike LSH, nearest neighbor search using RP-tree allows
the user to have fine-grained control over the accuracy-
efficiency tradeoff, i.e., the user just needs to set leaf node
size ng and the number of trees L and the maximum num-
ber of retrieved points is upper bounded by L * ng (unlike
LSH). More importantly, RP-tree enjoys strong theoretical
guarantee by bounding the failure probability (that RP-tree
fails to find exact nearest neighbor of a query) to arbitrarily
small constant when dataset exhibits certain property, such
as doubling measure or doubling dimension [8]. Also, on
many real world datasets, empirical performance of RP-
tree in solving nearest neighbor search has been reported to
be superior as compared to that of LSH [18].

In spite of enjoying strong theoretical guarantee and su-
perior empirical performance, main drawback of RP-tree

Sparse Randomized Partition Trees for Nearest Neighbor Search

data structure is its high storage overhead. An RP-tree has'
O(n) non-leaf nodes, each of which needs to store a d-
dimensional projection direction, leading to O(nd) stor-
age per tree. Inspired by the recent seminal work on fast
Johnson-Lindenstrauss transform [1] and its application to
fast LSH [6], in this paper we propose a sparse version of
RP-tree where each non-leaf node only needs to store many
fewer entries than d without sacrificing much in terms of
nearest neighbor search accuracy. As a by product, this
results in faster query time as compared to non-sparse RP-
tree. The theoretical analysis of RP-tree relies heavily on a
data-dependent quantity called “potential function” [7, 8],
which is used to bound the failure probability of nearest
neighbor search using non-sparse RP-tree. Potential func-
tion essentially captures the inherent difficulty of nearest
neighbor search and depends on relative position of the
query points and the data points. We show that our pro-
posed method yields a failure probability that is same as
that of non-sparse RP-tree, except a small additional ad-
ditive and multiplicative factor. These additive and mul-
tiplicative factors depend on user controllable parameters
(e and 6), which in turn controls how much sparsity our
proposed method can handle. Consequently, we can reuse
the proof technique developed in [7, 8] by simply plugging
in failure probability estimate of our proposed method and
thereby ensuring the same theoretical guarantee of the non-
sparse RP-tree. We make the following contributions in this

paper:

e We show that our proposed sparse RP-tree has

n log(%d) log(1/9)

space complexity © < = as opposed

to ©(nd) for non-sparse RP-tree, where ¢ € (0,1)
and 6 € (0,1) are error and confidence parame-
ters defined in section 3. For example, by setting

¢ — ®< log("’Tdd)plog(%)

sparse RP-tree achieves O(nd?) space complexity.

> for some p,0 < p < 1,

e We prove that, for any given query point, at any inter-
nal node of our proposed sparse RP-tree, the expected
fraction of non-nearest neighbor points that fall be-
tween the query point and its nearest neighbor upon
projection is very similar to its non-sparse RP-tree
counterpart, except an additional small (user control-
lable) multiplicative and additive term. Analysis of the
nearest neighbor search failure probability of original
RP-tree relies heavily on the above expected fraction.
This indicates that all theoretical guarantees of non-
sparse RP-tree for nearest neighbor search essentially
hold for our proposed sparse version. More impor-

"Note that depending on data-structure construction and type
of query processing, randomized partition trees can be of several
types, such as random projection trees, spill trees and virtual spill
trees [7, 8]. In this paper, we consider random projection trees.

tantly, by setting e = © (75

nd 1
1°g(a)‘°gb)> as above,

the additional multiplicative term (1 + ¢€) tends to 1 as
for large d.

e We present an empirical evaluation of our proposed
method on four real world datasets and show that
nearest neighbor search performance of our proposed
method is very similar to that of the non-sparse ver-
sion, in terms of accuracy and number of retrieved
points.

Rest of the paper is organized as follows. In section 2, we
provide an overview of non-sparse RP-tree and introduce
our proposed sparse version. In section 3, we provide the-
oretical analysis of our proposed method. We present our
experimental evaluations in section 4 and conclude in sec-
tion 5.

2 Sparse and non-sparse Randomized
Partition Tree

2.1 Overview of non-sparse RP-tree

A randomized partition tree is a space partitioning binary
tree data structure, whose root node contains the whole
space or a subset of the space of interest (the complete
dataset of n objects). The tree is constructed recursively
from the root node by splitting each non-leaf node in a ran-
domized fashion to create left and right child nodes, un-
til each leaf node of the final tree contains at most a pre-
specified number of points, say ng. Splitting at any non-
leaf node is performed by first projecting all data points
belonging to that node onto a random projection direction
and then choosing random split point that creates left and
right child nodes based on the split point and projected data
points. In order to answer a nearest neighbor query us-
ing this data structure, the query point is routed to a par-
ticular leaf node, following the path from root to leaf us-
ing the same splitting rule, and its nearest neighbor within
that leaf node is returned. By construction, RP-tree is bal-
anced and require? O (d(no + log(n/no))) time to answer
a query which is O(dlog n) for constant ng.

Due to its random nature, at any internal node, there is a
positive probability that query point and its nearest neigh-
bor might end up in different subtrees, leading to failure of
nearest neighbor search. It was shown in [7, 8] that such
probability can be bounded by a geometric quantity called
“potential function”, where, at any internal node containing

20(dlog(n/no)) time is required to traverse the tree to reach
to a leaf node containing the query point. Once in this leaf node,
nearest neighbor of ¢ is obtained by searching from the ng data
points located at this leaf node.

Kaushik Sinha, Omid Keivani

m points and ¢, potential function is defined as,

1 = (e —dll2
Pn(q,S) = — < (1)
" m; (i) — all2
In the above definition, (1), %(g), . . . denotes an ordering

of the x; by increasing distance from ¢. It is easy to see
that @,,,(¢, S) € [0,1]. The idea presented in [7, 8] was to
first estimate the expected fraction of non-nearest neighbor
points that fall in between query point and its nearest neigh-
bor upon projection (this quantity is bounded from above
by potential function) and then use Markov’s inequality
to bound the above probability in terms of potential func-
tion, specifically by the quantity ®,,(q, S) log (#{1@)
Finally, the failure probability the RP-tree is estimated
by taking a union bound of the above probabilities along
the path from root node to appropriate leaf node. Note
that each internal node of RPT needs to store a pair con-
sisting of a d dimensional projection vector and a split
point. Space required to store these projections directions
is SIn/mo) 9i g — O(dn) for constant ng. Moreover,
if L independent such RPTs are constructed, total memory

requirement for storing all the projection directions will be
O(Ldn).

2.2 Sparse RP-tree

To reduce the O(d) space complexity at each internal node
of an RP-tree, we propose a sparse RP-tree where, at each
internal node, the random projection direction U € R is
made sparse by pre-multiplying U with random d x d diago-
nal matrix B, whose entries are drawn i.i.d from a Bernoulli
distribution with success probability p. It is easy to see that
for small p, only few entries of this new projection direc-
tion BU is non-zero, and these are the entries that need to
be stored at each internal node. However, this poses a po-
tential problem because if the entries of data points z; and
query q that corresponds to the nonzero indices of BU are
zero, then (BU) "z; = (BU) "¢ = 0. Inspired by [1], we
solve this problem by densifying z; and ¢ with an appli-
cation of norm preserving random rotation using a Walsh-
Hadamard matrix and a random diagonal matrix. In par-
ticular, let H be a d x d Walsh-Hadamard matrix whose
entries are given by H;; = d~/?(—1)%~13=1) where
(i—1, j—1) is the dot product (modulo 2) of the vectors i, j
expressed in binary. Also, let D be a d x d diagonal matrix
whose entries are drawn independently from {—1, 1} with
success probability 1/2. It is easy to see that |H Dx;|| =
o]l | Dal| = llall and | HD(z — q)|| = |l — g]|. This
simple modification leads to our sparse RP-tree which is
shown in Algorithm 1 and 2.

Note that while answering query ¢, we first need to
apply the same transformation and find nearest neigh-
bors of HDq. As we will show in the next sec-
tion, for any fixed ¢,6 € (0,1), setting p =

Algorithm 1 Sparse RP-tree

Input : data S = {z1,...,7,} C R?% maximum number
of data points in leaf node ng

Preprocessing : Pre-multiply each z; € S and let S =
{HDz; : z; € S§}.

Output : tree data structure

function MakeTree(S, ng)

1: if |S| < ng then
2: return leaf containing S
3: else
4: Rule = ChooseRule(.5)
5: LeftTree = MakeTree({z € S : Rule = true}, ng)
6: RightTree=MakeTree({zx € S : Rule = false}, ng)
7: return (Rule, LeftTree, RightTree)
8: end if
min {1, o (& log(eﬁ) we/o) leads to expected frac-

tion of non-nearest neighbors of ¢ that falls between ¢ and
its nearest neighbor to be same as that of non-sparse RP-
tree except an additional multiplicative factor (1 4 €) and
an additive factor (§ 4+ 7(e€)), where n(e) is an increasing
function of € defined in Corollary 2. This reduces the space

nlog(an) log(1/6)

complexity of sparse RP-tree to © as

compared to ©(nd) in case of non-sparse RP-tree. Note
also that by property of Walsh-Hadamard matrix, any ma-
trix vector multiplication involving d x d Walsh-Hadamard
matrix can be computed in O(dlog d) time. As a by prod-
uct of this, query time of our proposed sparse RP-tree be-

logn log(%) log(1/6)

comes O (d logd + 2 . For large n (com-

pared to d), this query time can be potentially much faster
as compared to that of its non-sparse version (see Corollary
3 for details).

Algorithm 2 Function ChooseRule for sparse RP-tree
Input : data .S

Output : rule

function ChooseRule(S)

1: Pick U uniformly at random from the unit sphere by
choosing each of its coordinate independently at ran-
dom from a standard Normal distribution

2: Pick a diagonal matrix B whose entries are drawn in-
dependently from a Bernoulli distribution with success
probability p.

3: Pick S uniformly at random from [1/4, 3/4]

4: Let v be the 5-fractile point on the projection of S onto
BU

5: Rule(z) = (" BU < v)

6: return (Rule)

Sparse Randomized Partition Trees for Nearest Neighbor Search

3 Analysis of sparse RP-tree for nearest
neighbor search

In this section we present theoretical analysis of our pro-
posed sparse RP-tree for nearest neighbor search. Since
structurally, sparse and non-sparse versions of RP-tree are
very similar except the sparse random projection direc-
tion, if we can get an estimate of the expected fraction
of non-nearest neighbors that fall between query ¢ and
its nearest neighbor upon projection at any internal node,
we can essentially reuse the proof technique developed in
[7, 8] to bound the failure probability of nearest neighbor
search, simply by plugging in the corresponding estimate
for sparse version of RP-tree. What we will show in this
section is that the above estimate for sparse RP-tree is very
similar to that of non-sparse RP-tree except an small addi-
tional multiplicative as well as small additive term. More
importantly, these additional terms are user controllable
and can be made as small as one wants at the expense of
how much sparsity our proposed method can handle for a
fixed d. Before we present the actual proof, we provide a
high level proof sketch. Due to space limitation we defer
proofs of various auxiliary lemmas to the supplementary
material.

3.1 Proof sketch

Crux of the analysis is to solve the following problem:
given any z,y,q € R? with ||[¢ — z| < |l¢ — y||, what
is the probability that upon projection onto a random di-
rection U, Uy falls strictly between U'q and U 'z,
which is equivalent to asking what is the probability that
UT(y — q) falls strictly between 0 and UT (z — ¢). In
[7, 8], without loss of generality, this problem is solved
by assuming that x = ||z|le; = (||z||,0,...,0) and sim-
plifying the proof by taking advantage of that assump-
tion. In our proposed method we can not make this
assumption since we are densifying the query and data
points by applying Walsh-Hadamard transform. Addition-
ally, in our case projection direction is not U but BU,
where B is a d x d diagonal matrix whose entries are
drawn independently from a Bernoulli distribution. Let-
ting 25 = (BU) HDz,yp = (BU) HDy,qp —
(BU)THDq and X, = (BU)'HD(z — q),Xs =
(BU)THD(y — q), we observe the conditioned on
B, (X1,X3)" follows a bivariate normal distribu-
tion vs|/‘ith zero||2mean a(nd covagig?ce matl)rix Cg =
TB — 4B zp —qB) (Y —gB :
(oo Lol — gy g ™)- - vsing
this observation we develop a new proof technique to find

the probability that X fall strictly between 0 and X in
Lemma 4. Note that Lemma 4 can be applied to non-
sparse version of RP-tree and we can recover Lemma
1 of [7]. Note that in non-sparse case (where H, B, D
are identity matrix) (X, X5)" follows a bivariate nor-
mal distribution with zero mean and covariance matrix

(Iz = ql? (z—a) (y—-
(-9 (y—q) ly —all?
tion on x,%,q, second diagonal ||y — ¢||? is at least as
large as the first diagonal |z — ¢||. This makes the proof
simpler. In sparse case however, due to random choice of
B, |lys — qzl||*> may be even smaller than ||z5 — ¢z|?
and this makes the proof of Lemma 4 more involved.
Next, we observe that taking expectation Xvith respect to B,
_(opllz—=d?® pe-a) (y—q
Es(Cr) = (p(x—q)T(y—Q) plly — ql®) More-
over, we show in Lemma 6 that over random choice of B,

entries of C'p are tightly concentrated® near their respective
exceptions with high probability. This gives us the desired
value of Bernoulli success probability p. Equipped with
this, using Lemma 4, 6 and technical Lemma 5 we prove
the main theorem (Theorem 1) for sparse RP-tree.

Q)) and due to assump-

3.2 Proof of main result

Here we present the main theorem of this paper. Statement
of all auxiliary lemmas are presented at the end of this sec-
tion. Due to space limitation, their proofs are deferred to
the supplementary material.

Theorem 1. Let H be d x d Walsh-Hadamard matrix.
Pick any q,z,y € R* with ||q — z|| < ||q — yl|. Pick any
random U € R? whose entries are drawn i.i.d from a stan-
dard Normal distribution and a random diagonal matrix
D € R4 \whose entries are +1 and drawn indepen-
dently and uniformly. Pick any €,0 € (0,1) and a random
diagonal matrix B € R¥™? whose entries are drawn i.i.d
from a Bernoulli distribution with success probability
(14¢) log(%) log(1/9)
2d

dent from entries of U and B. Let B be the event, B =
{U" BH Dy falls between U BHDq and U " BH Dx}.
Then the following holds.

p = min{l,@ and are indepen-

T+l 46, if1e>0

lla—yl
1 otherwise.

Pr(B) < {

where, the indicator function 1¢ is defined as,

1
le=1"
-{s

Proof. For ease of readability we use the following nota-
tion. Let xtg = HDx,yg = HDx,qqn = HDq and let
rp = Bryg,yp = Byy,qp = Bqyg. Also, let X; =
U'BHD(z —q) = U'B(zg — qu) = U (x5 — qB)
and Xo = U'BHD(y — q) = U'B(yg — qu) =

if(x—q) " (y—q) < (1 —2¢)llg—z|llqg—yll
otherwise.

3The diagonal terms are more tightly concentrated than the
off-diagonal terms as norm is much better preserved than inner
product in this case.

Kaushik Sinha,

Omid Keivani

U (ys — qB). Event B can now be written as :

B = {U" BH Dy falls between U BHDqand U BH Dz}
= {UTBHD(y — q) falls between 0 and U ' BHD(z — ¢)}
= {U" (ys — qg) falls between 0 and U ' (x5 — q)}
= { X, falls between 0 and X }
={0< X2 < X1} U{X1 < X2 <0}

Using Lemma 5, with probability at least 1 —
have |[zg — qullee = [HD(x =)l <

o nd/d
glly/ 28U/ and |y — qallee = [|HD(y — @)oo <

lly — qll %d"d/‘”. Also note that, Y% | B2((xz); —
(ar)i)* = (B(em —an)) " Bler — an) = |op — ¢5°,
and similarly, i, B2 ((wn)i — (q)1)* = llymr — i ||®
and 3, B3 ()i — (am)i) - ((wm)i = (an)i) = (w5 —
q)" (yp — qp). Using this observation and Lemma 6,
it follows that (X, X3) " follows a bivariate normal dis-
tribution with zero mean and covariance matrix given by
Cp — (|5 _TqB”2 (x5 —q8) " (Y5 — QB)>
(zB —qB) (Y8 —4B) lys — gz
where with probability at least 1 — g, the following holds:

g, we
|

B}

<(A+eplg—=zl> @

<@A+epla—yl> 3

(1—eplg—z|” < lzs — g5

(1=eplla—yl* < llys — a5

(w5 —95)" (45— a5) —pla—) (- 9)| < p& (nq |

+ g — yl\z))

Next we use this information and Lemma 4 to estimate
Pr(B). We consider the following two cases for this pur-
pose.

Case 1: (¢ —)" (¢ —y) < (1—2¢)llg — |lllg — ¥l

We will show that if (¢ —)" (¢ —y) < (1 — 2¢)||q —

z||llg =yl then |ys — g5l]> > (xp —qp) " (ys —qn) and
we can use the first case of Lemma 4. To see this suppose
the condition (¢ — z) " (¢ — y) < tllg — «[l[l¢ — y|| holds
for some positive ¢. Then using equation 4 we can write,

(x5 —q5) " (ys — qB)

< p(la-a) "=y +5lla—al*+la—ylI*)
< (tl\q*wll\quyllJr (Ilg = * +llg — y||2))
< p(tha—yl* + SUla =yl + lla— y1*)

plla—yl*(t + 6)

Therefore, the maximum value of (zp — ¢5) ' (yB — ¢B)
can be at most p||q — y||?(¢ + €). Now using equation 3 it is
easy to see that ||yp — ¢g||? can be at least p||q — y|*(1 —
6). Therefore, HyB — qBH2 > (.’EB — qB)T(yB — qB) lf,
pla—oIP(1 =€) > pllg— gl +¢) = £ < (1 2e).
Using Lemma 4, we see

L (llzs — g5l
— arcsin T E—
7T lys — gzl

(@B —q8)T (@ —ys)\®
X\/l (|xs—q5|||xs—ys||)>

1 —
< —arcsin (7Hx3 qBH)

™ lys — gzl
< (M) llz —allvL + ¢
- lys — gl ly —qllv/(1—¢)
<

3020 (15=)

Case2: (¢ —) (¢—y) > (1 —2¢)|lg — z|llg -yl

Note that in this case we can have ||yp — ¢g|* < (v5 —
q8) " (yB — qB). Since Cp is positive definite, its determi-
nant is non-negative, i.e, |25 —y5|/*|lys —qs||* > ((v5—
qB)" (yp — qp))?. Combining these two facts it is easy to
see that ||[zp — ¢p|> > |lys — ¢z||* or in other words,

—_ 2 . .
7”%_3;‘;2 > 1. Now using equation 2 and 3, we see that
llzs—a5 | lz—ql|®(14€) ..
Ton—anl® = Ty=qlPi=0)" Combining tl:ese two facts we
see that (< w) = (”y_QH2 S 1+5). How-
ly—qll*(1—¢) llz—qll 1-e

ever, it is assumed that ||z — ¢|| < ||y — g||. Therefore, over

random choice of B, ||ys —qg|*> < (x5 —qB) " (y5—qB),
when the following events holds

1+e
1—¢€

L ly—al® _
= —ql? =

and
(¢—2) (g—y) >

This corresponds to the shaded region in Figure 1. Note
that for fix ¢ and x, whenever y falls in this shaded region
Pr(B) can be close to 1 in the worst case. However, by
choosing small € we can control the volume of this shaded
region and make it as small as we want. O

(1 =20)llq — =llllg — vll

The following corollary follows immediately from Theo-
rem 1.

Corollary 2. Let H be dx d Walsh-Hadamard matrix. Pick
any random U € R whose entries are drawn i.i.d from a
standard Normal distribution and a random diagonal ma-
trix D € R¥? whose entries are +1 and drawn indepen-
dently and uniformly. Pick any €¢,6 € (0,1) and a ran-
dom diagonal matrix B € R4*¢ whose entries are drawn
i.i.d from a Bernoulli distribution with success probability

€ (2l é .
p = min{L@ ((1+ log (%) log(1/)>} and are indepen-

e2d

dent from entries of U and B. Pick any q, 1, . .., x, € R%
If these points are projected to BU then the expected frac-
tion of the projected x; that fall between q and x (1) is at

Sparse Randomized Partition Trees for Nearest Neighbor Search

0 = arccos(1 — 2¢

Figure 1: Any point y € R? that satisfy ||z — ¢|| < |ly — ¢ <

le = all (/35 —1) and (0 =) T(a = v) > (1~ 26)Ja -

z|l|llg — v/ lies in the shaded region.

most (1 + €)@y, (q, {z1,...,zn}) + 6 + 1(c), where n(e)
is the fraction of the points x; that satisfy ||zay — q|| <
i —qll < llz) —qll (Lte 1) and (q—x1)) T (g — i) >
(1 =26)llg = zwllllg - :r:zl\-

Proof. Let A, = {xz lzy — 4l lz; — ql|

ey = all (/1= = 1) and (g =) (g —25) > (1 -
26)|lq — z(nllllg — :17,-}. Note that |A.| = nn(e). Let Z;

be the indicator variable that that takes value 1 if z(;) falls
between x (1) and ¢ in projection and zero otherwise. Let
Z =3 ,. Using Theorem 1, it is easy to see that

E(Z) = Y E(Z)=)Y Pr(Z =1)
=2 1=2
= Z PI‘(Z(i):l)+ Z PI‘(Z(,):l)
(i) EAe w(')éfA
ll
s 21) < ||q—x To—zel
T4)EA T(;)%A
- (1)H)
< () + (olazzwll 5
Z IIq—x@ [
llg — :cmll
= nn(e) 1+ —1)6
Z llg — =)H

< (]-+€)nq)n(%{x17"'7xn})+n(()+5)

Therefore, the expected fraction of the points that fall be-
tween x (1) and ¢ is at most (1 4 €)®,,(q, {z1,..., T, }) +
(e(n) +9). O

Note that in case of original RP-tree, the expected fraction
of non-neighbor points that fall between ¢ and its nearest
neighbor ;) upon projection is %d)n(q, {x1,...,2,}). It
is easy to see that for our proposed sparse version, the ad-
ditional multiplicative term (1 + ¢) and the additive term

(n(€) 4 0) can be made small. To see this, fix p,0 < p < 1,

log(dw . While on one hand

and set ¢ = O
this ensures the space complexity of sparse RP-tree to be
O(nd”) as opposed to O(nd) in case of original RP-tree,
on the other hand, for fixed p, as d increases, € decreases
(in fact e — 0 as d — ©0), and consequently the additional
multiplicative term (1+¢) approaches 1. In addition, as can
be seen from Figure 1, volume of the shaded region tends
to zero as € — 0, therefore, the fraction of the data points
that fall within this shaded region, 7(¢), tends to zero as
well. Finally, the confidence parameter ¢ can be chosen ar-
bitrarily small as its effect is reflected in terms of log(1/6)
in p.

Next, we show that for large d, query time of our proposed
sparse RP-tree is smaller than that of the original RP-tree,
for large dataset size.

Corollary 3. Fixany p € (0,1/2) and € € (0,1). Choose
d large enough so that space complexity of proposed sparse
RP-tree is O(nd®). Then query time of our proposed sparse
RP-tree is smaller than that of original RP-tree if n > d>.

Proof. Note that query time of RP-tree (or sparse RP-tree)
data structure is the sum of, (a) time required to reach to a
leaf node (from root node) and (b) time required to process
the data points lying in that leaf node. By construction,
maximum number of data points at leaf node of an RP-tree
(or Sparse RP-tree) is at most ng, and consequently second
part of query time is nyd in both cases. Now, in case of RP-
tree, time required to reach a leaf node is O(d logn) as the
depth of the tree is at most O(logn) and an inner product
needs to be computed along the path from root node to a
leaf node. Now in case of sparse RP-tree, Walsh Hadamard
transform of a d-dimensional query point can be computed
in O(dlogd) time. Choose d large enough so that ¢ =

() < log(dw . This ensures that average number

of non-zero coordinates of the projection direction stored at
each internal node of sparse RP-tree is pd = d”. Therefore,
time required to reach to a leaf node (from root node), in
case of sparse RP-tree is O(dlogd + d”logn). Without
considering the constants in asymptotic notation we would
like to show that dlogn > dlogd+ d” log n whenn > d2.
To achieve this, first we claim that T dp < 2. To see this,
notethat p< 1/2 :>df’ <Vd= (d—Vd) < (d—d°) =

d < 2 where the last implication

d— dP avi dP
follows from that fact that < 2 forany d > 4. Now

d— f
if n > d?, that would imply n > d? > d'i =3 taking
logarithm on both sides yield, logn > =5 dp logd After
cross multiplication and rearranging the terms it is easy to
see that dlogn > dlogd + d” logn. O

The following lemmas are required to prove Theorem 1.

Kaushik Sinha, Omid Keivani

Due to space limitation, we defer their proofs to the sup-
plementary material.

Lemma 4. Pick any q,z,y € R% Pick any random
U= (Uy,...,Us)" € R?whose elements are drawn i.i.d
from a standard Normal distribution. Let A be the event
A = {U "y falls (strictly) between U " q and U " x}. Then
the following holds.

(@) If lly—ql®> > (x—q)" (y — q), then,

Pr(A) = laurcsin [z — gl 1— (WM)Q
7r ly —all lz —qllllz =yl

@) If lly—qll> < (z—q) " (y — q), then,

Lemma5. Let S = {z1,...,7,} C R be a set of n vec-
tors in RY, H be a d x d deterministic Walsh-Hadamard
matrix and D be a d x d diagonal matrix, where each
D;; is drawn independently from {—1,41} with proba-
bility 1/2. Then for any 6 > 0, with probability at least
1 — &, the following holds for all z; € S : ||HDz;||0o <
2log(2nd/5)

e

Pr(A) = 1—l arcsin |z = g
m ly = dll

[l

Lemma 6. Let vi,v5 € R? pe any two vectors such
that ||v1llee < ||v1]] 2log(¥)/d and ||v2|lee <

[[va]l\/21og (222) /dand let U = (Uy,...,Uq) " € R be

a random vector whose entries are drawn i.i.d from a stan-
dard Normal distribution. Also, for any €,6 € (0, 1), let B
be a d x d diagonal matrix whose diagonal entries B;;’s are
drawn i.i.d from a Bernoulli distribution with success prob-

4(1+¢€/3) log(234) log(8/6)

ability p = min (17 ~ , and where

diagonal entries of B are independent from entries of U.
LetY; = UTBuvy and Yo = U Buvy. Then the following
holds:

T
1. (Y1,Ys ollows a bivariate normal distri-
b
bution with zero mean and covariance matrix
d 2.2 d 2

C _ Zizl Bj;v1; Zizl Bjiv1iv2: h

B = d 2 d p2,.2 » wnere
21:1 Bjv15v2 21:1 iiU2i

C' is random quantity.

2 o) - (250 p(]),

p(viv2) plloz|®

3. With probability at least 1 — 2, (1 — e)pllor]® <
Yy Bivt < (1 + eplloil® and (1 = e)pllua|* <
Z?:l Biws; < (1+ e)plloz|*.

4. With probability at least 1 - g
p (vl o2 = §(loal® +l[v2]?)) < i, Bivwwa: <

p (viv2 + 5(loal* + [lv2?)).

4 Experimental Results

In this section we report empirical performance of our
proposed sparse RP-tree data structure in solving nearest
neighbor search problem. We used four real world datasets
of varied dimensionality. Number of data points to con-
struct our proposed data structure and number of queries
are listed in Table 2. In our experiments, we randomly
split each dataset D into two disjoint subsets S and @),
such that, D = S U @, where all data points in .S were
used to construct the RP-trees (or their sparse versions) and
these tree data structure was then used to find 10 nearest
neighbors for each query ¢ from . We evaluated our pro-
posed method using number of trees (L) chosen from the
set {8,16,32,64,128}. For each choice of L, we created
L independent sparse RP-trees. Now given a query point g,
we retrieved union of all the points corresponding to L leaf
nodes of these trees (call this set R) and find the 10 nearest
neighbors from 2. We say that our method accurately finds
10 nearest neighbors only if our answer is same as the true
10 nearest neighbors obtained by performing a linear scan
over the entire dataset. Averaging over all queries in @), we
report nearest neighbor accuracy and standard deviation of
our proposed method. We also report average number of
retrieved points (size of R). In all our experiments Q con-
tains 5000 query points, except for USPS dataset for which
Q contain 2298 data points. We set ng to be 100 for all our
experiments.

4.1 Datasets

Details of the datasets used for our experimental evalua-
tions are listed in table.2. The USPS dataset contains hand
written digits. The AERIAL dataset contains texture in-
formation of large areal photographs [14]. The COREL
dataset is available at the UCI repository [3]. After re-
moving the missing data we keep only 50,000 instances.
This SIFT dataset contains SIFT image descriptors, intro-
duced in [11]. The original dataset contains 1 million im-
age descriptors. We used 50,000 image descriptors from
this dataset for our experiments. USPS had only 9298 data
points. Therefore, we used 7000 for building the data struc-
ture and the remaining as query points.

4.2 Comparison of sparse and non-sparse RP-tree

To empirically demonstrate the effectiveness of our pro-
posed method we used multiple p values, where p is
Bernoulli success probability of choosing a non-zero co-
ordinates of a projection direction at each internal node of
an RP-tree. In particular, we used p values from the set
{0.1,0.3,0.5,0.7,1.0}. Note that, we only need to store
the non-zero coordinates of projection direction at internal
node, since other coordinates do not contribute in comput-
ing an inner product (1-D projection). Thus, if we have m
number of internal nodes in a tree, the non-sparse version

Sparse Randomized Partition Trees for Nearest Neighbor Search

Aerial p=1 \ p=07 p=05 p=03 \ p=0.1
L=8 [503 [0.716£0.21 [505 [0.709£0.22 [503 [0.707 £0.22 [508 [0.711+0.22 [508 [0.701 +0.22
L=16 [923 | 0.885+£0.14 | 925 [0.884£0.14 | 921 [0.885+0.14 | 925 | 0.888 £0.14 | 930 | 0.878 £0.15
L =32 [1617 | 0.975£0.06 | 1620 | 0.974 £0.06 | 1615 [0.974 +0.06 | 1619 | 0.975 £ 0.06 | 1626 | 0.974 & 0.06
L =64 [2691 [0.998 +0.01 | 2702 | 0.998 £ 0.01 | 2686 | 0.998 £ 0.01 | 2692 | 0.998 £ 0.02 | 2703 | 0.998 + 0.01
L=128 [4243] 14000 [4246 | 1+0.00 |4220] 1+0.00 [4239 | 0.999+0.00 | 4261 | 0.999 £ 0.00
[Corel | 1-p=0 [1-p=03 | 1-p=05 1-p=07 | 1-p=09
L=8 [510 [0.757£0.18 [510 [0.750£0.18 [510 [0.748+£0.18 [513 [0.752+0.18 [514 [0.754 +0.18
L=16 [936 | 0.925+0.10 | 936 | 0.923£0.11 | 939 [0.920+0.11 [939 | 0.921£0.10 | 940 | 0.924£0.10
L =32 [1644 | 0.990 £ 0.03 | 1648 | 0.990 & 0.04 | 1652 | 0.989 +0.04 [1651 | 0.988 £ 0.04 | 1647 | 0.989 £ 0.04
L=64 [2742] 1+£0.01 [2749 [1+£0.01 [2752 [0.999+0.01 | 2753 [0.999 +0.01 | 2742 | 140.01
L=128 [4324 | 1£000 [4347| 1£000 [4342] 1+0.00 [4338] 1+0.00 [4318] 1+0.00
| SIFT | 1-p=0 [1-p=03 [1-p=05 1—p=07] 1-p=09
L=38 [546 [0.444+£0.24 [546 [0.441£0.24 [547 [0.437£0.24 [547 [0.434+0.24 [546 [0.433 +0.24
L=16 [1062 | 0.637 £0.23 | 1058 | 0.633 £0.23 | 1057 [0.635+0.23 | 1061 | 0.631£0.23 | 1056 | 0.625 £ 0.23
L =32 [2007 | 0.824+0.17 | 2003 | 0.822+0.17 | 2003 | 0.822 +0.17 [2009 | 0.819 £0.17 | 2008 | 0.818 +:0.17
L =64 [3669 | 0.948 +0.09 [3678 [0.946 £ 0.09 [3676 | 0.947 £0.09 | 3678 | 0.945 +0.09 | 3683 | 0.946 + 0.09
L =128 | 6387 | 0.993 £ 0.03 [6400 | 0.993 & 0.03 [6400 | 0.993 £ 0.03 | 6399 | 0.992 £ 0.03 | 6405 | 0.993 + 0.03
| USPS | 1—p=0 [1-p=03 [1-p=05 1-p=0.7 [1-p=09
L=8] 49 [0.740+0.22 [513 [0.730£0.22 | 497 [0.7334£0.22 [505 [0.743 +0.22 [507 | 0.749 £ 0.21
L=16 | 907 [0.907+0.13 [930 [0.906 £0.13 | 901 [0.904£0.14 | 916 | 0.909 +0.13 | 923 | 0.906 £ 0.13
L =32 [1567 | 0.981+0.05 | 1595 | 0.981 £ 0.06 | 1573 [0.980 +0.06 | 1578 | 0.981 £ 0.05 | 1602 | 0.981 £ 0.05
L =64 | 2541 | 0.998 £ 0.02 | 2587 | 0.998 & 0.02 | 2553 | 0.998 £ 0.01 | 2537 [0.998 £ 0.02 | 2575 | 0.998 + 0.01
L=128 [3781 | 1£000 [3806| 1+000 [3782] 1+0.00 [3768] 1+0.00 [3795| 1+0.00

Table 1: For each value of p, the left column is size of R and the right one is accuracy =+ standard deviation. Bold values are the best

values among that row.

| Dataset | # pointsin S | # of queries | # dimension |

AERIAL 45000 5000 60

COREL 45000 5000 89
SIFT 45000 5000 128
USPS 7000 2298 256

Table 2: Dataset description

needs to store (m - d) coordinates (where d is the data di-
mensionality), whereas sparse version will store (m - d - p)
coordinates on average. Thus percentage of space savings
is(m-d—m-d-p)/(m-d) = (1 — p) percentage. Thus
p = 1.0 corresponds to original non-sparse RP-tree (no
space savings), whereas, p = 0.1, we have 90% space sav-
ings.

Goal of this experiment was to evaluate* how sparse RP-
tree answers nearest neighbor search query compared to its
non-sparse counterpart for various values of p. The results
for four datasets are reported in Table 1. As can seen from
the table, in most cases non-sparse RP-tree has the best per-
formance in terms of higher accuracy and lower number of
retrieved points (R). More importantly, both accuracy and
number of retrieved points of sparse RP-trees are very close

“Note that in this paper we do not compare our results with
LSH. Such a comparison can be found in [18] which demon-
strate that original non-sparse RP-tree performs better than LSH
in terms of nearest neighbor search accuracy and number of re-
trieved points.

to that of non-sparse RP-trees, even when p equals to 0.1.

5 Conclusion

In this paper we have presented a sparse version of random-
ized partition tree for performing nearest neighbor search.
We have shown that at each internal node of our proposed
sparse RP-tree, we only need to store a few non-zero en-
tries, as opposed to all d entries, leading to huge signif-
icant space savings without sacrificing much in terms of
nearest neighbor search accuracy. We have also shown
that an additional advantage of our approach is slightly
improved query time compared to non-sparse RP-tree for
large dataset size. We have theoretically shown that, at any
internal node, the expected fraction of non-nearest neigh-
bor points that fall between the query point and its nearest
neighbor upon projection is very similar to its non-sparse
RP-tree counterpart, except an additional small (user con-
trollable) multiplicative and additive term. This indicates
that all theoretical guarantees of non-sparse RP-tree for
nearest neighbor search essentially hold for our proposed
sparse version as well. We have demonstrated that our ex-
perimental evaluations on four real world datasets strongly
agree with our theoretical results and nearest neighbor
search accuracies of our proposed sparse method is very
similar to that of its non-sparse counterpart in terms of ac-
curacy and number of retrieved points.

Kaushik Sinha, Omid Keivani

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

N. Ailon and B. Chazelle. The fast Jonson-
Lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on Computing, 39:302-322,
2009.

A. Andoni and P. Indyk. Near-Optimal Hashing Algo-
rithms for Approximate Nearest Neighbor in High Di-
mensions. Communications of the ACM, 51(1):117—
122, 2008.

K. Bache and M. Lichman. UCI machine learn-
ing repository, 2013. Available at : http://
archive.ics.uci.edu/ml.

A. Beygelzimer, S. Kakade, and J. Langford. Cover
Trees for Nearest Neighbor. In 23rd International
Conference on Machine Learning, 2006.

P. Ciaccia, M. Patella, and P. Zezula. M-tree : An Ef-
ficient Access Method for Similarity Search in Met-
ric Spaces. In 23rd VLDB International Conference,
1997.

A. Dasgupta, R. Kumar, and T. Sarlos. Fast local-
ity sensitive hashing. In /7th ACM Conference on
Knowledge Discovery and Data Mining, 2011.

S. Dasgupta and K. Sinha. Randomized partition trees
for exact nearest-neighbor search. In 26th Annual
Conference on Learning Theory, 2013.

S. Dasgupta and K. Sinha. Randomized Partition
Trees for Nearest Neighbor Search. Algorithmica,
72(1):237 - 263, 2015.

M. Datar, N. Immorlica, P. Indyk, and C. S. Mirrokni.
Locality-Sensitive Hashing Based on p-Stable Dis. In
The 20th ACM Symposium on Computational Geom-
etry, 2004.

A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In 25th Inter-
national Conference on Very Large Databases, 1999.

H. Jégou, M. Douze, and C. Schmid. Product quan-
tization for nearest neighbor search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
33(1):117-128, 2011.

N. Katayama and S. Satoh. The ST-tree : An In-
dex Structure for High-dimensional Nearest Neighbor
Queries. In Annual SIGMOD Conference, 1997.

T. Liu, A. W. Moore, A. Gray, and K. Yang. An Inves-
tigation of Practical Approximate Nearest Neighbor
Algorithms. In 18th Annual Conference on Neural
Information Processing Systems, 2004.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. S. Manjunath and W. Y. Ma. Texture features for
browsing and retrieving of large image data. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 33(1):117-128, 2011.

J. McNames. A Fast Nearest Neighbor Algorithm
Based on a Principal Axis Search Tree. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
23(9):964-976, 2001.

A. Shrivastava and P. Li. Fast Near Neighbor Search
in High-Dimensional Binary Data. In European
Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases,
2012.

A. Shrivastava and P. Li. Densifying One Permuta-
tion Hashing via Rotation for Fast Nearest Neighbor
Search. In 31st International Conference on Machine
Learning, 2014.

K. Sinha. LSH vs Randomized Partition Trees :
Which One to Use for Nearest Neighbor Search? In
13th International Conference on Machine Learning
and Applications, 2014.

J. K. Uhlmann. Satisfying General Proxim-
ity/Similarity Queries with Mteric Trees. Information
Processing Letters, 40:175-179, 1991.

N. Verma, S. Kpotufe, and S. Dasgupta. Which Spa-
tial Partition Trees are Adaptive to Intrinsic Dimen-
sion? In 25th International Conference on Uncer-
tainty in Artificial Intelligence, 2009.

