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Abstract

We analyze online (Bottou & Bengio, 1994)
and mini-batch (Sculley, 2010) k-means vari-
ants. Both scale up the widely used Lloyd’s
algorithm via stochastic approximation, and
have become popular for large-scale clustering
and unsupervised feature learning. We show,
for the first time, that they have global conver-
gence towards “local optima” at rate O( 1

t ) un-
der general conditions. In addition, we show
that if the dataset is clusterable, stochastic
k-means with suitable initialization converges
to an optimal k-means solution at rate O( 1

t )
with high probability. The k-means objective
is non-convex and non-differentiable; we ex-
ploit ideas from non-convex gradient-based
optimization by providing a novel characteri-
zation of the trajectory of the k-means algo-
rithm on its solution space, and circumvent
its non-differentiability via geometric insights
about the k-means update.

1 Introduction

Stochastic k-means, including online [6] and mini-batch
k-means [18], has gained increasing attention for large-
scale clustering and is included in widely used ma-
chine learning packages, such as Sofia-ML [18] and
scikit-learn [16]. Figure 1 demonstrates the effi-
ciency of stochastic k-means against batch k-means
on the RCV1 dataset [13]. The advantage is clear, and
the results raise some natural questions: Can we char-
acterize the convergence rate of stochastic k-means?
Why do the algorithms appear to converge to differ-
ent “local optima”? Why and how does mini-batch
size affect the quality of the final solution? Our goal
is to address these questions rigorously. We analyze
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stochastic k-means in a deterministic setup, without
any distributional assumption on data. We denote the
algorithm as “stochastic” due to its random sampling
step.

Our contributions are two-fold. For users of stochastic
k-means, Theorem 1 guarantees that it converges to
a local optimum with any reasonable seeding (it only
requires the seeds be in the convex hull of the dataset)
and a properly chosen learning rate, with O( 1

t ) ex-
pected convergence rate. In contrast to recent batch
k-means analysis [12, 2, 19], it establishes a global con-
vergence result for stochastic k-means, since it applies
to practically any initialization C0; it also applies to
a wide range of datasets, without requiring a strong
clusterability assumption.

Theoretically, we have three major contributions. First,
our analysis provides a novel analysis framework for
k-means algorithms, by connecting the discrete opti-
mization approach to that of gradient-based continu-
ous optimization. With this framework, we identify a
“Lipschitz” condition under which stochastic k-means
converges locally. Second, we show this “Lipschitz” con-
dition relates to geometric assumptions on the dataset.
Consequently, Theorem 2 extends the batch k-means re-
sults on well-clusterable instances [12, 2, 19] to stochas-
tic k-means, and shows the two are equally powerful
at finding an optimal k-means solution under strong
clusterability assumptions. Finally, a martingale con-
centration result, which we modified from [4], can be
applied to future analyses of non-convex stochastic
optimization problems.

1.1 Background and problem setup

Given a finite dataset of size n in Rd, denoted by
X := {x, x ∈ Rd}, the k-means clustering problem is
cast as an optimization problem that seeks the optimal
C and A such that (1) is minimized.

φX(C,A) :=
∑
r∈[k]

∑
x∈Ar

‖x− cr‖2 (1)

where C = {cr ∈ Rd, r ∈ [k]} denotes the set of k
cluster centroids, and A := {Ar, r ∈ [k]} denotes the
k-partition of X such that points in Ar are assigned to
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the same centroid cr. Notably, the k-means objective
in (1) is non-convex and not everywhere-differentiable,
and the k-means problem is in general NP-hard [15].
However, if C (or A) is fixed, we can easily find a
clustering A (resp. C) that minimizes (1).

Induced k-means costs Fixing the set of k cen-
troids C, the induced minimal k-means cost is achieved
by choosing the clustering that assigns each point
x to it closest center, which we denote by C(x) :=
mincr∈C ‖x− cr‖. That is,

φX(C) := min
A
φX(C,A) =

∑
r∈[k]

∑
C(x)=cr

‖x− cr‖2 (2)

In other words, the clustering A is induced by the
Voronoi diagram of C: let V (C) := {V (cr), r ∈ [k]},
where V (cr) := {x ∈ Rd, ‖x − cr‖ ≤ ‖x − cs‖,∀s 6=
r}; clustering A induced by V (C) is such that ∀Ar ∈
A,Ar = V (cr)∩X. Subsequently, we will use V (C)∩X
to denote this induced clustering.

Likewise, fixing a k-clustering A of X, the induced
minimal k-means cost is achieved by setting the new
centers as the mean of each cluster, denoted by m(Ar)

φX(A) := min
C

φX(C,A) =
∑
r∈[k]

∑
x∈Ar

‖x−m(Ar)‖2 (3)

Batch k-means This observation leads to a popular
heuristic, Lloyd’s k-means algorithm [14], which we
refer to as “batch k-means”. From the discussion above,
we see that batch k-means monotonically decreases
the k-means objective by alternating minimization: at
t = 0, it initializes the position of k centroids, C0, via
a seeding algorithm; ∀t ≥ 1, it alternates between two
steps,

Step 1 Fix Ct−1, find At such that

At = arg min
A
φX(Ct−1, A) = V (Ct−1) ∩X

Step 2 Fix At, find Ct such that

Ct = arg min
C

φX(C,At) = m(At)

where we letm(A) denote the set of means, {m(Ar), r ∈
[k]}. Batch k-means has enjoyed tremendous practical
success in different applications over five decades [10].
However, Step 1 requires computation of the closest
centroid to every point in the dataset. Even with fast
implementations such as [8], the per-iteration running
time is still O(|X|), making it a computational bottle-
neck for large datasets.

Stochastic k-means To scale up batch k-means, the
method of “stochastic approximation” was first pro-
posed by Bottou and Bengio [6] in the 90’s, and they

referred to the resulting algorithm as online k-means;
Sculley [18] later extended the idea to mini-batch k-
means. The stochastic k-means we present as Algo-
rithm 1 subsumes both online and mini-batch k-means1.
The main idea is that, at each iteration, the centroids
are updated using one (online [6]) or a few (mini-batch
[18]) randomly sampled points, denoted by St, instead
of the entire dataset X. This sampling-based update
strategy also implies that stochastic k-means never di-
rectly clusters the dataset but keeps updating a set of k
centroids using constant sized random samples, so the
per-iteration time complexity is reduced from O(|X|)
in the batch case to O(1). After finding k centroids
with stochastic k-means, we can explicitly cluster a
massive dataset in an online fashion, or the centroids
can be used to compactly represent the original dataset,
such as in vector quantization or dictionary learning.

1.2 Notation

Superscripts index a particular clustering, e.g., At de-
notes the clustering at the t-th iteration; subscripts
index individual members in a clustering (or set of
centroids): cr denotes the r-th centroid in C associated
with the r-th cluster Ar. Corresponding to the two
steps in an iteration of batch k-means, it alternates be-
tween two solution spaces: the continuous space of sets
of k centroids, which we denote by {C}, and the finite
set of all k-clusterings, which we denote by {A}. We
use letter n to denote cardinality, n = |X|, nr = |Ar|,
etc. conv(X) denotes the convex hull of set X. As in
(1), we let φ(C,A) denote the k-means cost (objective)
of (C,A), dropping subscript X when it is clear from
the context, and likewise for φ(C) and φ(A). As a
shorthand, we often move the superscript (subscript)
on the input of φ(·) to φ, e.g., we use φt to denote
φ(Ct), and φtr to denote the cost of the r-th cluster at
t. We denote the largest k-means cost on X as φmax

and the smallest k-means cost as φopt. Finally, we let
π(·) denote permutation.

2 Overview and related work

In batch k-means, all centroids are updated after one
iteration. However, in stochastic k-means centroids are
often updated asynchronously, e.g., in the extreme case
of online k-means, centroids are updated one at a time.
This means stochastic k-means updates have a different
path on {C} than their batch counterpart, even if we
ignore the effect of stochastic noise and learning rate.
Batch k-means monotonically decreases the k-means
objective, which implies that it eventually converges to
a local optimum. Since the path of stochastic k-means

1In Claim 1 of the Appendix, we formally show Algo-
rithm 1 subsumes both online and mini-batch k-means.
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Figure 1: Figure from [18], demonstrating the relative
performance of online, mini-batch, and batch k-means.

is very different from that of batch k-means, it is not
straightforward to argue that stochastic k-means also
monotonically decreases the k-means objective, even in
expectation. A related problem is how to justify that
stochastic k-means eventually converges to any local
optimum. In Section 3.1, we develop a framework that
serves as a tool for us to formally set up the analysis
of stochastic k-means.

Two-phased convergence analysis Within the
formal framework, we divide the convergence analysis
of Algorithm 1 into global and local phases, indicated
by the distance from the current solution to the set of
“local optima”. Roughly, we define the global phase of
stochastic k-means as the epoch where the algorithm
is not close to any local optima, and our analysis re-
veals that in this case, the expected k-means cost after
every iteration is lower bounded. Since the k-means
objective is finite, this phase must end at some itera-
tion, and the algorithm will become close to some local
optimum. When this happens, we claim the algorithm
to be in the local phase. We give a sufficient condition
(Definition 4) under which stochastic k-means locally
converges. To establish local convergence, our strategy
is to construct a martingale-like process and show that
with high probability, this process converges to the
local optimum with a suitably damped stochastic noise
(Section 3.3).

Batch k-means analysis Batch k-means is difficult
to analyze [7]. It is well known that it only finds a
“local minimum” of the non-convex k-means objective,
and as such, has no global clustering guarantee with
respect to the k-means problem. In terms of speed, it
has been shown to have exponentially slow convergence
rate in the worst-case [20]. A recent breakthrough [12],
however, showed that batch k-means with a suitable
seeding correctly clusters most data points on well-

Algorithm 1 Stochastic k-means
Input: dataset X, number of clusters k, seeding al-
gorithm T , mini-batch size m, learning rate function
ηtr, r ∈ [k], convergence_criterion
Seeding: Apply seeding algorithm T on X and
obtain seeds C0 = {c01, . . . , c0k};
repeat
At iteration t (t ≥ 1), obtain sample St ⊂ X of
size m uniformly at random with replacement; set
count n̂tr ← 0 and set Str ← ∅, ∀r ∈ [k]
for s ∈ St do
Find I(s) s.t. cI(s) = C(s)
StI(s) ← StI(s) ∪ s; n̂

t
I(s) ← n̂tI(s) + 1

end for
for ct−1

r ∈ Ct−1 do
if n̂tr 6= 0 then

ctr ← (1− ηtr)ct−1
r + ηtr ĉ

t
r with ĉtr :=

∑
s∈Str

s

n̂tr
end if

end for
until convergence_criterion is satisfied

clusterable instances, and that the algorithm converges
to an approximately optimal solution at geometric rate
until reaching a plateau. Subsequent progress were
made on relaxing the assumptions [2] and simplifying
the seeding [19]. These works, however, only establish
local convergence in the sense that they require that
the initial centroids already be close to the optimal solu-
tion. In contrast, Theorem 1 gives a global convergence
guarantee.
Non-convex stochastic optimization Our idea of
dividing the study of convergence into global and lo-
cal convergence is conceptually inspired by [9], which
studies the convergence of stochastic gradient descent
(SGD) for tensor decomposition problems. However, a
crucial difference between their work and ours is that
the function they study is globally Lipschitz, so they
can use the norm of the gradient to measure proxim-
ity to a local optimum. Since the k-means objective
is not differentiable, we have no access to a gradient.
Instead, we devise a “proxy of the gradient” to gauge
which phase the algorithm is in. At the local conver-
gence phase, since multiple local optima are present,
stochastic noise may drive the algorithm’s iterate off
the neighborhood of attraction, and the algorithm may
fail to converge locally. To deal with this, we adapted
techniques that bound martingale large deviation from
[4]. The latter studies the convergence of stochastic
PCA algorithms, where the objective function is the
non-convex Rayleigh quotient, which has a plateau-
like component; they used a careful construction to
show that stochastic PCA will likely stay away from
the plateau. Here, we modified the technique to show
Algorithm 1 stays within the local neighborhood.
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3 Framework and ingredients of our
analysis

This section introduces the framework we use to study
k-means updates and lays out the ideas for local con-
vergence analysis of stochastic k-means.

3.1 Batch k-means as an alternating mapping

Although {C} is a continuous (infinite) space, we
observe that it can be partitioned into equivalence
classes: For any C, let v(C) denote the clustering in-
duced by its Voronoi diagram, i.e., v is the mapping
v(C) := V (C) ∩X. It can be shown that v is a well-
defined function if and only if C is not a boundary
point (see Definition 5). For now, we ignore bound-
ary points and assume v is well-defined. Then we say
C1, C2 are equivalent if they induce the same clustering,
i.e., C1 ∼ C2 if v(C1) = v(C2). This construction re-
veals that {C} can be partitioned into a finite number
of equivalence classes; each corresponds to a unique
clustering A ∈ {A}. An iteration of batch k-means
can be viewed as applying the composite mapping
m ◦ v : {C} → {C}, where Step 1 goes from {C} to
{A} via mapping v, and Step 2 goes from {A} to {C}
via mean operation m.

We can thus visualize batch k-means as an iterative
mapping m◦v on {C} that jumps from one equivalence
class to another until it stays in the same equivalence
class in two consecutive iterations, i.e., v(Ct+1) = v(Ct)
(see Figure 3 in the Appendix). This stopping condition
also provides a natural way to formally define the local
optima of k-means objective as the fixed points of
mapping m ◦ v and v ◦m.

Definition 1. We define C∗ ∈ {C} such that m ◦
v(C∗) = C∗ as a stationary point of batch k-means.
We let {C∗} denote the set of all stationary points.
Similarly, we call A∗ ∈ {A} a stationary clustering
if v ◦m(A∗) = A∗, and we let {A∗} denote the set of
all stationary clusterings.

To study the convergence behavior of k-means algo-
rithms, we further define a measure of distance on {C}
and {A}, respectively.
Definition 2 (Centroidal distance). For C ′ and
C, we define centroidal distance ∆(C ′, C) :=
minπ:[k]→[k]

∑
r nr‖c′π(r) − cr‖

2, where nr = |Ar|.

Definition 3 (Clustering distance). For v(C ′)
and v(C), we define the clustering distance

ClustDist(v(C ′), v(C)) := maxr
|A′π(r)4Ar|

nr
, where

A′ := v(C ′), A = v(C), 4 denotes set difference, and
π is the permutation attaining ∆(C ′, C).

Both distances are asymmetric, non-negative, and eval-
uates to zero if and only if two sets of centroids (clus-

terings) coincide. If C∗ is a stationary point, then for
any solution C, ∆(C,C∗) upper bounds the difference
of k-means objective, φ(C)− φ(C∗) (Lemma 18).
Remark For clarity of presentation, we have ignored
the fact that k-means may produce degenerate solu-
tions, where one or more clusters may be empty; simi-
larly, the definitions of stationary points and centroidal
distance here ignore the possible existence of bound-
ary points. In our actual analysis, we have used more
general definitions to handle these issues, whose details
are provided in the Appendix.

3.2 Local convergence analysis

Using the developed framework, we propose the follow-
ing stability condition to characterize local convergence.

Definition 4. We call C∗ a (b0, α)-stable station-
ary point if for any C ∈ {C} such that ∆(C,C∗) ≤
b′φ∗, b′ ≤ b0, we have ClustDist(v(C), v(C∗)) ≤

b
5b+4(1+φ(C)/φ∗) , with b ≤ αb

′ for some α ∈ [0, 1).

The stability condition requires that the change in
clustering distance, ClustDist(v(C), v(C∗)), is locally
upper bounded by the change in centroidal distance,
∆(C,C∗), which is essentially a Lipschitz condition
on mapping v. Generalizing combinatorial arguments
about batch k-means update in [12, 19], Lemma 1
shows that the stability condition is indeed a sufficient
condition for local convergence of batch k-means.

Lemma 1. Let C∗ be a (b0, α)-stable stationary point.
For any C such that ∆(C,C∗) ≤ b′φ∗, b′ ≤ b0, apply
one step of batch k-means update on C results in a new
solution C1 such that ∆(C1, C∗) ≤ αb′φ∗.
Unlike assumptions in previous work [12, 2, 19], Lemma
1 does not depend on a specific geometric assumption.
Instead, we will see that clusterability implies local
Lipschitzness of mapping v.

Neighborhood of attraction In Lemma 1, we can
view b0 as the radius of the neighborhood of attraction
and α the strength of the attractor, which determines
the convergence rate. A special case of (b0, α)-stability
is when α = 0, which implies v(C) = v(C∗) if C is
within radius b0 to C∗. In this case, batch k-means
converges in one iteration. Per our construction in Sec-
tion 3.1, b0 in this case is the radius of the equivalence
class that maps to clustering A∗ = v(C∗). In general,
when α > 0, we expect the radius b0 to be much larger.

3.3 Local convergence in the presence of
stochastic noise

With Lemma 1, we are ready to study the local con-
vergence of stochastic k-means. The difficulty of estab-
lishing local convergence here is that, if, by random
noise, the algorithm’s solution is driven off the current



Cheng Tang, Claire Monteleoni

neighborhood of attraction at any iteration, it may be
drawn to a different attractor due to non-convexity.
Fixing a (b0, α)-stable stationary point C∗, suppose
the algorithm is within the neighborhood of attraction
of C∗ at time τ . The event “the algorithm’s iterate is
within radius b0 to C∗ up to t− 1” can be formalized
as:

Ωt := {∆(Ci, C∗) ≤ b0φ∗,∀τ ≤ i < t} (4)

Letting t→∞ leads to the following definition:

Ω∞ := {∆(Ci, C∗) ≤ b0φ∗,∀i ≥ τ} (5)

Suppose we can show that Pr(Ω∞) ≈ 1. Then ∀t ≥ τ ,
conditioning on Ωt, we can combine Lemma 1 with
the standard arguments in stochastic gradient descent
[17, 1, 3] to obtain the O( 1

t ) local convergence rate:

EΩt [∆(Ct, C∗)] = O(
1

t
) (Theorem 3)

Thus, a key step in our local convergence analysis is to
show that Ω∞ takes place with high probability, which
we show in the next section.

3.3.1 Inequality for a martingale-like process

In our analysis, we consider learning rate of the form:

ηtr = ηt =
c′

to + t
, ∀r ∈ [k] (6)

where c′, to are constants. We use ∆t := ∆(Ct, C∗) as a
shorthand and let EΩt [·] denote expectation condition-
ing on Ωt. Let Ω represent the sample space of all out-
comes (Cτ , Cτ+1, · · · ). Then Ωt+1 ⊂ Ωt ⊂ Ω,∀t > τ .
Conditioning on Ωt, we can apply Lemma 1 to get

∆t ≤ ∆t−1(1− β

to + t
) + [

c′

to + t
]2εt1 +

2c′

to + t
εt2 |Ωt

where with probability 1, β ≥ 2, and the stochastic
noise terms εt1, εt2 are of order O(φt−1). Therefore,
(∆t) is a supermartingale-like process with bounded
stochastic noise, conditioning on Ωt. To exploit this
conditional structure, we partition the failure event
Ω \ Ω∞, i.e., the event that the algorithm eventually
escapes this neighborhood, as a disjoint union of events
Ωt \ Ωt+1, and then our task becomes upper bounding
Pr(Ωt \ Ωt+1) for all t. To achieve this, we first derive
an upper bound on the conditional moment generat-
ing function EΩt [expλ∆t] as a function of b0φ∗ and
the noise terms, using ideas in [4]. Then applying
conditional Markov’s inequality, we get

Pr(Ωt \ Ωt+1) = Pr{∆t > b0φ
∗|Ωt} ≤

EΩt [expλ∆t]

expλb0φ∗

Since the inequality holds for all λ > 0, we can choose
λ as a function of ln t, which enables us to bound
Pr(Ωt \ Ωt+1) by δ

(t+1)2 , for all t ≥ 1, δ > 0, with
sufficiently large c′ and to in (6). This implies

P (Ω∞) = 1−
∑
t≥τ

Pr(Ωt \ Ωt+1) ≥ 1− δ

Essentially, this is our variant of martingale large de-
viation bound. Our technique yields a tighter bound
on the failure probability compared to [9], which uses
Azuma’s inequality, and is much simpler than [4]; the
latter constructs a complex nested sample space and
applies Doob’s inequality, whereas ours simply uses
Markov’s inequality. Our technique also allows us to
explore the noise dependence on Ωt, which leads to
a weaker dependence of parameter to on the initial
condition b0φ∗.

We believe this technique can be useful for other non-
convex analysis of stochastic methods. We provide one
example here. Our current analysis considers the flat
learning rate in (6). However, in practice the following
adaptive learning rate is commonly used:

ηtr :=
n̂tr∑
i≤t n̂

i
r

(7)

We conjecture that stochastic k-means with the above
learning rate also has O( 1

t ) convergence, as supported
by our experiments (see Section 5). However, it is
difficult to incorporate (7) into our analysis: n̂ir is a
random quantity whose probability depends on the clus-
tering configuration v(Ci−1), ∀i ≤ t. To establish O( 1

t )
convergence, we need to show Eηtr ≈ Θ( 1

t ). Without
additional information, this is hopeless, as ηtr depends
on information of the entire history of the process. But
conditioning on Ωt, we can show that nir ≈ n∗r , for all
r ∈ [k], i ≥ τ . Using this relation, we may approximate
Eηtr. Since our technique allows this conditional depen-
dence, we may extend our local convergence analysis
to incorporate the case where ηtr is adaptive.

4 Main results
Now we piece together the ingredients developed in
Section 3 to prove our main theorems. Before doing
so, we take a detour to discuss two assumptions, each
individually leads to the stability (locally-Lipschitz)
condition defined in Section 3.2. We start by consid-
ering points in {C} that are unstable, which we call
boundary points.

Definition 5 (Boundary points). C is a boundary
point if ∃A ∈ V (C) ∩ X s.t. for some r ∈ [k], s 6= r
and x ∈ Ar ∪As, ‖x− cr‖ = ‖x− cs‖.

Consider any C ∈ {C}, and let A′ ∈ V (C) ∩X 2: for
a point x ∈ A′r ∪A′s, s 6= r, let x̄ denote the projection

2We used “A ∈ V (C) ∩ X” instead of A = V (C) ∩ X,
since V (C) ∩X may induce more than one clustering if C
is a boundary point (see Lemma 4), so we abuse notation
V (C) ∩X to let it be the set of all possible clusterings of
C.
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of x onto the line joining cr, cs, we define

∆rs(C) := min
x∈A′r∪A′s

|‖x̄− cr‖ − ‖x̄− cs‖|

Definition 6 (δ-margin). For any C, we say V (C)
has a δ-margin with respect to X if ∃A ∈ V (C) ∩ X
such that minr,s 6=r ∆rs(C) = δ.

Obviously, C is a boundary point if and only if it
has margin δ = 0, or equivalently, there is a data
point that sits exactly on the bisector of two centroids
in C. We believe such a symmetric configuration is
unlikely in practice due to, e.g., computational round-
off error. With this insight, our first characterization
of the stability condition is one that is free of boundary
stationary points.
Assumption A [General dataset] X is a general
dataset if ∀C∗ ∈ {C∗}, C∗ has δ-margin with δ > 0.

Note {C∗} is a finite set, since {A∗} is finite and C∗ =
m(A∗) (Lemma 5). Thus, Assumption A is a mild
condition, as it only requires that a finite subset of the
continuous space {C} to be free of boundary points,
hence the name “general”.

We show that for a general dataset, every stationary
point is locally stable (in fact its neighborhood of at-
traction is exactly its equivalence class induced by v).
Moreover, on a general dataset, we can lower bound the
centroidal distance between two consecutive k-means
iteration, provided the algorithm has not converged.
Both results, summarized in Lemma 2, are important
building blocks for our proof of Theorem 1.
Lemma 2. If X is a general dataset, then ∃ rmin > 0
s.t.
1. ∀C∗ ∈ {C∗}, C∗ is a (rmin, 0)-stable stationary

point.
2. Let m(A′) /∈ {C∗} for some A′ ∈ {A} and let A′ ∈

V (C ′) ∩X, then ∆(C ′,m(A′)) ≥ rminφ(m(A′)).
In Lemma 2, rmin is a lower bound on the radius of at-
traction for points in {C∗}. As discussed below Lemma
1, this radius, although positive, can be very small. Our
next stronger assumption leads to a stability condition
with a larger radius.
Assumption B [f(α)-clusterability] We say a
dataset-solution pair (X,C∗) is f(α)-clusterable, if
C∗ ∈ {C∗} and C∗ has δ-margin s.t. ∀r ∈ [k], s 6= r,

δ ≥ f(α)
√
φ∗(

1√
n∗r

+
1√
n∗s

) for α ∈ (0, 1)

with f(α) > max{642, 5α+5
256α ,maxr∈[k],s6=r

n∗r
n∗s
}.

Proposition 1. Suppose (X,C∗) satisfies Assumption
(B). Then, for any C such that ∆(C,C∗) ≤ bφ∗ for
some b ≤ f(α)2

162 , we have maxr∈[k]
|Ar4A∗r |

n∗r
≤ b

f(α)3 .

That is, C∗ is ( f(α)2

162 , α) -stable.

f(α)-clusterability is a simplified version of the prox-
imity assumption in [12]. It essentially requires that
δ = Ω(

√
kσmax) for a stationary point C∗, where σmax

is the maximal standard deviation of an individual
cluster. Proposition 1 shows that f(α)-clusterability
implies stability (local Lipschitzness) of v, and that a
larger margin δ, controlled by f(α), leads to a larger
radius of attraction b0. This observation is a key com-
ponent of the proof of Theorem 2.

4.1 Proof sketch of main theorems

Theorem 1 is a global convergence result. To prove it,
we divide our analysis of Algorithm 1 into global and
local convergence phases. We define global convergence
phase as a time interval of random length τ such that
∀t < τ , ∀C∗ ∈ {C∗}, ∆(Ct, C∗) > 1

2rminφ
∗ (rmin as

defined in Lemma 2). During this phase, we obtain
a lower bound on the expected decrease in k-means
objective (Lemma 14):

E[φt+1 − φt|Ft] ≤ −2ηt+1pt+1
min(φt − φ̃t) + (ηt+1)26φt

where Ft is the natural filtration generated by process
(C0, · · · , Ct); φ̃t :=

∑
r

∑
x∈v(ctr) ‖x−m(v(ctr))‖2;

ptmin := min
r,ptr(m)>0

ptr(m) with

ptr(m) = Pr{ct−1
r is updated at t with sample size m}

Thus, the term pt+1
min(φt − φ̃t) lower bounds the drop in

k-means objective. For pt+1
r (m) > 0, by the discrete

nature of cluster assignment, ntr ≥ 1. So pt+1
min ≥ 1 −

(1− 1
n )m ≥ 1− e−mn .

On the other hand, φt − φ̃t = ∆(Ct,m(v(Ct))) by
Lemma 21. Thus, to lower bound the decrease by
zero, we only need to lower bound ∆(Ct,m(v(Ct))).
The idea is that, if m(v(Ct))) is a non-stationary
point, by part 2 of Lemma 2, ∆(Ct,m(v(Ct))) >
1
2rminφ(m(v(Ct))). Otherwise, m(v(Ct))) is a station-
ary point, and by definition of the global convergence
phase, the same lower bound applies, which implies
ptmin(φt − φ̃t) is lower bounded by a positive constant
in the global convergence phase. Since we choose
ηt := Θ(1

t ), the expected per iteration drop of cost
is of order Ω( 1

t ), which forms a divergent series; after
a sufficient number of iterations the expected drop can
be arbitrarily large. We conclude that ∆(Ct, C∗) can-
not be bounded away from zero asymptotically, since
the k-means cost of any clustering is positive (Lemma
15). Hence, starting from any initial point C0, the
algorithm will always be drawn to a stationary point,
ending its global convergence phase after a finite num-
ber of iterations, i.e., Pr(τ <∞) = 1.

At the beginning of the local convergence phase,
∆(Cτ , C∗) ≤ 1

2rminφ
∗ for some C∗ ∈ {C∗}. Again
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by Lemma 2, the algorithm is within the neighborhood
of attraction of C∗, and thus we can apply the local
convergence result in Theorem 3. Combining both
phases leads us to Theorem 1.

Theorem 1. Suppose X satisfies Assumption (A). Fix
any 0 < δ < 1

e , if we run Algorithm 1 with arbitrary
C0 such that C0 ⊂ conv(X), and any mini-batch size
m ≥ 1, and choose learning rate ηt = c′

t+to
such that

c′ > max{ φmax

(1− e−mn )rminφopt
,

1

(1− e 4m
5n )
}

to ≥ 768(c′)2(1 +
1

rmin
)2n2 ln2 1

δ

Then there exists events G(A∗), parametrized by A∗,
such that

Pr{∪A∗∈{A∗}[k]
G(A∗)} ≥ 1− δ

For any stationary clustering A∗, we have ∀t ≥ 0,

E{φt − φ∗|G(A∗)} = O(
1

t
)

Remark: ∪A∗∈{A∗}G(A∗) is contained in the event
that Algorithm 1 converges to a stationary point. Thus,
Theorem 1 implies that, with any reasonable initial-
ization and sufficiently large c′, to, stochastic k-means
converges globally almost surely; conditioning on global
convergence to a stationary point A∗, the convergence
rate is O( 1

t ) in expectation. Also note φmax is upper
bounded, since C0 ⊂ conv(X) implies Ct ⊂ conv(X),
∀t ≥ 1 (see Claim 2). Finally, note that Theorem 1 es-
tablishes global convergence to a local optimum, but it
does not guarantee that stochastic k-means converges
to the same local optimum as its batch counterpart,
even with the same initialization.

Theorem 2 complements Theorem 1 in the sense that it
establishes local convergence of stochastic k-means to a
global optimum under a clusterability assumption. Its
proof has three parts: First, we show f(α)-clusterability
implies (b0, α)-stability, as stated in Proposition 1. Sec-
ond, we show C0 found by Algorithm 2 is within the
neighborhood of attraction of the optimal solution with
high probability, by adapting Theorem of [19] with the
additional assumption that

f(α) ≥ 5

√
1

2wmin
ln(

2

ξp∗min

ln
2k

ξ
) (8)

where wmin and p∗min are geometric properties of clus-
tering v(C∗) (see definitions in Appendix). Finally,
combining these with Theorem 3 completes the proof.

Theorem 2. Suppose (X,C∗) satisfies Assumption
(B) and f(α) in addition satisfies (8) for any 0 < α < 1,

Algorithm 2 Buckshot seeding [19]

Input: X, k, sample size mo

{νi, i ∈ [mo]} ← sample mo points from X uniformly
at random with replacement
{S1, . . . , Sk} ←run Single-Linkage on {νi, i ∈ [mo]}
until there are only k connected components left
C0 = {ν∗r , r ∈ [k]} ← take the mean of the points in
each connected component Sr, r ∈ [k]

ξ > 0. Fix β ≥ 2, and 0 < δ < 1
e . If we initialize

Co in Algorithm 1 by Algorithm 2, with mo satisfying
log 2k

ξ

p∗min
< mo <

ξ
2 exp{2( f(α)

4 − 1)2w2
min}, and running

Algorithm 1 with learning rate of the form ηt = c′

t+to
and mini-batch size m so that

m >
ln(1−

√
α)

ln(1− 4
5p
∗
min)

c′ >
β

2[1−
√
α− e− 4

5mp
∗
min ]

and to ≥ 867(c′)2n2 ln2 1

δ

Then ∀t ≥ 1, there exists event Gt ⊂ Ω s.t.

Pr{Gt} ≥ (1− δ)(1− ξ) and

E[φt|Gt]− φ∗ ≤ E[∆(Ct, C∗)|Gt] = O(
1

t
)

Remark: Theorem 2 in fact applies to any stationary
point satisfying f(α)-clusterability, which includes the
optimal k-means solution. Interestingly, we cannot
provide guarantee for online k-means (m = 1) here.
Our intuition is, instead of allowing stochastic k-means
to converge to any stationary point as in Theorem 1,
it studies convergence to a target stationary point; a
larger m provides more stability to the algorithm and
prevents it from straying away from the target.

5 Experiments

We use Python and its scikit-learn package [16] for
our experiments, which has stochastic k-means imple-
mented. We disabled centroid relocation and modified
their source code to allow a user-defined learning rate
(their learning rate is fixed as ηtr :=

n̂tr∑
i≤t n̂

i
r
, as in

[6, 18], which we refer to as BBS-rate subsequently).
To verify the O( 1

t ) global convergence rate obtained
in Theorem 1, we run Algorithm 1 with varying learn-
ing rates, mini-batch sizes, and k’s on RCV1 [13]. The
dataset, which is also used in [18] for empirical eval-
uation of mini-batch k-means, has 804414 newswire
stories with 103 topics, and each story is represented as
a 47236-dimensional vector. We experiment with both
the flat learning rate in (6) and the adaptive learning
rate in (7). Figure 2 shows the convergence, in k-means
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Figure 2: Convergence graphs of stochastic k-means

cost, of stochastic k-means over 100 iterations with dif-
ferent choices of m and k; fixing each pair (m, k), we
initialize Algorithm 1 with the same set of k randomly
chosen data points and run stochastic k-means updates
with varying learning rate parameters, (c′, to), and we
average the performance with each learning rate over 5
runs to obtain the original convergence plot. Figure 2b
shows a convergence plot before transformation. The
dashed black line in each log-log figure is φ

0−φmin

t (φmin

is the lowest empirical k-means cost), a function of or-
der Θ( 1

t ). To compare the performance of stochastic
k-means with this baseline, we first transform the orig-
inal φt vs t plot to that of φt − φmin vs t. By Theorem
1, E[φt − φ∗|G(A∗)] = O( 1

t ), so we expect the slope of
the log-log plot of φt − φ∗ vs t to be at least as large
as that of Θ( 1

t ). Although we do not know the exact
cost of the stationary point, we use φmin as a rough
estimate of φ∗.

We observe that most log-log convergence graphs fluc-
tuate around a line with a slope that is at least as steep
as that of Θ( 1

t ), which verifies the linear convergence
rate in Theorem 1. Interestingly, the convergence does
not seem to be sensitive to the learning rate in our ex-
periment: the adaptive BBS-rate behave similarly to
our flat learning rate with different parameters (c′, to).
On the other hand, the convergence rate of stochastic k-
means seems sensitive to the ratio m

k ; when the ratio is
higher, faster and more stable convergence is observed.
One caveat is that sometimes the linear convergence
rate only takes effect after an initial “burn-in” period,

e.g., in Figure 2a. This phenomenon also shows up, and
in fact more evidently, when we turn to other datasets
(see additional experiments in Appendix). Here is our
explanation: the b

t (let b be some constant) model
of convergence is not exactly what was derived from
our theorems: the exact form of convergence rate in
Theorem 1 and 2, which we hide behind the Big-O
notation, is in fact b

t+to
, where to is part of the learn-

ing rate parameter. After taking into account to, our
theoretical convergence rate well-matches our empirical
observations.

6 Discussion and open problems

This work provides the first analysis of the conver-
gence rate of stochastic k-means, but several questions
remain open. First, our analysis applies to the flat
learning rate in (6) while adaptive learning rate in (7)
is more common in practice. From our experiments, we
conjecture that O( 1

t ) convergence can also be attained
in the latter case. Second, we provide two examples
of assumptions that imply Lipschitzness of v. Can
we find other assumptions? We also believe further
study of batch k-means can be made using our frame-
work. For example, we observed that the radius of local
convergence to a stationary point is determined by clus-
terability. Can we use this to relate the number of local
optima to clusterability? In addition, if a stationary
point has a large radius of attraction, then intuitively,
two different random initializations will likely fall into
this same neighborhood. Does this provide another
angle to the clustering stability analysis of [21, 5]?
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