Supplementary material - Anomaly Detection in Extreme Regions via Empirical MV-sets on the Sphere

Albert Thomas, Stephan Clémençon, Alexandre Gramfort, Anne Sabourin

1 Proof of Theorem 1

Throughout the proof, we assume that the marginal c.d.f. F_j , $j=1,\ldots,d$, are known. In other words, we analyze a surrogate of the spherical MV-set algorithm, where $\hat{\mathbf{V}}$ may be taken as \mathbf{V} itself. Recall the definition of the finite distance angular measure $\Phi_t(A) = t\mathbb{P}(\mathbf{V} \in t\mathcal{C}_A), A \subset \mathbb{S}_{d-1}$, where $\mathcal{C}_A = \{tx, x \in A, t \geq 1\}$ is the truncated cone generated by A. Notice $\Phi(A) = \lim_{t\to\infty} \Phi_t(A)$ and the underlying regular variation assumption may be recast as $\mathbb{P}(r(\mathbf{V}) \geq t, \theta(\mathbf{V}) \in A) \approx t^{-1}\Phi(A) \approx t^{-1}\Phi_t(A)$ when t is large. Observe the following error decomposition

$$\sup_{B \in \mathcal{G}} \left| \widehat{\Phi}_{n,k} - \Phi \right| (B) \le \sup_{B \in \mathcal{G}} \left| \widehat{\Phi}_{n,k}(B) - \Phi_{n/k} \right| (B) + \underbrace{\sup_{B \in \mathcal{G}} \left| \Phi_{n/k} - \Phi \right| (B)}_{\text{bias}(n/k, F, \Phi)} . \tag{1}$$

In this paper we do not attempt to control the bias term. This may be done under additional assumptions usually referred to as 'second order assumptions' (see e.g. [1], Chapter 3). Our analysis focuses on the first term in the right-hand side of (1). The following result is crucial for our purposes.

Lemma 1 (a normalized VC-inequality for low probability, finite classes). Let A be a class of sets of finite cardinality |A| within a sample space E and let $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ be an i.i.d. sample of random E-valued variables distributed as \mathbf{Y} . Define the probability of hitting a member of the class, $p = \mathbb{P}(\mathbf{Y} \in \bigcup_{A \in \mathcal{A}} A)$. Consider the relative Rademacher average

$$\mathcal{R}_{n,p} = \mathbb{E} \sup_{A \in \mathcal{A}} \frac{1}{np} \left| \sum_{i=1}^{n} \sigma_{i} \mathbb{1}_{\mathbf{Y}_{i} \in A} \right| .$$

Then $\mathcal{R}_{n,p}$ satisfies

$$\mathcal{R}_{n,p} \le \sqrt{\frac{2\log(|\mathcal{A}|)}{np}},\tag{2}$$

and for any $\delta \geq e^{-np}$, with probability $1 - \delta$,

$$\frac{1}{p} \sup_{A \in \mathcal{A}} \left| \mathbb{P}(\mathbf{Y} \in A) - \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\mathbf{Y}_{i} \in A} \right| \leq 2\mathcal{R}_{n,p} + 3\sqrt{\frac{1}{np} \log \frac{1}{\delta}} \\
\leq \frac{1}{\sqrt{np}} \left[2\sqrt{2\log |\mathcal{A}|} + 3\sqrt{\log(1/\delta)} \right]. \tag{3}$$

Proof. The bound (2) in the statement is a variation on the result established in [5], Lemma 14, which states that, for a VC class of dimension $V_{\mathcal{A}}$, $\mathcal{R}_{n,p} \leq C\sqrt{V_{\mathcal{A}}/(np)}$, where C is a universal constant. To obtain the stated inequality and remove the unknown constant, we replace the upper bound on the standard Rademacher average $\mathcal{R}_K \leq C\sqrt{V_{\mathcal{A}}/K}$ used in their proof by the usual bound (see e.g. [2]) combined with the fact that, for finite classes, the shattering coefficient satisfies $S_{\mathcal{A}} \leq |\mathcal{A}|$ (see [4], Theorem 13.6), i.e.

$$\mathcal{R}_K \leq \sqrt{\frac{2\log S_{\mathcal{A}}(K)}{K}} \leq \sqrt{\frac{2\log |\mathcal{A}|}{K}}\,,$$

where K is the number of \mathbf{Y}_i which hit the class \mathcal{A} . The rest of the proof of the above mentioned lemma is unchanged, which yields (2). The high probability bound (3) is then obtained as a direct consequence of Theorem 10 in the cited reference.

Proposition 1. Under the assumptions of Theorem 1, and with the notations of Lemma 1, with probability at least $1 - \delta$,

$$\sup_{B \in \mathcal{G}} \left| \Phi_{n/k}(B) - \widehat{\Phi}_{n,k}(B) \right| \le \sqrt{\frac{d}{k}} \left[2\sqrt{2\log(2)dJ^{d-1}} + 3\sqrt{\log(1/\delta)} \right]. \tag{4}$$

Proof. Consider the class of sets $\mathcal{A} = \{\frac{n}{k}\mathcal{C}_B, B \in \mathcal{G}\}$ in the sample space $E = \mathbb{R}^d_+$, and take $\mathbf{Y}, \mathbf{Y}_i = \mathbf{V}, \mathbf{V}_i, 1 \leq i \leq n$ in Lemma 1. Then the probability of the class union is $p \leq dk/n$, and inequality (3) implies

$$\sup_{B \in \mathcal{G}} \left| \Phi_{n/k}(B) - \widehat{\Phi}_{n,k}(B) \right| = \sup_{B \in \mathcal{G}} \left| \frac{n}{k} \sum_{i=1}^{n} \mathbb{1}_{\mathbf{V}_i \in \frac{n}{k}} c_B - \frac{n}{k} \mathbb{P}(\mathbf{V} \in \frac{n}{k} C_B) \right|$$

$$= \frac{n}{k} \sup_{A \in \mathcal{A}} \left| \sum_{i=1}^{n} \mathbb{1}_{\mathbf{V}_i \in A} - \mathbb{P}(\mathbf{V} \in A) \right|$$

$$\leq \frac{n}{k} \frac{p}{\sqrt{np}} \left[2\sqrt{2 \log |\mathcal{A}|} + 3\sqrt{\log(1/\delta)} \right]$$

$$\leq \sqrt{\frac{d}{k}} \left[2\sqrt{2 \log |\mathcal{A}|} + 3\sqrt{\log(1/\delta)} \right]$$

which is the desired inequality, considering that $|\mathcal{A}| = |\mathcal{G}| = 2^{dJ^{d-1}}$.

Following the proof of theorem 3 in [6], we obtain the desired result.

2 Model selection

Let $\widehat{\Omega}_{\alpha}^{J}$ denote the solution of the problem (9) over $\mathcal{G} = \mathcal{G}_{J}$. One should pick the value

 $\widehat{J} = \underset{J_{\min} \leq J \leq J_{\max}}{\arg \min} \left\{ \lambda_d(\widehat{\Omega}_{\alpha}^J) + \psi_k(\delta, J) \right\}, \tag{5}$

minimizing thus a complexity-penalized version of the volume, in order to estimate the MV-set over $\mathbf{G} = \cup_{J=1}^{J_{max}} \mathcal{G}_J$ as accurately as possible without overfitting the data. An oracle inequality showing that the chosen set $\widehat{\Omega}_{\alpha}^{\widehat{J}}$ corresponds to an optimal trade-off between excess volume and missing mass can be straightforwardly derived from the analysis carried out in subsection 3.2, just like in Theorem 11 in [6].

We first introduce the risk of a set Ω defined as

$$R(\Omega) = (\lambda_d(\Omega) - \lambda_d(\Omega_{\alpha}^*))_+ + (\alpha - \Phi_{n/k}(\Omega))_+$$

where, for any $u \in \mathbb{R}^d$, we denote by $u_+ = \max(u, 0)$ its positive part. From Theorem 1, we have with probability at least $1 - \delta$,

$$R(\widehat{\Omega}_{\alpha}) \leq \left(\inf_{\Omega \in \mathcal{G}_{\alpha}} \lambda_d(\Omega) - \lambda_d(\Omega_{\alpha}^*)\right) + 2\psi_k(\delta).$$

The first term can be viewed as the approximation error and the second term as a bound on the stochastic error. The goal of model selection through complexity penalization is to find the model \mathcal{G}_J achieving the optimal trade-off between these two errors.

As in [6], we thus consider the solution $\widehat{\Omega}_{\alpha}$ of the following optimization problem that can be viewed as the structural risk minimization version of (7)

$$\widehat{\Omega}_{\alpha} \in \operatorname*{arg\,min}_{\Omega \in \mathbf{G}} \left\{ \lambda_{d}(\Omega) + 2\psi_{k}(2^{-J}\delta, J), \widehat{\Phi}_{n,k}(\Omega) \ge \alpha - \psi_{k}(2^{-J}\delta, J) \right\}$$
 (6)

where for each $J \in \{1, ..., J_{max}\}$ and each $\delta \in (0, 1), \psi_k(\delta, J)$ denotes a penalty for the model \mathcal{G}_J .

Following the steps of the proof of Theorem 11 in [6] we have the following oracle inequality.

Theorem 1. Assume that assumptions $\mathbf{A_1} - \mathbf{A_2}$ are fulfilled by the angular probability measure $\Phi_{n/k}$. Let $\delta \in (0,1)$ and $\mathcal{G}_{J,\alpha} = \mathcal{G}_J \cap \mathcal{G}_\alpha$. With probability at least $1 - \delta$, we have

$$R(\widehat{\Omega}_{\alpha}) \leq \left(1 + \frac{1}{K_{\Phi_{n/k}}^{-1}(1-\alpha)}\right) \inf_{1 \leq J \leq J_{max}} \min_{\Omega \in \mathcal{G}_{J,\alpha}} \left\{ \lambda_d(\Omega) - \lambda_d(\Omega_{\alpha}^*) + 2\psi_k(2^{-J}\delta, J) \right\}.$$

3 On the bias of the MV-set estimation procedure

As the class \mathcal{G}_J contains sets that consists in union of hypercubes, the box-counting class of angular distributions (see [6]), which contains all angular distributions such that the boundary $\partial \Omega_{\alpha}^*$ has Lipschitz regularity, seems appropriate to control the bias introduced by the MV-set estimation procedure. Let $c_1 > 0$ and $N_J(\partial \Omega_{\alpha}^*)$ denote the number of hypercubes that intersect $\partial \Omega_{\alpha}^*$. The box counting class \mathcal{D}_{box} is the set of all distributions such that

$$\mathbf{A_3} \ N_J(\partial \Omega_{\alpha}^*) \leq c_1 J^{d-2}.$$

As explained in [7], assumption $\mathbf{A_3}$ is more convenient than only assuming that $\partial \Omega_{\alpha}^*$ has Lipschitz boundary. It allows boundaries with arbitrary orientation and multiple connected components whereas the Lipschitz boundary assumption restricts the boundary to have a functional form. For further discussion on the connection between assumption $\mathbf{A_3}$ and Lipschitz regularity of the boundary $\partial \Omega_{\alpha}^*$, see Lemma 3 in [7].

Remark 1. Other approaches are possible to control the bias of the MV-set estimation procedure. For instance, one can assume that $\partial \Omega_{\alpha}^*$ has a finite perimeter [3].

Let $J \in \{1, \ldots, J_{max}\}$, $\delta \in (0, 1)$ and Ω^J_{α} denote a solution of $\min_{\Omega \in \mathcal{G}_{J,\alpha}} \lambda_d(\Omega)$. If the angular distribution $\Phi_{n/k} \in \mathcal{D}_{box}$ then,

$$\min_{\Omega \in \mathcal{G}_{J,\alpha}} \lambda_d(\Omega) - \lambda_d(\Omega_{\alpha}^*) \le \lambda_d(\Omega_{\alpha}^J \Delta \Omega_{\alpha}^*) \le N_J(\partial \Omega_{\alpha}^*) \frac{1}{J}^{d-1} \le \frac{c_1}{J}$$

where the second inequality comes from the fact that the two sets can only differs on the hypercubes that intersect $\partial \Omega_{\alpha}^*$.

4 Setting the tolerance parameter to 0 for the numerical experiments

The tolerance parameter $\psi_k(\delta)$ is set to 0 in the numerical experiments of the paper. As remarked by one of the reviewers this loses the connection between Theorem 1 and the experiments. However by corollary 12 in [6], one can solve the empirical minimum volume set optimization problem without the tolerance parameter in the mass constraint and obtain a theoretical result similar to the one of Theorem 1.

References

- [1] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. *Statistics of Extremes: Theory and Applications*. Wiley Series in Probability and Statistics, 2005.
- [2] S. Boucheron, O. Bousquet, and G. Lugosi. Theory of Classification: A Survey of Some Recent Advances. ESAIM: Probability and Statistics, 9:323– 375, 2005.
- [3] S. Clémençon and J. Jakubowicz. Scoring anomalies: a M-estimation formulation. In *Proceedings of the 16-th International Conference on Artificial Intelligence and Statistics, Scottsdale, USA*, 2013.
- [4] L Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.
- [5] N. Goix, A. Sabourin, and S. Clémençon. Learning the dependence structure of rare events: a nonasymptotic study. In *Proceedings of the International Conference on Learning Theory*, COLT'15, 2015.

- [6] C. Scott and R. Nowak. Learning Minimum Volume Sets. *Journal of Machine Learning Research*, 7:665–704, 2006.
- [7] C. Scott and R. D. Nowak. Minimax-Optimal Classification With Dyadic Decision Trees. *Information Theory, IEEE Transactions on*, 52(4):1335–1353, 2006.