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7 Appendix A: supplementary
materials to Section 3.1

In this part of the Appendix, we provide details on the
construction of our framework that are not included in
Section 3.1 due to space constraints.

Handling degenerate and boundary points

One problem with k-means is it may produce degenerate
solutions: if the solution Ct has k centroids, it is possible
that data points are mapped to only k′ < k centroids. To
handle degenerate cases, starting with |C0| = k, we consider
an enlarged clustering space {A}[k], which is the union of
all k′-clusterings with 1 ≤ k′ ≤ k. We use the pre-image
v−1(A) ∈ {C} to denote the non-boundary points C such
that v(C) = A, i.e., these are the set of non-boundary
points in the equivalence class induced by clustering A. To
include boundary points as well, we devise the operator
Cl(·) as the “closure” of an equivalence class v−1(A), which
includes all boundary points C′ such that A ∈ V (C′) ∩X.

Using the above two extensions, we give the robust definition
of stationary clusterings and stationary points, which we
use in our analysis.
Definition 7 (Stationary clusterings). We call A∗ a sta-
tionary clustering of X, if m(A∗) ∈ Cl(v−1(A∗)). We let
{A∗}[k] ⊂ {A}[k] denote the set of all stationary clusterings
of X with number of clusters k′ ∈ [k].

For each A∗, we define a matching centroidal solution C∗.
Definition 8 (Stationary points). For a stationary cluster-
ing A∗ with k′ clusters, we define C∗ = {c∗r , r ∈ [k′]} to be
a stationary point corresponding to A∗, so that ∀A∗r ∈ A∗,
c∗r := m(A∗r). We let {C∗}[k] denote the corresponding set
of all stationary points of X with k′ ∈ [k].

With the robust definitions, Figure 3 provides a visualiza-
tion of batch k-means walking on {C} (and {A}[k]) as an
iterative mapping m ◦ v (v ◦m, resp.). In {C}, it jumps
from one equivalence class to another until it stays in the
same equivalence class in two consecutive iterations.

Now we extend ∆(·, ·) to include the degenerate cases. Fix
a clustering A with its induced k centroids C := m(A), and
another set of k′-centroids C′ (k′ ≥ k) with its induced
clustering A′, if |A′| = |A| = k (this means if k′ > k,
then C′ has at least one degenerate centroid), then we can
pair the subset of non-degenerate k centroids in C′ with
those in C, and ignore the degenerate centroids. Under this
condition, we can extend Definition 2 to include degenerate
solutions as well, provided C = m(A) for some clustering
A, which is always satisfied in our subsequent analysis.

A sufficient condition for the local
convergence of batch k-means

We show batch k-means algorithm has geometric conver-
gence in the local neighborhood of a stable stationary point
in the solution space.

Proof of Lemma 1. Without loss of generality, we let
π(r) = r,∀r ∈ [k]. Let ρrout :=

|∪s 6=r(As∩A∗r)|
n∗r

,

and ρrin :=
|∪s 6=r(Ar∩A∗s)|

n∗r
; let ρmax := maxr

|Ar4A∗r |
n∗r

.

Figure 3: An illustration of one run of batch k-means
in the solution spaces: the rectangle represent the
enlarged space of clusterings {A}[k] and the ellipse
represent the centroidal space {C}, which is parti-
tioned into equivalences classes. The arrows repre-
sent k-means updates as mappings v : {C} → {A}[k]

and m : {A}[k] → {C}. The algorithm starts at
C0 and stops at C∗ after three iterations, where
C∗ = m(A∗) ∈ Cl(v−1(A∗)) .

Clearly, (ρrout + ρrin) =
|Ar4A∗r |

n∗r
≤ ρmax, by our def-

inition. Now, similar to [19], we can get ‖m(Ar) −
c∗r‖ = ‖

(1−ρrout)n
∗
rm(Ar∩A∗r)+

∑
s 6=r

∑
x∈Ar∩A∗s

x

(1−ρrout+ρ
r
in)n∗r

− c∗r‖ ≤
1−ρout

1−ρrout+ρ
r
in
‖m(Ar ∩ A∗r) − c∗r‖ +

‖
∑
s 6=r

∑
x∈Ar∩A∗s

x−c∗r‖
(1−ρrout+ρ

r
in)n∗r

And as in [19], we get (1 − ρout)‖m(Ar ∩ A∗r) −

c∗r‖ ≤
√
ρroutφ

∗
r√

n∗r
. Now we bound the second term:

by Cauchy-Schwarz inequality, ‖
∑
s 6=r

∑
x∈Ar∩A∗s

x −
c∗r‖2 ≤ (

∑
s 6=r

∑
x∈Ar∩A∗s

12)(
∑
s 6=r

∑
x∈Ar∩A∗s

‖x −
c∗r‖2) = ρrinn

∗
r

∑
s 6=r

∑
x∈Ar∩A∗s

‖x − c∗r‖2. Thus, ∀r ∈ [k],

‖m(Ar) − c∗r‖2 ≤ 4
ρroutφ

∗
r

n∗r
+ 4

ρrin
∑
s 6=r

∑
x∈Ar∩A∗s

‖x−c∗r‖
2

n∗r
,

where we use the assumption that ρmax < 1
4
< 1 −

1√
2
. Summing over all r,

∑
r n
∗
r‖m(Ar) − c∗r‖2 ≤

4ρmax

∑
r(φ
∗
r +

∑
s 6=r

∑
x∈Ar∩A∗s

‖x − c∗r‖2). By Lemma
3,
∑
r

∑
s 6=r

∑
x∈Ar∩A∗s

‖x − c∗r‖2 can be upper bounded
by φ(C′) +

∑
r nr‖m(Ar)− c∗r‖2 = φ(C′) +

∑
r(1− ρ

r
out +

ρrin)n∗r‖m(Ar)− c∗r‖2 ≤ φ(C′) + (1 +ρmax)
∑
r n
∗
r‖m(Ar)−

c∗r‖2. Substituting this into the previous inequality,
we have (1 − 4ρmax(1 + ρmax))

∑
r n
∗
r‖m(Ar) − c∗r‖2 ≤

4ρmax(φ∗ + φ(C′)). Thus,
∑
r n
∗
r‖m(Ar) − c∗r‖2 ≤

ρmax
1−4ρmax(1+ρmax)

[φ∗ + φ(C′)]. By our assumption, ρmax ≤
b

5b+4(1+
φ(C)
φ∗ )

< 1
4
, so ρmax

1−4ρmax(1+ρmax)
≤ ρmax

1−5ρmax
≤

b

1+
φ(C)
φ∗

, and ρmax
1−4ρmax(1+ρmax)

[φ∗ + φ(C′)] ≤ bφ∗, since

φ(C′) ≤ φ(C) (equality holds if C is a stationary point).

Lemma 3. Fix any target clustering C∗, and another
clustering C with a matching π : [k] → [k]. Let C′ :=
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{m(Ar), r ∈ [k]}. Then∑
r

∑
s6=r

∑
x∈Aπ(r)∩A∗s

‖x− c∗r‖2

≤ φ(C′)−
∑
r

φ(c∗r ;Aπ(r) ∩A∗r) +
∑
r

nr‖m(Ar)− c∗r‖2

Proof. Without loss of generality, we let π(r) = r.

φ(C′)− φ(C∗) =
∑
r

∑
x∈Ar

‖x− c∗r‖2 −
∑
r

∑
x∈A∗r

‖x− c∗r‖2

+
∑
r

∑
x∈Ar

‖x−m(Ar)‖2 −
∑
r

∑
x∈Ar

‖x− c∗r‖2

So
∑
r

∑
x∈Ar ‖x− c

∗
r‖2 −

∑
r

∑
x∈A∗r

‖x− c∗r‖2 = φ(C′)−
φ(C∗) −

∑
r

∑
x∈Ar ‖x − m(Ar)‖2 +

∑
r

∑
x∈Ar ‖x −

c∗r‖2 ≤ φ(C) − φ(C∗) +
∑
r nr‖m(Ar) − c∗r‖2. Now,

we claim
∑
r

∑
x∈Ar ‖x − c

∗
r‖2 −

∑
r

∑
x∈A∗r

‖x − c∗r‖2 =∑
r

∑
s 6=r

∑
x∈Ar∩A∗s

{‖x − c∗r‖2 − ‖x − c∗s‖2}. This is be-
cause we can enumerate x using clustering ∪rAr: for
each x ∈ Ar, either x ∈ Ar ∩ A∗r , then ‖x − c∗r‖2 −
‖x − c∗r‖2 = 0, or x ∈ Ar ∩ A∗s for some s 6= r,
which means the difference is ‖x − c∗r‖2 − ‖x − c∗s‖2
(and this term is positive by optimality of clustering
∪rA∗r fixing {c∗r}). Thus,

∑
r

∑
s 6=r

∑
x∈Ar∩A∗s

‖x −
c∗r‖2 =

∑
r

∑
x∈Ar ‖x − c∗r‖2 −

∑
r

∑
x∈A∗r

‖x − c∗r‖2 +∑
r

∑
s 6=r

∑
x∈Ar∩A∗s

‖x − c∗s‖2 ≤ φ(C′) − φ(C∗) +∑
r nr‖m(Ar) − c∗r‖2 +

∑
r

∑
s 6=r

∑
x∈Ar∩A∗s

‖x − c∗s‖2 =

φ(C′)−
∑
r φ(c∗r ;Ar∩A∗r)+

∑
r nr‖m(Ar)−c∗r‖2, where the

last equality is by observing that φ(C∗) =
∑
r

∑
Ar∩A∗r

‖x−
c∗r‖2 +

∑
r

∑
s 6=r

∑
x∈Ar∩A∗s

‖x− c∗s‖2.

8 Appendix B: Local Lipschitzness
and clusterability

Lemma 4. The following are equivalent
1. C is a boundary point
2. V (C) has a zero margin with respect to X
3. |V (C) ∩ X| > 1, i.e., the clustering determined by

V (C) is not unique.

Proof of Lemma 4. “1 =⇒ 2” obviously holds since
‖x − cr‖ = ‖x − cs‖ if and only if ‖x̄ − cr‖ − ‖x̄ − cs‖.
“2 =⇒ 3”: let A ∈ V (C)∩X be the clustering achieving the
zero margin, and consider x ∈ Ar∪As s.t. ‖x̄−cr‖−‖x̄−cs‖;
without loss of generality, assume x ∈ Ar according to
clustering A, and define A′ to be the same clustering as A
for all points in X but x, where it assigns x to As. Then
A′ ∈ V (C) ∩ X and |V (C) ∩ X| ≥ 2 > 1. “3 =⇒ 1”:
Suppose otherwise. Then every point x has a unique center
that minimizes its distance to it, which means the clustering
determined by V (C) ∩A is unique. A contradiction.

Lemma 5. If C∗ ∈ {C∗}, then C∗ = m(A∗), where A∗ ∈
{A∗} and A∗ = v(C∗).

Proof. By definition of stationary points, C∗ = m ◦ v(C∗).
Let A = v(C∗), thenm(A) = C∗ and v◦m(A) = v(C∗) = A.
Thus A ∈ {A∗} by definition of a stationary clustering.

Lemma 6. Fix a clustering A = {A1, . . . , Ak}, and let
C ∈ v−1(A). Then ∃δ > 0 such that the following statement
holds:

For C′s.t. ∆(·, ·) is defined ,

∆(C′, C) < δ =⇒ C′ ∈ v−1(A) (9)

Proof. Since C is not a boundary point, ∀x ∈ Ar, r ∈ [k],

‖x− cr‖ < ‖x− cs‖,∀s 6= r

So we can choose δ > 0 s.t. ∀x ∈ Ar, ∀r ∈ [k], s 6= r,

‖x− cr‖ < ‖x− cs‖ − 2
√
δ

Let π∗ be a permutation such that ∆(C′, C) is defined. We
have ∀x ∈ Ar, r ∈ [k], s 6= r,

‖x− c′π∗(s)‖ − ‖x− c′π∗(r)‖ ≥ ‖x− cs‖ − ‖c′π∗(s) − cs‖

−(‖x− cr‖+ ‖cr − c′π∗(r)‖) > ‖x− cs‖ − ‖x− cr‖ − 2
√
δ ≥ 0

where the second inequality is by the fact that

max
r
‖c′π∗(r) − cr‖2 ≤ ∆(C′, C) < δ

Therefore, V (C′) ∩X = A, i.e., C′ ∈ v−1(A).

Lemma 7. Suppose ∀C∗ ∈ {C∗}[k], C∗ is not a bound-
ary point (i.e., suppose Assumption (A) holds). Let
C = m(A′) /∈ {C∗}[k] for some A′ ∈ {A} and let C′ ∈
Cl(v−1(A′)), then ∃δ > 0 s.t. ∆(C′, C) ≥ δ.

Proof. We prove the lemma by contradiction: suppose
∀δ > 0, ∃C′ s.t. C′ ∈ Cl(v−1(A′)) and ∆(C′, C) < δ.
First, we claim that for δ sufficiently small, C must be
a boundary point: suppose otherwise, then by Lemma 6,
v(C′) = v(C) = A′, contradicting the fact that C /∈ {C∗}[k].
Let A ∈ V (C) ∩X. Since C is a boundary point, ∃r, s and
x ∈ Ar ∪As s.t.

‖x− cr‖ = ‖x− cs‖

Now, we choose δ > 0 to be sufficiently small so that for
any A′ ∈ V (C′) ∩X, clustering A′ only differs from A on
the assignment of these points sitting on the bisector. This
implies C ∈ Cl(v−1(A′)), which implies C is a boundary
stationary point, a contradiction.

Lemma 8. If ∀C∗ ∈ {C∗}[k], C∗ is a non-boundary sta-
tionary point, that is, C∗ := m(A∗) ∈ v−1(A∗). Then
∃rmin > 0 such that ∀C∗ ∈ {C∗}[k], C∗ is a (rmin, 0)-stable
stationary point.

Proof. Fix any k in the range of [k] (we abuse the notation
with the same k here). For any C such that ∆(C,C∗) exists
(i.e., |C| = k′ ≥ k = |C∗|), we first show ∃r∗ > 0, such that
the following statement holds:

∆(C,C∗) < r∗φ∗ =⇒ C ∈ v−1(A∗)

Since C∗ is a non-boundary point, there is a permutation
πo of [k] such that ∀x ∈ Ar, ∀r ∈ [k] and ∀s 6= r,

‖x− c∗πo(r)‖ < ‖x− c∗πo(s)‖
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We choose r∗ > 0 so that ∀x ∈ Ar, ∀r ∈ [k],∀s 6= r,

‖x− c∗πo(r)‖ ≤ ‖x− c∗πo(s)‖ − 2
√
r∗φ∗, ∀r ∈ [k], s 6= r

with equality holds for at least one triple of (x, r, s). Let
π∗ be a permutation satisfying

π∗ = arg min
π

∑
r∈[k]

n∗r‖cπ(r) − c∗r‖2

Let π′ := π∗ ◦ πo. We have ∀(x, r, s) triples,

‖x− cπ′(s)‖ − ‖x− cπ′(r)‖
≥ ‖x− c∗πo(s)‖ − ‖c∗πo(s) − cπ′(s)‖
−(‖x− c∗πo(r)‖+ ‖c∗πo(r) − cπ′(r)‖)

> ‖x− c∗πo(s)‖ − ‖x− c∗πo(r)‖ − 2
√
r∗φ∗ ≥ 0

where the second inequality is by the fact that

max
r
‖cπ∗(r) − c∗r‖2 ≤ ∆(C,C∗) < r∗φ∗

=⇒ max
r
‖cπ∗(r) − c∗r‖ <

√
r∗φ∗

Since π′ is the composition of two permutations of [k], it
is also a permutation of [k], and ∀r, s 6= r, ‖x − cπ′(r)‖ <
‖x − cπ′(s)‖, so C ∈ v−1(A∗). Since by our definition, r∗
is unique for each C∗. Since {C∗}[k] is finite, taking the
minimum over all such r∗, i.e., rmin := minC∗∈{C∗}[k]

r∗

completes the proof.

The following is a restatement of Lemma 2, which is robust
to degeneracy and boundary points.

Lemma 9 (Restatement of Lemma 2). If X is a gen-
eral dataset, then ∃rmin > 0 s.t.

1. ∀C∗ ∈ {C∗}[k], C∗ is a (rmin, 0)-stable stationary
point.

2. Let m(A′) /∈ {C∗}[k] for some A′ ∈ {A} and let C′ ∈
Cl(v−1(A′)), then ∆(C′,m(A)) ≥ rminφ(m(A)).

Proof. By Lemma 8, ∃r∗min > 0 s.t. ∀C∗, C∗ is r∗min-
stable. Furthermore, by Lemma 7, ∃r′min > 0 s.t. ∀C∗,
∆(C′,m(A)) ≥ r′minφ(m(A)). Let rmin := min{r∗min, r

′
min}

completes the proof.

Proof of Proposition 1. For all r ∈ [k],

n∗r‖cr − c∗r‖2 ≤ ∆(C,C∗) ≤ bφ∗

so ‖cr − c∗r‖ ≤
√

bφ∗

n∗r
. Then for all r 6= s,

‖cr − c∗r‖+ ‖cs − c∗s‖ ≤
√
b
√
φ∗(

1√
n∗r

+
1√
n∗s

)

=

√
b

f
f
√
φ∗(

1√
n∗r

+
1√
n∗s

) ≤
√
b

f
∆rs ≤

1

16
∆rs

where the second inequality is by (B), and the last inequality
by our assumption on b. Thus, we may apply Lemma 17

to get |Ar4A
∗
r |

n∗r
≤ b

f3 for all r, proving the first statement.
Now by Lemma 18, φ(C) ≤ (b+ 1)φ∗, so

αb

5αb+ 4(1 + φ(C)
φ∗ )

≥ αb

5αb+ 4(2 + b)

≥ αb

5αf2/162 + 4(2 + f2/162)

≥ b

f3(α)
≥ |Ar4A

∗
r |

n∗r

where the third inequality holds since f ≥ max{642, 5α+5
162α
}

by (B). This proves the second statement since C∗ is then
( f

2

162 , α)-stable by Definition 4.

9 Appendix C: Proof of Theorem 3

Theorem 3. Fix any 0 < δ ≤ 1
e
. Suppose C∗ is (bo, α)-

stable. If we run Algorithm 1 with parameters satisfying

m >
ln(1−

√
α)

ln(1− 4
5
p∗min)

c′ >
β

2[1−
√
α− (1− 4

5
p∗min)m]

with β ≥ 2

to ≥ 768(c′)2(1 +
1

bo
)2n2 ln2 1

δ

Then if at some iteration i, ∆i ≤ 1
2
boφ
∗, we have ∀t > i,

Pr(Ωt) ≥ 1− δ and

Et[∆
t] ≤ (

to + i+ 1

to + t+ 1
)β∆i

+
(c′)2B

β − 1
(
to + i+ 2

to + i+ 1
)β+1 1

to + t+ 1

where B := 4(bo + 1)nφ∗.

9.1 Proofs leading to Theorem 3

In the subsequent analysis, we let

βt := 2c′min
r
ptr(m)(1− maxr p

t
r(m)

mins pts(m)

√
α)

where

ptr(m) := Pr{ct−1
r is updated at t with sample size m}

= 1− (1− nt−1
r

n
)m

So,
βt = 2c′(min

r
ptr(m)−

√
αmax

s
pts(m))

The noise terms appearing in our analysis are:

E[
∑
r

∑
x∈At+1

r

‖x− ĉt+1
r ‖2 + φt|Ft] (10)

∑
r

n∗r〈ct−1
r − c∗r , ĉtr − E[ĉtr|Ft−1]〉 (11)∑

r

n∗r‖ĉtr − c∗r‖2 (12)
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In the analysis of this section, we use Et[·] as a shorthand
notation for E[·|Ωt], where Ωt is as defined in the main
paper. Let Ft denote the natural filtration of the stochastic
process C0, C1, . . . , up to t.

The main idea of the proof is to show that with proper
choice with the algorithm’s parameters m, c′, and to, the
following holds at every step t:

• βt ≥ 2 |Ωt

• Noise terms (11) and (12) are upper bounded by a
function of φ∗|Ωt

• Pr(Ωt \ Ωt+1) is negligible |Ωt, βt ≥ 2, bounded noise

• Et[∆t|Ft−1] ≤ (1− βt

to+t
)∆t−1 + εt |Ωt

where εt, the noise term, decreases of order O( 1
t2

).

Lemma 10. Suppose C∗ is (bo, α)-stable. If

m >
ln(1−

√
α)

ln(1− 4
5
p∗min)

and
c′ >

β

2[1−
√
α− (1− 4

5
p∗min)m]

Then conditioning on Ωt, we have βt ≥ β.

Proof. Let’s first consider ptr(1) =
nt−1
r
n

. Conditioning on
Ωt, using the fact that C∗ is (bo, α)-stable, we have

nt−1
r

n
≥ p∗min(1−max

r

|Atr4A∗r |
n∗r

)

≥ p∗min(1− αbo

5αbo + 4(1 + φt

φ∗ )
) ≥ 4

5
p∗min

And hence,

min
r
ptr(m) ≥ 1− (1− 4

5
p∗min)m

Now,

βt ≥ 2c′(min
r
ptr(m)−

√
α)

≥ 2c′(1− (1− 4

5
p∗min)m −

√
α) ≥ β

where the last inequality is by our requirement on c′ and
the fact that 1− (1− 4

5
p∗min)m−

√
α > 0 by our requirement

on m.

Lemma 11. Suppose C∗ is (bo, α)-stable. Then if we apply
one step of Algorithm 1, with m, c′ satisfying conditions in
Lemma 10, then conditioning on Ωi,

∆i ≤ ∆i−1(1− β

to + i
) + [

c′

to + i
]2
∑
r

n∗r‖ĉir − c∗r‖2

+
2c′

to + i

∑
r

n∗r〈ci−1
r − c∗r , ξir〉

where ξir := ĉir − E[ĉir|Fi−1].

Proof. Let ∆i
r := n∗r‖cir − c∗r‖2, so ∆i =

∑
r ∆i

r, and we
use ptr as a shorthand for ptr(m). By the update rule of
Algorithm 1,

∆i
r = n∗r‖(1− ηi)(ci−1

r − c∗r) + ηi(ĉir − c∗r)‖2

≤ n∗r{(1− 2ηi)‖ci−1
r − c∗r‖2 + 2ηi〈ci−1

r − c∗r , ĉir − c∗r〉
+(ηi)2[‖ci−1

r − c∗r‖2 + ‖ĉir − c∗r‖2]}

Let ξir = ĉir − E[ĉir|Fi−1], where

E[ĉir|Fi−1] = (1− pir)ci−1
r + pirm(Air)

Since

〈ci−1
r − c∗r , ĉir − c∗r〉 = 〈ci−1

r − c∗r , E[ĉir|Fi−1] + ξir − c∗r〉
≤ (1− pir)‖ci−1

r − c∗r‖2

+pir‖m(Air)− c∗r‖‖ci−1
r − c∗r‖+ 〈ci−1

r − c∗r , ξir〉

We have

∆i
r ≤ n∗r{−2ηi[‖ci−1

r − c∗r‖2 − (1− pir)‖ci−1
r − c∗r‖2

−pir‖ci−1
r − c∗r‖‖m(Air)− c∗r‖] + ‖ci−1

r − c∗r‖2

+2ηi〈ξir, ci−1
r − c∗r〉+ (ηi)2[‖ci−1

r − c∗r‖2 + ‖ĉir − c∗r‖2]}

≤ n∗r{−
2c′

to + i
min
r
ptr‖ci−1

r − c∗r‖2

+
2c′

to + i
max
s
pts‖ci−1

r − c∗r‖‖m(Air)− c∗r‖

+‖ci−1
r − c∗r‖2 + 2ηi〈ξir, ci−1

r − c∗r〉
+(ηi)2[‖ci−1

r − c∗r‖2 + ‖ĉir − c∗r‖2]}

Note ∑
r

n∗r‖cir − c∗r‖‖m(Air)− c∗r‖

≤
√

(
∑
r

n∗r‖ci−1
r − c∗r‖2)(

∑
r

n∗r‖m(Air)− c∗r‖2)

=
√

∆i−1∆(m(Ai), C∗) ≤
√
α∆i−1

where the first inequality is by Cauchy-Schwartz and the
last inequality is by applying Lemma 1. Finally, summing
over ∆i

r, we get

∆i =
∑
r

∆i
r ≤ ∆i−1[1− 2c′

to + i
min
r
ptr(1−

maxs p
t
s

minr ptr

√
α)]

+[
c′

(to + i)
]2
∑
r

n∗r‖ĉir − c∗r‖2

+
2c′

(to + i)pir

∑
r

n∗r〈ci−1
r − c∗r , ξir〉

≤ ∆i−1(1− β

to + i
) + [

c′

to + i
]2
∑
r

n∗r‖ĉir − c∗r‖2

+
2c′

to + i

∑
r

n∗r〈ci−1
r − c∗r , ξir〉

The second inequality is by βt ≥ β, as proven in Lemma
10.
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Lemma 12. Suppose X satisfies (A1), Co ∈ conv(X), and
C∗ is (bo, α)-stable. If we run one step of Algorithm 1, with
m, c′ satisfying conditions in Lemma 10, then conditioning
on Ωi, we have, for any λ > 0,

Ei{exp{λ∆i}|Fi−1}

≤ exp

{
λ{(1− β

t0 + i
)∆i−1 +

(c′)2B

(t0 + i)2
+
λ(c′)2B2

2(t0 + i)2
}
}

Proof. By Lemma 24, we have (11) and (12) are both upper
bounded by B. By Lemma 11, we have

Ei{exp(λ∆i)|Fi−1} ≤ expλ[∆i−1(1− β

to + i
) +

(c′)2B

(to + i)2
]

Ei{expλ
2c′

to + i

∑
r

n∗r〈ci−1
r − c∗r , ξir〉|Fi−1}

Since
2λc′

i+ t0

∑
r

n∗r〈ξir, ci−1
r − c∗r〉 ≤

2λc′

i+ t0
B

and Ei{ 2λc′

i+t0

∑
r n
∗
r〈ξir, ci−1

r − c∗r〉|Fi−1} = 0, by Hoeffding’s
lemma

Ei

{
exp{ 2λc′

i+ t0

∑
r

n∗r〈ξir, ci−1
r − c∗r〉|Fi−1}

}

≤ exp{λ
2(c′)2B2

2(i+ t0)2
}

Combining this with the previous bound completes the
proof.

Lemma 13 (adapted from [4]). For any λ > 0,
Ei{eλ∆i−1

} ≤ Ei−1{eλ∆i−1

}

Proof. By our partitioning of the sample space, Ωi−1 =
Ωi ∪ (Ωi−1 \ Ωi), and for any ω ∈ Ωi and ω′ ∈ Ωi−1 \ Ωi,
∆i−1(ω) ≤ boφ

∗ < ∆i−1(ω′). Taking expectation over Ωi

and Ωi−1, we get Ei{eλ∆i−1

} ≤ Ei−1{eλ∆i−1

}.

Proposition 2. Fix any 0 < δ ≤ 1
e
. Suppose C∗ is (bo, α)-

stable. If ∆o ≤ 1
2
boφ
∗, and if

m >
ln(1−

√
α)

ln(1− 4
5
p∗min)

c′ >
β

2[1−
√
α− (1− 4

5
p∗min)m]

with β ≥ 2

to ≥ 768(c′)2(1 +
1

bo
)2n2 ln2 1

δ

Then
P (Ω∞) ≤ δ

(here we used ∆0 instead of ∆i and treat the starting time,
the i-th iteration in Theorem 3 as the zeroth iteration for
cleaner presentation).

Proof. By Lemma 12, for any λ > 0,

Ei{eλ∆i} ≤ Ei{eλ{(1−
β

to+i
)∆i−1

} exp{ λ(c′)2B

(to + i)2
+
λ2(c′)2B2

2(to + i)2
}

≤ Ei−1{eλ
(1)∆i−1

} exp{ λ(c′)2B

(to + i)2
+
λ2(c′)2B2

2(to + i)2
}

where λ(1) = λ(1 − β
to+i

), and the second inequality is
by Lemma 13. Similarly, the following recurrence relation
holds for k = 0, . . . , i:

Ei−k{eλ
(k)∆i−k} ≤ Ei−(k+1){eλ

(k+1)∆i−k−1

}

exp{ λ(k)(c′)2B

(to + i− k)2
+

(λ(k))2(c′)2B2

2(to + i− k)2
}

where λ(0) := λ, and for k ≥ 1, λ(k) := Πk
t=1(1 −

β
to+(i−t+1)

)λ(0).

Note (see, e.g., [4]) ∀β > 0, k ≥ 1,

λ(k) = Πk
t=1(1− β

to + (i− t+ 1)
) ≤ (

to + i− k + 1

to + i
)β

Since the bound is shrinking as β increases and β ≥ 2,

λ(k)

(t0 + i− k)2
≤ (

to + i− k + 1

to + i
)2 λ

(to + i− k)2
≤ 4λ

(to + i)2

Repeatedly applying the relation, we get

Ei{eλ∆i} ≤ eλ
(i)∆0

exp{
i−1∑
k=0

(
4λ(c′)2B

(to + i)2
+

4λ2(c′)2B2

2(to + i)2
)}

≤ exp{λ(
to + 1

to + i
)β∆0 + [λ(c′)2B +

λ2(c′)2B2

2
]

4i

(to + i)2
}

≤ exp{λ(
to + 1

to + i
)β

1

2
boφ
∗ + [λ(c′)2B +

λ2(c′)2B2

2
]

4i

(to + i)2
}

Then we can apply the conditional Markov’s inequality, for
any λi > 0,

Pr(ω ∈ Ωi \ Ωi+1) = Pr(∆i > boφ
∗|Ωi)

= Pr(eλi∆
i

> eλiboφ
∗
|Ωi) ≤

E[eλi∆
i
r |Ωi]

eλiboφ∗

Combining this with the upper bound on Eieλi∆
i

, we get

Pr(ω ∈ Ωi \ Ωi+1)

≤ exp{−λi{
1

2
bo[2− (

to + 1

to + i
)β ]

−(B +
λiB

2

2
)

4(c′)2i

(to + i)2
}}

≤ exp

{
−λi{

boφ
∗

2
− (B +

λiB
2

2
)

4(c′)2i

(to + i)2
}
}

since i ≥ 1. We choose λi = 1
∆

ln (i+1)2

δ
with ∆ = boφ

∗

4
,

and show that boφ
∗

2
− (B + λiB

2

2
) 4(c′)2i

(to+i)2
is lower bounded

by ∆.



Cheng Tang, Claire Monteleoni

Case 1: B > λiB
2

2
. We get

1

2
boφ
∗ − (B +

λiB
2

2
)

4(c′)2i

(to + i)2
≥ ∆

since to ≥ 128(c′)2(bo+1)n
bo

= 64(c′)2(bo+1)nφ∗
1
2
boφ∗

= 16(c′)2B
1
2
boφ∗

.

Case 2: B ≤ λiB
2

2
. We get

1

2
boφ
∗ − (B +

λiB
2

2
)

4(c′)2i

(to + i)2

≥ 2∆− λiB2 4(c′)2i

(to + i)2

= 2∆− 1

∆
ln

(1 + i)2

δ

4(c′)2B2i

(to + i)2

≥ 2∆− 1

∆
ln

(to + i)2

δ

4(c′)2B2(to + i)

(to + i)2

Now we show

1

∆
ln

(to + i)2

δ

4(c′)2B2

to + i
≤ ∆

Since

to + i ≥ to ≥ 768(c′)2(1 +
1

bo
)2n2 ln2 1

δ

=
48(c′)2B2

( 1
2
boφ∗)2

ln2 1

δ

ln 1
δ
≥ 1, and 16(c′)2B2

( 1
2
boφ∗)2

≥ 1
3
, we can apply Lemma 25 with

b = 2, C := 16(c′)2B2

( 1
2
boφ∗)2

, t := to + i ≥ ( 3C
b−1

ln 1
δ
)

2
b−1 , and get

4(c′)2B2

∆2
ln

(to + i)2

δ
:= 2C ln t+ C ln

1

δ
< tb−1 = to + i

That is, 1
∆

ln (to+i)2

δ
4(c′)2B2

to+i
≤ ∆. Thus, for both cases,

2∆− (B +
λiB

2

2
)

4(c′)2i

(to + i)2
≥= ∆

and hence,

Pr(ω ∈ Ωi \ Ωi+1) ≤ e−
1
∆

(ln
(1+i)2

δ
)∆ =

δ

(i+ 1)2

Finally, we have

Pr(∪i≥1Ωi \ Ωi+1) ≤
∞∑
i=1

Pr(ω ∈ Ωi \ Ωi+1) ≤ δ

Proof of Theorem 3. Since the conditions in Proposition
2 holds for any t > i, we apply it and get

Pr(Ωt) ≥ 1− Pr(∪t>iΩt \ Ωt+1) ≥ 1− δ

This proves the first statement. Taking expectation over Ωt
conditioning on filtration Ft−1 with respect to the inequality
derived in Lemma 11, we get

Et[∆
t|Ft−1] ≤ ∆t−1(1− β

to + t
) + [

c′

to + t
]2B

since (12) is bounded by B by Lemma 24, and since
Et{ξtr|Ft−1} = 0, ∀r ∈ [k]. Taking total expectation over
Ωt, we get

Et[∆
t] ≤ Et[∆t−1](1− β

to + t
) +

(c′)2B

(t+ to)2

≤ Et−1[∆t−1](1− β

to + t
) +

(c′)2B

(t+ to)2

We can apply Lemma 26 by letting ut ← Et+to [∆t+to ] (we
temporarily change the notation Et[∆t] to Et+to [∆t+to ] to
match the notation in Lemma 26), to ← to + i, a← β, and
b← (c′)2B

Et[∆
t] ≤ (

to + i+ 1

to + t+ 1
)β∆i +

(c′)2B

β − 1
(
to + i+ 2

to + i+ 1
)β+1 1

to + t+ 1

10 Appendix D: Proofs of Theorem 1
and Theorem 2

One subtlety we need to point out before the proofs is that,
in Algorithm 1, the learning rate ηtr as well as the update
rule:

ctr ← (1− ηtr)ct−1
r + ηtr ĉ

t
r

is only defined for a cluster r that is “sampled” at the t-th
iteration. However, even if the cluster is not “sampled”, i.e.,
ctr = ct−1

r , the same update rule with ĉtr = ct−1
r and and

the same learning rate still holds for this case. So in our
analysis, we equivalently treat each cluster r as updated
with learning rate ηtr, and differentiates between a sampled
and not-sampled cluster only through the definition of ĉtr.

Proof leading to Theorem 1

Lemma 14. Suppose ∀r ∈ [k], ηtr ≤ ηtmax w.p. 1. Then,
E[φt+1 − φt|Ft] ≤ −2 min

r,t;pt+1
r >0

ηt+1
r pt+1

r (φt − φ̃t) +

(ηt+1
max)26φt, where φ̃t :=

∑
r

∑
x∈At+1

r
‖x−m(At+1

r )‖2.

Proof of Lemma 14. For simplicity, we denote E[·|Ft]
by Et[·] (the same notation is also used as a shorthand to
E[·|Ωt] in the proof of Theorem 3; we abuse the notation
here).

Et[φ
t+1] = Et[

k∑
r=1

∑
x∈At+2

r

‖x− ct+1
r ‖2]

≤ Et[
∑
r

∑
x∈At+1

r

‖x− ct+1
r ‖2]

= Et[
∑
r

∑
x∈At+1

r

‖x− (1− ηt+1
r )ctr − ηt+1

r ĉt+1
r ‖2]

= Et[
∑
r

∑
x∈At+1

r

(1− ηt+1
r )2‖x− ctr‖2

+(ηt+1
r )2‖x− ĉt+1

r ‖2 + 2ηt+1
r (1− ηt+1

r )〈x− ctr, x− ĉt+1
r 〉]

where the inequality is due to the optimality of clustering
At+2 for centroids Ct+1. Since

Et[ĉ
t+1
r ] = (1− pt+1

r )ctr + pt+1
r m(At+1

r )
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we have

〈x− ctr, x− ĉt+1
r 〉

= (1− pt+1
r )‖x− ctr‖2 + pt+1

r 〈x− ctr, x−m(At+1
r )〉

Plug this into the previous inequality, we get

Et[φ
t+1] ≤

∑
r

(1− 2ηt+1
r )φtr + (ηt+1

r )2φtr

+(ηt+1
r )2

∑
x∈At+1

r

‖x− ĉt+1
r ‖2

+2ηt+1
r {(1− pt+1

r )
∑

x∈At+1
r

‖x− ctr‖2

+pt+1
r

∑
x∈At+1

r

〈x− ctr, x−m(At+1
r )〉}

= φt − 2
∑
r

ηt+1
r pt+1

r φtr

+2
∑
r

ηt+1
r pt+1

r

∑
x∈At+1

r

〈x− ctr, x−m(At+1
r )〉}

+(ηt+1
r )2φtr + (ηt+1

r )2
∑

x∈At+1
r

‖x− ĉt+1
r ‖2

Now, ∑
x∈At+1

r

〈x− ctr, x−m(At+1
r )〉

=
∑

x∈At+1
r

〈x−m(At+1
r ) +m(At+1

r )− ctr, x−m(At+1
r )〉

=
∑

x∈At+1
r

‖x−m(At+1
r )‖2

+
∑

x∈At+1
r

〈m(At+1
r )− ctr, x−m(At+1

r )〉 = φtr

since
∑
x∈At+1

r
〈m(At+1

r )−ctr, x−m(At+1
r )〉 = 0, by property

of the mean of a cluster. Then

Et[φ
t+1] ≤ φt +

∑
r

2ηt+1
r pt+1

r (−φtr + φ̃tr)

+(ηt+1
r )2[φtr + Et[

∑
x∈At+1

r

‖x− ĉt+1
r ‖2]

Now a key observation is that pt+1
r = 0 if and only if

cluster At+1
r is empty, i.e., degenerate. Since the degen-

erate clusters do not contribute to the k-means cost, we
have

∑
r;pt+1

r >0
φtr = φt, and similarly,

∑
r;pt+1

r >0
φ̃tr = φ̃t.

Therefore,

Et[φ
t+1] ≤ φt − 2 min

r,t;pt+1
r >0

ηt+1
r pt+1

r (φt − φ̃t)

+(ηt+1
max)2(Et

∑
r

∑
x∈At+1

r

‖x− ĉt+1
r ‖2 + φt)

= φt − 2 min
r,t;pt+1

r >0

ηt+1
r pt+1

r (φt − φ̃t) + (ηt+1
max)26φt

where the last inequality is by Lemma 23.

Lemma 15. Suppose Assumption (A) holds. If we run
Algorithm 1 on X with ηt = c′

to+t
, and to > 1, with any

initial set of k centroids C0 ∈ conv(X). Then for any
δ > 0, ∃t s.t. ∆(Ct, C∗) ≤ δ with C∗ := m(A∗) for some
A∗ ∈ {A∗}[k].

Proof of Lemma 15. First note that since {C∗}[k] in-
cludes all stationary points with 1 ≤ k′ ≤ k non-degenerate
centroids, and at any time t, Ct must have kt ∈ [k] non-
degenerate centroids, so there exists C∗ ∈ {C∗}kt ∈ {C∗}[k]

such that ∆(Ct, C∗) is well defined. For a contradiction,
suppose ∀t ≥ 1, ∆(Ct, C∗) > δ, for all C∗ ∈ {C∗}kt . Then

Case 1: m(At+1) ∈ {C∗}kt

Then
∆(Ct,m(At+1)) > δ

by our assumption.

Case 2: m(At+1) /∈ {C∗}kt

Since Ct ∈ Cl(v−1(At+1)) by our definition, applying
Lemma 2,

∆(Ct,m(At+1)) ≥ rminφ(m(At+1))

So for both cases,

∆(Ct,m(At+1)) ≥ min{δ, rminφopt}

Let denote δo := min{δ, rminφ(m(At+1))}, then by Lemma
14,

E[φt+1 − φt|Ft]

≤ −
2c′minr∈[k];pt+1

r (m)>0 p
t+1
r (m)

t+ 1 + to
φt(1− φ̃t

φt
)

+(
c′

t+ 1 + to
)26φmax

Note for pt+1
r (m) > 0, by the discrete nature of the dataset,

nt+1
r
n
≥ 1

n
, therefore,

min
r∈[k];ptr(m)>0

ptr(m) ≥ 1− (1− 1

n
)m ≥ 1− e−

m
n

Also note

φt − φ̃t =
∑
r∈[k′]

∑
x∈At+1

r

‖x− Ct‖2 − ‖x−m(At+1
r )‖2

=
∑
r

‖ctr −m(At+1
r )‖2nt+1

r = ∆(Ct,m(At+1)) ≥ δo

Then ∀t ≥ 1,

E[φt+1]− E[φt]

≤ −2c′(1− e−
m
n )

t+ 1 + to
δo +

6φmax(c′)2

(t+ 1 + to)2

Summing up all inequalities,

E[φt+1]− E[φ0]

≤ −2c′(1− e−
m
n )δo ln

t+ to + 1

to
+

6φmax(c′)2

to − 1
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Since t is unbounded and ln t+to+1
to

increases with t while
6φmax(c′)2

to−1
is a constant, ∃T such that for all t ≥ T , Eφt −

φ0 ≤ −φ0, which means E[φt] ≤ 0, for all t large enough.
This implies the k-means cost of some clusterings is negative,
which is impossible. So we have a contradiction.

Proof setup of Theorem 1 The goal of the proof
is to show that first, with high probability, the algorithm
converges to some stationary clustering, A∗ ∈ {A∗}[k]. We
call this event G; formally,

G := {∃T ≥ 1,∃A∗ ∈ {A∗}[k], s.t. A
t = A∗, ∀t ≥ T}

Second, we want to establish the O( 1
t
) expected convergence

rate of the algorithm to this stationary clustering A∗.

To prove that the event G has high probability, we first
consider random variable τ :

τ := min{t ≥ 0 | min
A∗∈{A∗}[k]

∆(Ct,m(A∗)) ≤ 1

2
rminφ

∗}

That is, τ is the first time the algorithm “hits” a stationary
clustering; τ is a stopping time since ∀t ≥ 0, {τ ≤ t} is
Ft-measurable. By Lemma 15

Pr({τ <∞}) = Pr({τ ∈ N}) = Pr(∪T≥0{τ = T}) = 1 (13)

Fixing τ , we denote the stationary clustering that the algo-
rithm “hits” by

A∗(τ) := arg min
A∗∈{A∗}[k]

∆(Cτ ,m(A∗))

A∗(τ) is well defined; the reason is that when
∆(Cτ ,m(A∗)) ≤ 1

2
rminφ

∗, Aτ = A∗, so there can be only
one minimizer.

We will prove a subset Go ⊂ G holds with high probability.
To do this, we construct Go as a union of disjoint events
determined by the realization of τ and A∗(τ): we define
events

GT (A∗) := {τ = T}∩{A∗(τ) = A∗}∩{∀t ≥ T,∆t ≤ rminφ
∗}

Then we can represent the event where the algorithm’s
iterate converges to a particular stationary clustering A∗ as

G(A∗) := ∪T≥0GT (A∗)

Finally, we define

Go := ∪A∗∈{A∗}[k]
G(A∗)

Go ⊂ G since the event ∆t ≤ rminφ
∗ implies At = A∗.

Proof of Theorem 1. Fix any (T,A∗), conditioning on
{τ = T} ∩ {A∗(τ) = A∗}, since we have

c′ >
φmax

(1− e−mn )rminφopt

We can envoke Lemma 16 to get ∀t < T ,

E{φt − φ(A∗)|GT (A∗)} = O(
1

t
) (14)

Now let’s consider the case t ≥ T . Since by Lemma 2, A∗
is (rmin, 0)-stable, we can apply Theorem 3: in this context,
the parameters in the statement of Theorem 3 are bo = rmin,
α = 0, p∗min ≥ 1

n
. Thus, for any

m ≥ 1

c′ >
β

2(1− e 4m
5n )

with β ≥ 2

and
to ≥ 768(c′)2(1 +

1

rmin
)2n2 ln2 1

δ

the conditions required by Theorem 3 are satisfied. Then
by the first statement of Theorem 3,

Pr({∀t ≥ T,∆t ≤ rminφ
∗}|{τ = T} ∩ {A∗(τ) = A∗})

= P (Ω∞|{τ = T} ∩ {A∗(τ) = A∗}) ≥ 1− δ (15)

and by the second statement of Theorem 3, ∀t > T ,

E{φt − φ(A∗)|Ωt, {τ = T} ∩ {A∗(τ) = A∗}}

≤ E{∆(Ct, C∗)|Ωt, {τ = T} ∩ {A∗(τ) = A∗}} = O(
1

t
)

where the first inequality is by Lemma 18. Since Ω∞ ⊂ Ωt,
∀t ≥ 0, this implies

E{∆(Ct, C∗)|Ω∞, {τ = T} ∩ {A∗(τ) = A∗}}

= E{∆(Ct, C∗)|GT (A∗)} = O(
1

t
) (16)

Finally, we turn to prove Pr(G) is large. Recall

Pr{G} ≥ Pr{Go} = Pr{∪T≥0 ∪A∗∈{A∗}[k]
GT (A∗)}

=
∑

T≥0,A∗∈{A∗}[k]

Pr{GT (A∗)}

where the second equality holds because the events GT (A∗)
are disjoint for different pairs of (T,A∗), since the stop-
ping time τ and the minimizer A∗(τ) are unique for each
experiment. Since ∑

T≥0,A∗∈{A∗}[k]

Pr{GT (A∗)}

=
∑
T,A∗

Pr{Ω∞|{τ = T} ∩ {A∗(τ) = A∗}}

Pr({τ = T} ∩ {A∗(τ) = A∗})

≥ (1− δ)
∑
T,A∗

Pr({τ = T} ∩ {A∗(τ) = A∗})

= (1− δ)Pr{∪T ∪A∗ {τ = T} ∩ {A∗(τ) = A∗}}
= (1− δ)Pr{∪T≥0{τ = T}} = 1− δ

where the inequality is by (15), and the last two equalities
are due to the finiteness of {A∗}[k] and by (13), respectively.
Therefore, Pr{G} ≥ 1 − δ, which completes the proof of
the first statement. In addition,

Pr{∪A∗∈{A∗}[k]
G(A∗)}

= Pr{∪T≥0,A∗∈{A∗}[k]
Ω∞ ∩ {τ = T} ∩ {A∗(τ) = A∗}}

≥ 1− δ
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which proves the second statement. Finally, combining
inequalities (14) and (16), we have ∀ ≥ 1 and ∀t ≥ 1,

E{φt − φ(A∗)|GT (A∗)} = O(
1

t
)

Since the quantity φt − φ(A∗∗) is independent of T , we
reach the conclusion

E{φt − φ(A∗)|G(A∗)} = O(
1

t
)

Lemma 16. Suppose the assumptions and settings in
Theorem 1 hold, conditioning on any GT (A∗), we have
∀1 ≤ t < T ,

E{φt − φ(A∗)|GT (A∗)} = O(
1

t
)

Proof. First observe that conditioning on the event GT (A∗),
∆(Ct, C∗) > 1

2
rminφ

∗, ∀t < T . Now we are in a setup
similar to that in the proof Lemma 15, and the argument
therein will lead us to the conclusion that

φt − φ̃t > min{1

2
rmin, rmin}φ̃t =

1

2
rminφ̃

t

Proceeding as in Lemma 15, we have conditioning on
GT (A∗),

E[φt|GT (A∗)]

≤ E[φt−1|GT (A∗)]{1−
2c′minr∈[k];ptr(m)>0 p

t
r(m)

t+ to

rminφopt
2φmax

}+ (
c′

t+ to
)26φmax

since ∀t ≥ 1,

1− φ̃t

φt
≥ rmin

2

φ̃t

φt
≥ rmin

2

φopt
φmax

Now, since we set

c′ >
φmax

(1− e−mn )rminφopt

we have

2c′ min
r∈[k];ptr(m)>0

ptr(m)
rminφopt
2φmax

≥ 2c′(1− (1− 1

n
)m)

rminφopt
2φmax

≥ 2c′(1− e−
m
n )
rminφopt
2φmax

> 2
φmax

(1− e−mn )rminφopt
(1− e−

m
n )
rminφopt
2φmax

> 1

Applying Lemma 26 with

a := 2c′ min
r∈[k];ptr(m)>0

ptr(m)
rminφopt
2φmax

> 1

b :=
6(c′)2φmax

(to + t)2

We conclude that ∀1 ≤ t < T ,

E[φt|GT (A∗)] ≤ to + 1

to + t+ 1
φo +

b

a− 1
(
to + 2

to + 1
)a+1 1

to + t+ 1

Subtracting φ(A∗) from both sides of the equation, we get

E[φt − φ(A∗)|GT (A∗)] ≤ to + 1

to + t+ 1
(φo − φ(A∗))

+
b

a− 1
(
to + 2

to + 1
)a+1 1

to + t+ 1
= O(

1

t
)

Proofs leading to Theorem 2

Here, we additionally define two quantities that character-
izes C∗: Let A∗ = v(C∗), we use p∗min := minr∈[k]

n∗r
n

to
characterize the fraction of the smallest cluster in A∗ to

the entire dataset. We use wr :=

φr∗
n∗r

maxx∈A∗r
‖x−c∗r‖2

to char-

acterize the ratio between average and maximal “spread” of
cluster A∗r , and we let wmin := minr∈[k] wr.

10.1 Existence of stable stationary point
under geometric assumptions on the
dataset

First, we observe that our Assumption (B) implies two
lower bounds on ‖c∗r − c∗s‖, ∀r, s 6= r. Let x ∈ A∗r ∩ Ats.
Split x into its projection on the line joining c∗r and c∗s , and
its orthogonal component:

x =
1

2
(c∗r + c∗s) + λ(c∗r − c∗s) + u (17)

with u ⊥ c∗r − c∗s . Note λ measures the ratio between
departure of the projected point from the mid-point of
c∗r and c∗s and the norm ‖c∗r − c∗s‖. By minimality of our
definition of margin ∆rs,

‖x̄− 1

2
(c∗r + c∗s)‖ = λ‖c∗r − c∗s‖ ≥

1

2
∆rs (18)

In addition, since c∗r is the mean of A∗r , we know there
exists x ∈ A∗r such that x̄ falls outside of the line segment
c∗r − c∗s (or exactly on c∗r in the special case where all points
projects on c∗r). Similar holds for c∗s . Thus,

‖c∗r − c∗s‖ ≥ ∆rs ≥ f(α)
√
φ∗(

1√
n∗r

+
1√
n∗s

) (19)

Lemma 17 (Theorem 5.4 of [12]). Suppose (X,C∗) satis-
fies (B). If ∀r ∈ [k], s 6= r, ∆t

r + ∆t
s ≤ ∆rs

16
. Then for any

s 6= r, |A∗r ∩Ats| ≤ b2

f(α)
, where b ≥ maxr,s

∆tr+∆ts
∆rs

.

The proof is almost verbatim of Theorem 5.4 of [12]; we
include it here for completeness.

Proof. Since the projection of x on the line joining ctr, cts is
closer to s, we have

x(cts − ctr) ≥
1

2
(cts − ctr)(cts + ctr)
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Substituting (17) into the inequality above,

1

2
(c∗r + c∗s)(c

t
s − ctr) + λ(c∗r − c∗s)(cts − ctr)

+u(cts − ctr) ≥
1

2
(cts − ctr)(cts + ctr) (20)

Since u ⊥ c∗r − c∗s , let ∆ = ∆t
s + ∆t

r. We have

u(cts − ctr) = u(cts − c∗s − (ctr − c∗r)) ≤ ‖u‖∆

Rearranging (20), we have

1

2
(c∗r + c∗s − cts − ctr)(cts − ctr)

+λ(c∗r − c∗s)(cts − ctr) + u(cts − ctr) ≥ 0

≡ ∆2

2
+

∆

2
‖c∗r − c∗s‖ − λ‖c∗r − c∗s‖2

+λ∆‖c∗r − c∗s‖+ ‖u‖∆ ≥ 0

Therefore,

‖x− c∗r‖ = ‖(1

2
− λ)(c∗s − c∗r) + u‖ ≥ ‖u‖

≥ λ

∆
‖c∗r − c∗s‖2 −

∆

2

−1

2
‖c∗r − c∗s‖ − λ‖c∗r − c∗s‖ ≥

∆rs‖c∗r − c∗s‖
64∆

where the last inequality is by our assumption that ∆ ≤ ∆rs
16

,
and λ ≥ ∆rs

2‖c∗r−c∗s‖
by (18). By previous inequality and our

assumption on f , 3 for all s 6= r

|A∗r ∩Ats|
∆2
rs‖c∗r − c∗s‖2

f∆2
≤

∑
x∈A∗r∩Ats

‖x− c∗r‖2

So |A∗r ∩ Ats| ≤
∑
x∈A∗r∩Ats

‖x − c∗r‖2
f(∆tr+∆ts)2

∆2
rs‖c∗r−c∗s‖2

≤
fb2

f2φ∗( 1
n∗r

)
(
∑
A∗r∩Ats

‖x − c∗r‖2), where the second inequal-

ity is by (19). That is, |A
∗
r∩A

t
s|

n∗r
≤ b2

fφ∗
∑
A∗r∩Ats

‖x − c∗r‖2.

Similarly, for all s 6= r, |A
∗
s∩A

t
r|

n∗r
≤ b2

fφ∗
∑
A∗s∩Atr

‖x − c∗s‖2

Summing over all s 6= r, |Ar4A
∗
r |

n∗r
= ρout + ρin ≤ b2

fφ∗ φ
∗ =

b2

f
.

Lemma 18. Fix a stationary point C∗ with k centroids,
and any other set of k′-centroids, C, with k′ ≥ k so that C
has exactly k non-degenerate centroids. We have

φ(C)− φ∗ ≤ min
π

∑
r

n∗r‖cπ(r) − c∗r‖2 = ∆(C,C∗)

Proof. Since degenerate centroids do not contribute to k-
means cost, in the following we only consider the sets of
non-degenerate centroids {cs, s ∈ [k]} ⊂ C and {c∗r , r ∈
[k]} ⊂ C∗. We have for any permutation π,

φ(C)− φ∗ =
∑
s

∑
x∈As

‖x− cs‖2 −
∑
r

∑
x∈A∗r

‖x− c∗r‖2

≤
∑
r

∑
x∈A∗r

‖x− cπ(r)‖2 −
∑
r

∑
x∈A∗r

‖x− c∗r‖2

=
∑
r

n∗r‖cπ(r) − c∗r‖2

3We use f as a shorthand for f(α) in the subsequent
proof.

where the last inequality is by optimality of clustering
assignment based on Voronoi diagram, and the second
inequality is by applying the centroidal property in Lemma
21 to each centroid in C∗. Since the inequality holds for
any π, it must holds for minπ

∑
r n
∗
r‖cπ(r) − c∗r‖2, which

completes the proof.

Proofs regarding seeding guarantee

Lemma 19 (Theorem 4 of [19]). Suppose (X,C∗) satisfies
(B). If we obtain seeds from Algorithm 2, then

∆(C0, C∗) ≤ 1

2

f(α)2

162
φ∗

with probability at least 1−mo exp(−2( f(α)
4
− 1)2w2

min)−
k exp(−mop

∗
min).

Proof. First recall that, as in (19), assumption (B) implies
center-separability assumption in Definition 1 of [19], i.e.

∀r ∈ [k], s 6= r, ‖c∗r − c∗s‖ ≥ f(α)
√
φ∗(

1√
n∗r

+
1√
n∗s

)

with f(α) ≥ maxr∈[k],s6=r
n∗r
n∗s

. 4 Applying Theorem 4 of
[19] with µr = c∗r and νr = c0r, we get ∀r ∈ [k], ‖c0r − c∗r‖ ≤√
f(α)

2

√
φ∗r
n∗r

with probability at least 1−mo exp(−2( f(α)
4
−

1)2w2
min)− k exp(−mop

∗
min). Summing over all r, the pre-

vious event implies
∑
r n
∗
r‖c0r − c∗r‖2 ≤ f(α)

4
φ∗ ≤ 1

2
f(α)2

162 φ∗,
where the last inequality is by the assumption that f ≥ 642

in (B).

Lemma 20. Assume the conditions Lemma 19 hold. For
any ξ > 0, if in addition,

f(α) ≥ 5

√
1

2wmin
ln(

2

ξp∗min

ln
2k

ξ
)

If we obtain seeds from Algorithm 2 choosing

ln 2k
ξ

p∗min

< mo <
ξ

2
exp{2(

f(α)

4
− 1)2w2

min}

Then ∆(C0, C∗) ≤ 1
2
f(α)2

162 φ∗ with probability at least 1− ξ.

Proof. By Lemma 19, a sufficient condition for the success
probability to be at least 1− ξ is:

mo exp(−2(
f(α)

4
− 1)2w2

min) ≤ ξ

2

and
k exp(−mop

∗
min) ≤ ξ

2

This translates to requiring

1

p∗min

ln
2k

ξ
≤ mo ≤

ξ

2
exp(2(

f(α)

4
− 1)2w2

min)

4note: “α” in [19] is defined as minr∈[k],s6=r
n∗r
n∗s

,which is
not to be confused with our “α”.
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Note for this inequality to be possible, we also need
1

p∗min
ln 2k

ξ
≤ ξ

2
exp(2( f(α)

4
−1)2w2

min), imposing a constraint
on f(α). Taking logarithm on both sides and rearrange, we
get

(
f(α)

4
− 1)2 ≥ 1

2wmin
ln(

2

ξp∗min

ln
2k

ξ
)

This satisfied since f(α) ≥ 5
√

1
2wmin

ln( 2
ξp∗min

ln 2k
ξ

).

Proof of Theorem 2. By Proposition 1, (X,C∗) satisfy-
ing (B) implies C∗ is ( f(α)2

162 , α)-stable. Let b0 := f(α)2

162 ,
and we denote event F := {∆(C0, Copt) ≤ 1

2
b0φ
∗}. Since

f(α) ≥ 5
√

1
2wmin

ln( 2
ξp∗min

ln 2k
ξ

), and
log 2k

ξ

p∗min
< mo <

ξ
2

exp{2( f(α)
4
− 1)2w2

min}, we can apply Lemma 20 to get

Pr{F} ≥ 1− ξ

Conditioning on F , we can invoke Theorem 3, since (A1) is
satisfied implicitly by (B), Co ⊂ conv(X) by the sampling
method used in Algorithm 2, and we can guarantee that
the setting of our parameters, m, c′, and to, satisfies the
condition required in Theorem 3. Let Ωt be as defined in
the main paper, by Theorem 3, ∀t ≥ 1,

E{∆t|Ωt, F} = O(
1

t
) and Pr{Ωt|F} ≥ 1− δ

So

Pr{Ωt ∩ F} = Pr{Ωt|F}Pr{F} ≥ (1− δ)(1− ξ)

Finally, using Lemma 18, and letting Gt := Ωt ∩ F , we get
the desired result.

11 Appendix E: auxiliary lemmas

Equivalence of Algorithm 1 to stochastic k-
means Here, we formally show that Algorithm 1 with
specific instantiation of sample size m and learning rates ηtr
is equivalent to online k-means [6] and mini-batch k-means
[18].

Claim 1. In Algorithm 1, if we set a counter for N̂ t
r :=∑t

i=1 n̂
i
r and if we set the learning rate ηtr :=

n̂tr
N̂tr

, then
provided the same random sampling scheme is used,

1. When mini-batch size m = 1, the update of Algorithm 1
is equivalent to that described in [Section 3.3, [6]].

2. When m > 1, the update of Algorithm 1 is equivalent
to that described from line 3 to line 14 in [Algorithm
1, [18]] with mini-batch size m.

Proof. For the first claim, we first re-define the variables
used in [Section 3.3, [6]]. We substitute index k in [6] with
r used in Algorithm 1. For any iteration t, we define the
equivalence of definitions: s ← xi, ctr ← wk, n̂tr ← ∆nk,
N̂ t
r ← nk. According to the update rule in [6], ∆nk = 1

if the sampled point xi is assigned to cluster with center
wk. Therefore, the update of the k-th centroid according
to online k-means in [6] is:

wk ← wk +
1

nk
(xi − wk)1{∆nk=1}

Using the re-defined variables, at iteration t, this is equiva-
lent to

ctr = ct−1
r +

1

N̂ t
r

(s− ct−1
r )1{n̂tr=1}

Now the update defined by Algorithm 1 with m = 1 and
ηtr =

n̂tr
N̂tr

is:

ctr = ct−1
r + ηtr(ĉ

t
r − ct−1

r )1{n̂tr 6=0}

= ct−1
r +

n̂tr

N̂ t
r

(s− ct−1
r )1{n̂tr=1}

= ct−1
r +

1

N̂ t
r

(s− ct−1
r )1{n̂tr=1}

since n̂tr can only take value from {0, 1}. This completes
the first claim.

For the second claim, consider line 4 to line 14 in [Algorithm
1, [18]]. We substitute their index of time i with t in
Algorithm 1. We define the equivalence of definitions: m←
b, St ←M , s← x, ct−1

I(s) ← d[x], ct−1
r ← c.

At iteration t, we let v[ct−1
r ]t denote the value of counter

v[c] upon completion of the loop from line 9 to line 14
for each center c, then N̂ t

r ← v[ct−1
r ]t. Since according to

Lemma 22, from line 9 to line 14, the updated centroid ctr
after iteration t is

ctr =
1

v[ct−1
r ]t

∑
s∈∪ti=1S

i
r

s =
1

N̂ t
r

∑
s∈∪ti=1S

i
r

s

This implies

ctr − ct−1
r =

1

N̂ t
r

∑
s∈∪ti=1S

i
r

s− ct−1
r

=
1

N̂ t
r

[
∑
s∈Str

s+
∑

s′∈∪t−1
i=1S

i
r

s′]− ct−1
r

=
1

N̂ t
r

[
∑
s∈Str

s+ N̂ t−1
r ct−1

r ]− ct−1
r

= − n̂
t
r

N̂ t
r

ct−1
r +

n̂tr

N̂ t
r

∑
s∈Str

s

n̂tr
= −ηtrct−1

r + ηtr ĉ
t
r

Hence, the updates in Algorithm 1 and line 4 to line 14 in
[Algorithm 1, [18]] are equivalent.

Lemma 21 (Centroidal property, Lemma 2.1 of [11]). For
any point set Y and any point c in Rd,∑

x∈Y

‖x− c‖2 =
∑
x∈Y

‖x−m(Y )‖2 + |Y |‖m(Y )− c‖2

Lemma 22. Let wt, gt denote vectors of dimension Rd at
time t. If we choose w0 arbitrarily, and for t = 1 . . . T , we
repeatdly apply the following update

wt = (1− 1

t
)wt−1 +

1

t
gt

Then

wT =
1

T

T∑
t=1

gt



Cheng Tang, Claire Monteleoni

Proof. We prove by induction on T . For T = 1, w1 =
(1− 1)w0 + g1 = 1

1

∑1
t=1 gt. So the claim holds for T = 1.

Suppose the claim holds for T , then for T+1, by the update
rule

wT+1 = (1− 1

T + 1
)wT +

1

T + 1
gT+1

= (1− 1

T + 1
)

1

T

T∑
t=1

gt +
1

T + 1
gT+1

=
T

T + 1

1

T

T∑
t=1

gt +
1

T + 1
gT+1

=
1

T + 1

T+1∑
t=1

gt

So the claim holds for any T ≥ 1.

Lemma 23. ∀t ≥ 1, conditioning on Ft, the noise term
(10) is upper bounded by B1 := 5φt.

Proof. Since

‖x− ĉt+1
r ‖2 ≤ 2‖x− ctr‖2 + 2‖ctr − ĉt+1

r ‖2

We have

E[
∑
r

∑
x∈At+1

r

‖x− ĉt+1
r ‖2 + φt|Ft]

≤ 2
∑
r

∑
x∈At+1

r

‖x− ctr‖2

+2
∑
r

∑
x∈At+1

r

E[‖ctr − ĉt+1
r ‖2|Ft] + φt

Now,

E[‖ctr − ĉt+1
r ‖2|Ft] ≤ E

∑
s∈Str

‖ctr − s‖2

|Str|
=
φtr
ntr

where Str is the sampled from Atr in Algorithm 1, and the
inequality is by convexity of l2-norm. Substituting this into
the previous inequality completes the proof.

Lemma 24. Suppose C∗ is (bo, α)-stable. Conditioning on
Ωi, we have, The terms (11), and (12), for t = i, are upper
bounded by B := 4(bo + 1)nφ∗.

Proof. Conditioning on Ωi,

∆i−1 ≤ boφ∗

By Lemma 18, we also have

φi−1 − φ∗ ≤ ∆i−1 ≤ boφ∗

By Cauchy-Schwarz, ∑
r

n∗r〈ci−1
r − c∗r , ĉir − ci−1

r 〉

≤
√∑

r

n∗r‖ci−1
r − c∗r‖2

√∑
r

n∗r‖ĉir − ci−1
r ‖2

Now, since ĉir is the mean of a subset of Air,

‖ĉir − ci−1
r ‖2 ≤ φi−1

r

Hence ∑
r

n∗r‖ĉir − ci−1
r ‖2 ≤ nφi−1

On the other hand,∑
r

n∗r‖ci−1
r − E[ĉir|Fi−1]‖2 =

∑
r

n∗r‖ci−1
r −m(Air)‖2

≤ n
∑
r

φ(ci−1
r )− φ(m(Air))

= n[φi−1 − φ(m(Ai))] ≤ n(φi−1 − φ∗)

Now we first bound (11):∑
r

n∗r〈ci−1
r − c∗r , ĉir − E[ĉir|Fi−1]〉

=
∑
r

n∗r〈ci−1
r − c∗r , ĉir − ci−1

r 〉

+
∑
r

n∗r〈ci−1
r − c∗r , ci−1

r − E[ĉir|Fi−1]〉

≤
√

∆i−1
√
nφi−1 +

√
∆i−1

√
n(φi−1 − φ∗)

≤
√
boφ∗

√
n(bo + 1)φ∗ +

√
nboφ

∗ ≤ 2(bo + 1)
√
nφ∗

To bound (12), ∑
r

n∗r‖ĉir − c∗r‖2

≤ 2
∑
r

n∗r‖ĉir − ci−1
r ‖2 + 2

∑
r

n∗r‖ci−1
r − c∗r‖2

≤ 2nφi−1 + 2∆i−1 ≤ 2n(bo + 1)φ∗ + 2boφ
∗ ≤ 4n(bo + 1)φ∗

Claim 2. In the context of Algorithm 1, if ∀ctr ∈ Ct, ctr ∈
conv(X), then ∀ct+1

r ∈ Ct+1, ct+1
r ∈ conv(X).

Proof of Claim. By the update rule in Algorithm 1, ct+1
r

is a convex combination of ctr and ĉt+1
r , where ĉt+1

r is the
mean of a subset of X, and hence ĉt+1

r ∈ conv(X). Since
both ctr and ĉt+1

r are in conv(X), ct+1
r ∈ conv(X).

Lemma 25 (technical lemma). For any fixed b ∈ (1, 2].
If C ≥ b−1

3
, δ ≤ 1

e
, and t ≥ ( 3C

b−1
ln 1

δ
)

2
b−1 , then tb−1 −

2C ln t− C ln 1
δ
> 0.

Proof. Let f(t) := tb−1−2C ln t−C ln 1
δ
. Taking derivative,

we get f ′(t) = (b − 1)tb−2 − 2C
t
≥ 0 when t ≥ ( 2C

b−1
)

1
b−1 .

Since ln 1
δ

3C
b−1
≥ 3C

b−1
≥ 1, (ln 1

δ
3C
b−1

)
2
b−1 ≥ ( 2C

b−1
)

1
b−1 , it suf-

fices to show f((ln 1
δ

3C
b−1

)
2
b−1 ) > 0 for our statement to hold.

f((ln 1
δ

3C
b−1

)
2
b−1 ) = (ln 1

δ
3C
b−1

)2 − 2C ln{(ln 1
δ

3C
b−1

)
2
b−1 } −

C ln 1
δ

= (ln 1
δ
)2 9C2

(b−1)2
− 4C

b−1
ln(ln 1

δ
3C
b−1

) − C ln 1
δ

=

4C
b−1

[
3
2
C

b−1
ln 1

δ
− ln( 3C

b−1
ln 1

δ
)] +C ln 1

δ
[ 3C
(b−1)2

− 1] > 0, where
the first term is greater than zero because x− ln(2x) > 0
for x > 0, and the second term is greater than zero by our
assumption on C.
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Lemma 26 (Lemma D1 of [4]). Consider a nonnegative
sequence (ut : t ≥ to), such that for some constants a, b > 0
and for all t > to ≥ 0, ut ≤ (1 − a

t
)ut−1 + b

t2
. Then, if

a > 1,

ut ≤ (
to + 1

t+ 1
)auto +

b

a− 1
(1 +

1

to + 1
)a+1 1

t+ 1

12 Appendix F: additional
experiments

Our second set of experiments serves to corroborate our
observations from the initial experiments, and to further
explore the convergence behavior subject to different factors.
To this end, we include two more benchmark datasets, mnist
and covtype, a simulated dataset gauss, and add stochastic
k-means with a constant learning rate. Instead of a running
the algorithm for only 100 iterations, we adopt a setup that
is more akin to what is commonly used in practice — we
divide the convergence into 20 epochs, where the epoch
lengths are chosen to be one of 60, 600, and 6000 iterations.

The “burn-in” effect explained by a constant to
From our previous experiments, we observe that the initial
phase of convergence is sometimes slower than Θ( 1

t
) (e.g.,

in Figure 2a). This phenomenon also shows up, and in
fact more frequently, when we turn to other datasets. Here
is our explanation: the b

t
(let b be some constant) model

of convergence is not exactly what was derived from our
theorems: the exact form of convergence rate in Theorem
1 and 2, which we hide behind the Big-O notation, is in
fact b

t+to
, where to is part of the learning rate parameter.

After taking into account to, our theoretical convergence
rate well-matches our empirical observations. For example,
in Figure 4, when to is set to be 60 or higher, the actual
convergence can be simulated by (a proxy to) our theoretical
bound5, φ

o−φmin
t+to

. Note the practical requirement on to is
much more optimistic than the lower bound in Theorem 1,
i.e.,

to ≥ 768(c′)2(1 +
1

rmin
)2n2 ln2 1

δ

Again, we observe that the convergence rate of stochastic
k-means is not sensitive to the choice of to, despite the fact
that the latter plays a role in explaining the convergence
rate.

Runtime vs final k-means cost Here, we compare
the k-means cost achieved by stochastic k-means with dif-
ferent learning rates and epoch lengths to that achieved by
batch k-means after 20 iterations. Each entry in the table
is computed as φT

φbatch
. φT is the k-means cost of stochastic

k-means after T iterations, with T = 20 × E, where E is
a particular epoch length. φbatch is the final k-means cost
of batch k-means. As shown in Table 1, the final k-means
cost of stochastic k-means, using epoch length of 600, is
already comparable to its batch counterpart. On the other
hand, the data sizes of mnist, covtype, gauss, rcv1 are
60k, 500k, 600k, and 800k, respectively. So even using the
largest epoch length, 6k, stochastic k-means would save at
least one-tenth of the computation in comparison to batch
k-means. From the convergence plots (Figure 4 and 5), we

5The difference between their intercepts at the y-axis is
caused by a constant factor.

see that the convergence behavior of stochastic k-means
is not sensitive to the choice of learning rate. Here, we
observe that learning rate does not affect the final k-means
cost too much either; even a constant learning rate works!

Significance of different factors to convergence
Finally, we summarize the impact of different factors on
the convergence behavior of stochastic k-means based on
our experiments:

• Mini-batch size m: the larger m is, the convergence
becomes more stable and faster.

• Number of clusters k: the smaller k is, the convergence
becomes more stable and faster.

• Dataset: although b
t+to

is observed for all datasets,
stochastic k-means seems to favor certain datasets to
others. For example, on rcv1, almost b

t
(and sub-linear

when m is larger) convergence rate is observed.

• Learning rate: the algorithm is not sensitive to the
choice of learning rate.
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Table 1: Final k-means cost relative to batch k-means: flat stands for our analyzed learning rate in (6), and
const for a fixed learning rate, which we set to be 1√

E
. For the flat learning rate, we arbitrarily choose c′ = 4,

and to to be one of {10, 60, 600, 6000}, which ever gives the lowest k-means cost.

covtype
k E=60,flat,BBS,const E=600,flat,BBS,const E=6k,flat,BBS,const
10 0.93,0.92,0.93 0.99,0.93,0.99 1.03,1.01,1.03
50 1.13,1.12,1.13 1.02,1.03,1.02 1.01,1.01,1.01
100 1.15,1.10,1.15 1.05,1.07,1.05 1.02,1.01,1.02

mnist
10 1.07,1.07,1.07 1.02,1.02,1.02 1.03,1.02,1.03
50 1.15,1.15,1.15 1.06,1.07,1.06 1.02,1.02,1.02
100 1.18,1.18,1.18 1.07,1.06,1.07 1.02,1.02,1.02

rcv1
k E=60,flat,BBS,const E=600,flat,BBS,const
10 1.03,1.03,1.03 1.02,1.02,1.02
50 1.06,1.06,1.06 1.06,1.06,1.06
100 1.09,1.09,1.09 1.07,1.07,1.07

gauss
k E=60,flat,BBS,const E=600,flat,BBS,const

1.05,1.07,1.05 1.03,1.03,1.03
1.16,1.14,1.16 1.07,1.05,1.07
1.11,1.11,1.11 1.02,1.02,1.02
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Figure 4: Experiments on covtype
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Figure 5: Experiments on mnist


