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1 Proof of Theorem 1

Throughout the proof, we assume that the marginal c.d.f. F;, 7 = 1,...,d,
are known. In other words, we analyze a surrogate of the spherical MV-set
algorithm, where V may be taken as V itself. Recall the definition of the finite
distance angular measure ®;(A) = tP(V € tC4), A C Sy—1, where C4 = {tx,z €
A,t > 1} is the truncated cone generated by A. Notice ®(A) = lim;_, o, P1(A)
and the underlying regular variation assumption may be recast as P(r(V) >
t,0(V) € A) ~ t71®(A) ~ t1®,(A) when t is large. Observe the following

error decomposition

sup |EI\)n,k - (I)‘(B) < sup |(/ﬁn,k(B) - (I)n/k|(B) + sup |(Dn/k - (I)‘(B) . (1)
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In this paper we do not attempt to control the bias term. This may be done
under additional assumptions usually referred to as ‘second order assumptions’
(see e.g. [1], Chapter 3). Our analysis focuses on the first term in the right-hand
side of (1). The following result is crucial for our purposes.

Lemma 1 (a normalized VC-inequality for low probability, finite classes). Let
A be a class of sets of finite cardinality |A| within a sample space E and let
Yq,..., Y, be an i.i.d. sample of random E-valued variables distributed as Y.
Define the probability of hitting a member of the class, p = P(Y € UacaA).
Consider the relative Rademacher average

1 n
Rnp=Esup — oily,ca
AeAnp |
Then R, p satisfies
2log(]A
Rn7p S Og(| I) , (2)
np



and for any § > e~ ™, with probability 1 — 0,
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Proof. The bound (2) in the statement is a variation on the result established
in [5], Lemma 14, which states that, for a VC class of dimension V4, R, , <
C\/V4/(np), where C is a universal constant. To obtain the stated inequality
and remove the unknown constant, we replace the upper bound on the standard
Rademacher average R < C'y/V4/K used in their proof by the usual bound
(see e.g. [2]) combined with the fact that, for finite classes, the shattering coef-
ficient satisfies S4 < | A| (see [4], Theorem 13.6), i.e.

Ri <

\/2log Sa(K) _ [2log|A

K - K
where K is the number of Y; which hit the class A. The rest of the proof of the
above mentioned lemma is unchanged, which yields (2). The high probability

bound (3) is then obtained as a direct consequence of Theorem 10 in the cited
reference. [

Proposition 1. Under the assumptions of Theorem 1, and with the notations
of Lemma 1, with probability at least 1 — 0,

sup [,1(B) - Box(B)| < \/z [2/210g(2)dJ -1 +3\/log(1/3)| . (4)

Proof. Consider the class of sets A = {7Cp, B € G} in the sample space E =
Ri, and take Y,Y; = V,V,;,1 <i <nin Lemma 1. Then the probability of
the class union is p < dk/n, and inequality (3) implies
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which is the desired inequality, considering that |A| = |G| = 247 o O

Following the proof of theorem 3 in [6], we obtain the desired result.



2 Model selection

Let ﬁi denote the solution of the problem (9) over G = G;. One should pick
the value

7= argmin {)\d(ﬁi)+wk(5,,])}, (5)
Imin <J <Jmax

minimizing thus a complexity-penalized version of the volume, in order to esti-
mate the MV-set over G = Uj”;‘ix G as accurately as possible without overfitting

the data. An oracle inequality showing that the chosen set ﬁi corresponds to
an optimal trade-off between excess volume and missing mass can be straight-
forwardly derived from the analysis carried out in subsection 3.2, just like in
Theorem 11 in [6].

We first introduce the risk of a set 2 defined as

R(Q) = (Aa(9) = Xa(22)) 4 + (o = /()

where, for any u € R?, we denote by u, = max(u,0) its positive part. From
Theorem 1, we have with probability at least 1 — 4,

R(Qa) < ((Jnf Aa() = Aa(€20)) + 201(9)

The first term can be viewed as the approximation error and the second term as a
bound on the stochastic error. The goal of model selection through complexity
penalization is to find the model G; achieving the optimal trade-off between
these two errors. R

As in [6], we thus consider the solution €, of the following optimization
problem that can be viewed as the structural risk minimization version of (7)

o~

Q. € argmin {/\d(ﬂ) 2R (2778,0), B () > a — (2775, J)} (6)
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where for each J € {1,..., Jma} and each 6 € (0, 1), ¢ (4, J) denotes a penalty
for the model G;.
Following the steps of the proof of Theorem 11 in [6] we have the following
oracle inequality.

Theorem 1. Assume that assumptions A1 — Ao are fulfilled by the angular
probability measure ®,,/,. Let § € (0,1) and Gjo = Gy N Go. With probability
at least 1 — §, we have
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3 On the bias of the MV-set estimation proce-
dure

As the class G; contains sets that consists in union of hypercubes, the box-
counting class of angular distributions (see [6]), which contains all angular dis-
tributions such that the boundary 02 has Lipschitz regularity, seems appro-
priate to control the bias introduced by the MV-set estimation procedure. Let
c1 > 0 and N;(0€) denote the number of hypercubes that intersect 92}. The
box counting class Dy, is the set of all distributions such that



Aj N]((?QZ) < Cle72.

As explained in [7], assumption Az is more convenient than only assuming that
0Q has Lipschitz boundary. It allows boundaries with arbitrary orientation
and multiple connected components whereas the Lipschitz boundary assumption
restricts the boundary to have a functional form. For further discussion on the
connection between assumption Ag and Lipschitz regularity of the boundary
0Q}, see Lemma 3 in [7].

Remark 1. Other approaches are possible to control the bias of the MV -set esti-
mation procedure. For instance, one can assume that 0}, has a finite perimeter

/3],

Let J € {1,..., Jmaz}, 6 € (0,1) and Q denote a solution of mingeg, ., Aa(€).
If the angular distribution ®@,,/;, € Dpos then,
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where the second inequality comes from the fact that the two sets can only
differs on the hypercubes that intersect 0€2},.

4 Setting the tolerance parameter to 0 for the
numerical experiments

The tolerance parameter 1 (d) is set to 0 in the numerical experiments of the
paper. As remarked by one of the reviewers this loses the connection between
Theorem 1 and the experiments. However by corollary 12 in [6], one can solve
the empirical minimum volume set optimization problem without the tolerance
parameter in the mass constraint and obtain a theoretical result similar to the
one of Theorem 1.
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