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Abstract

Extreme regions in the feature space are of par-
ticular concern for anomaly detection: anoma-
lies are likely to be located in the tails, whereas
data scarcity in such regions makes it difficult
to distinguish between large normal instances
and anomalies. This paper presents an unsu-
pervised algorithm for anomaly detection in ex-
treme regions. We propose a Minimum Volume
set (MV-set) approach relying on multivariate ex-
treme value theory. This framework includes a
canonical pre-processing step, which addresses
the issue of output sensitivity to standardization
choices. The resulting data representation on
the sphere highlights the dependence structure of
the extremal observations. Anomaly detection is
then cast as a MV-set estimation problem on the
sphere, where volume is measured by the spheri-
cal measure and mass refers to the angular mea-
sure. An anomaly then corresponds to an un-
usual observation given that one of its variables
is large. A preliminary rate bound analysis is car-
ried out for the learning method we introduce and
its computational advantages are discussed and
illustrated by numerical experiments.

1 Introduction

Motivated by a wide variety of applications including fraud
detection, monitoring of complex networks and aviation
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safety management, unsupervised anomaly detection has
recently received much attention in the machine learning
literature. In many situations, measurements are consid-
ered as abnormal when they are located far from central
measures such as the sample mean, rarity somehow replac-
ing labeling from this perspective. This view has been ex-
tensively considered in the one-dimensional setup and has
lead to a variety of statistical techniques for anomaly de-
tection based on parametric representation of the tail of the
observed univariate probability distribution, relying on ex-
treme value theory (EVT) (see e.g. [3, 11, 17] among oth-
ers). When a complex system is monitored by several phys-
ical variables, raising an alert at each extreme value of one
of its physical variables can lead to high false alarm rates.
A way to reduce this false alarm rate is to study the mul-
tivariate distribution of the set of observations such that at
least one of their variables is large.

The purpose of the present paper is to promote an anomaly
detection algorithm for such multivariate problems, based
on multivariate EVT. In the suggested framework, extreme
data are observed values X such that || X || is large, de-
noting by || - ||s the sup norm on R%. Anomalies among
extremes are those which direction X /|| X || is unusual,
which is an appropriate model for anomalies in many ap-
plications. We emphasize that from this perspective, some
extreme data may be normal (not abnormal). The pur-
pose of this paper is precisely to detect anomalies among
these extremes. Note that there may well be non extreme
data which are anomalies. These anomalies are outside our
scope, since the suggested approach is only designed for
extreme regions and may be combined with any state-of-
the-art algorithm on non extreme regions, as detailed in [8].
The main idea consists in applying a classical multivariate
anomaly detection approach, that is based on minimum vol-
ume sets (MV-sets in short) estimation, to a transformation
of the original data emphasizing the dependence structure
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of the extreme ones. Given a random vector X taking its
values in X C R? with d > 1, MV-sets correspond to
subsets of the feature space X C R? where the probability
distribution F' of the random variable X is most concen-
trated. More precisely, given a measure A(dx) of reference
on the space X' equipped with its Borel o-algebra B(X)
and o € (0,1), a MV-set of level « for X is any solution
7, of the problem:

in A(Q) subjectto P{X € Q} > . 1
Qg}j}g{) (Q) subjectto P{X € Q} > (D

State-of-the-art methods for MV-sets estimation and
anomaly detection (e.g. [19, 18, 13]) are usually sensitive to
scaling effects and consider a fixed level o € (0, 1) in their
theoretical analysis (e.g. [19, 23]) whereas the approach
we suggest is concerned with extreme regions (the level o
tends to 1) and is insensitive to scaling effects. The present
work is related to [8, 9], as we also apply multivariate EVT
to unsupervised anomaly detection. Yet, their approach is
based on dimensionality reduction, which amounts to iden-
tifying the support of the distribution of the directions of
extremes (the angular measure, see Section 2.2). Here the
goal is different: we focus on moderate dimensional prob-
lems (typically, small subgroups of features obtained after
a dimensionality reduction step) and the task is to detect
anomalies in this moderate dimensional space. To do so
we estimate MV-sets of the angular measure, contrary to
[8, 9] who only identify a support.

The paper is organized as follows. In section 2, basic
notions of the theory of MV-sets are briefly recalled, to-
gether with related statistical results. The multivariate EVT
framework considered throughout the paper and its proper-
ties are also detailed. Section 3 explains the generic ap-
proach we propose for anomaly detection on extreme re-
gions, based on a rank transformation of the data followed
by a pseudo-polar decomposition. The construction of crit-
ical regions mainly relies on MV-set estimation methods
on the sphere, yielding a convenient representation of the
most probable directions of extreme events. The main the-
oretical result of the paper is a statistical guarantee concern-
ing empirical recovery of MV-sets on the sphere. Numer-
ical results are shown in Section 4. An extended analysis,
tackling model selection issues in particular can be found
in the Supplementary Material, together with detailed tech-
nical proofs.

2 Background and Preliminaries

As a first go, we recall key concepts pertaining to the the-
ory of MV-sets, as well as known results related to their
statistical recovery. Next, we describe the statistical set-
ting we consider here for anomaly detection, relying on the
multivariate heavy-tail assumption, and some key related
properties which will be involved in the subsequent anal-
ysis. The indicator function of any event £ is denoted by

I{€} and the Dirac mass at any point a by d,. Through-
out the paper, vectors are denoted by bold letters, upper-
case when random and lowercase otherwise. Finally, for

any (c,x) € R x RY, we set cx = (ca®, ..., cx(®),
[0,2] = [0,21] x ... x [0,2(?] and ¢ means the vector
(¢, ..., ¢) € R We denote by S;_; the intersection of

the unit sphere {x € R? : ||x|o = 1} with the positive
orthant Ri. S4—1 is thus the positive orthant of the unit
hypercube.

2.1 MYV-sets and Anomaly Detection

The concept of Minimum Volume set (MV-set) has been
introduced for the purpose of defining the regions where a
multivariate random variable X = (X ... X(®) takes
its values with highest/smallest probability, generalizing
the well-known notion of quantile for 1-dimensional dis-
tributions, see e.g. [5, 15]. Denote by X C R4 the space
where the r.v. X takes its values and let @ € (0,1) and
A be a o-finite measure of reference on X equipped with
its Borel o-algebra B(X'), any solution of the minimiza-
tion problem (1) is called a MV-set of level . Throughout
the paper, we assume that X ’s distribution F' is absolutely
continuous w.r.t. A and denote by f(x) = dF/d\(x) the
related density. For any o € (0, 1), under the assump-
tion that the density f is bounded and f(X) has a con-
tinuous distribution Fy, one may show [15] that the set
O, = {xz € X: f(x)> F/'(1 - )} is the unique
solution of the minimum volume set problem (1), where
the generalized inverse function of any cumulative distri-
bution function (c.d.f)) K (t) on R is denoted by K ~1(u) =
inf{t € R: K(t) > u}. For high values of the mass level
«, minimum volume sets are expected to contain the modes
of the distribution, whereas their complementary sets corre-
spond to abnormal observations. Refer to [5, 15] for details
on minimum volume set theory and to [19, 23] for related
statistical learning results.

Empirical MV-sets. A mass level @ € (0, 1) being pre-
liminarily fixed, estimating an empirical MV-set consists
in building from training data X, ..., X, an estimate
of a specific density level set €2, by solving a natural sta-
tistical counterpart of problem (1):

min A(Q) subject to F, () > o — 1y, , 2)
where v, plays the role of a tolerance parameter, and
where optimization is restricted to a subset G of B(X).
The class G is supposed to be rich enough to include (27,
or a reasonable approximation of it. It is ideally made of
sets 2 whose volume \((2) can be efficiently computed or
estimated, e.g. by Monte-Carlo simulation. The empirical
distribution based on the training sample (or a smoothed
version of the latter) F,, = (1/n) """, dx, replaces F' and
the tolerance parameter W, is chosen of the same order of
magnitude as the supremum supq,cg [F,(€2) — F(2)].
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Under usual complexity assumptions on the class G com-
bined with an appropriate choice of ,, non-asymptotic
statistical guarantees for solutions €2, of (2) are given in
[19], together with algorithmic approaches to compute such
solutions.

2.2 Multivariate Extreme Value Theory

In many statistical problems, risks are empirically de-
scribed by sample means (i.e. the empirical classification
error in supervised learning) and the theoretical validity of
inference/learning methods based on such statistics is es-
tablished by investigating how they deviate from their ex-
pectations. In contrast, EVT is dedicated to studying phe-
nomena ruled by exceptionally large observations rather
than averaging effects. Its main purpose is to provide mod-
els for learning the unusual rather than the usual, in order
to assess the probability of occurrence of rare events. In
risk monitoring, a quantity of major interest in the uni-
variate situation is the (1 — «)-quantile of the distribu-
tion F' of a r.v. X, for a given probability 1 — «, that
is z, = inf{z € R, P{X > z} < 1 — a}. Whereas
for moderate values of «, the statistic z,, = inf{z €
R, 1/nY "  I{X; > 2} < 1 — «} provides a natural
empirical estimation, the information carried by the finite
sample X, ..., X, is not sufficient when « is very large
and the statistic z,, becomes irrelevant. In this case, one
may call on EVT for providing parametric estimates of z,.
EVT mainly boils down to modeling the distribution of the
maxima (respectively the upper tail) as a Generalized Ex-
treme Value (GEV) distribution, namely an element of the
Gumbel, Fréchet or Weibull parametric families (respec-
tively by a generalized Pareto distribution). The primal —
and not too stringent — assumption is the existence of two
sequences {a,,n > 1} and {b,,n > 1}, the a,’s being
positive, and a non-degenerate c.d.f. G such that

lim n]P’{X_b" > aj} = —log G(x)
n—oo an,

for all continuity points z € R of G. If this assumption
is fulfilled — it is the case for most textbook distributions —
then the tail behavior of F' is essentially characterized by
G, which is proved to belong to the parametric family of
GEYV distributions. Estimation of the tail’s shape, scale and

location parameters has been studied in great detail, see e.g.
[1, 10, 21].

The multivariate analogue of the above display concerns
the convergence of the tail probabilities,

X0 M
lim nP{ ——— zz(l) or ... or
n—o0 agll) 3
- 3)
— @ = x(d)} = —log G(z),
agr,)

where a%j ) > (0 and b%j ) € R are entirely determined by the

margins F; and G is a non-degenerate multivariate c.d.f.

Standardization and angular measure. The latter con-
vergence is hardly workable as it is, since the sequences
aflj ),b%j ) are unknown and G has no finite-dimensional
parametrization nor generic structure. A customary first
step consists in applying a specific increasing transform
T : R — R? such as T(X) = V where for all j €
{1,...,d}, VW) = 1/(1 - F;(X1)). This allows to work
with marginally standardized variables and to eliminate the
unknown normalizing constants. Indeed the random vec-
tors X and V = (V1) ... V(@) share the same copula,
and thus the same dependence structure. Also, as shown by
Proposition 5.10 in [16], the multivariate tail convergence
assumption (3) then boils down to suppose that marginal
tail convergence occurs, and that the standardized vector
V has a regularly varying tail, i.e. there exists a limit mea-
sure 1 on the starred positive orthant E = [0, 0] \ {0},
such that

48] Vi .
n}P’{ >vWor - or — > v(d)} — u[0,v]¢
n n

n—oo
“4)
for all v0) > 0,1 < j < d. The measure j is
known as the exponent measure and it has the homogene-
ity property: u(t-) = t~1u(-). In terms of polar coordi-
nates (r(v),0(v)) = (J|v||loo, (1/]|v]|oo)v) the homogene-
ity property permits to write the limit distribution as a ten-
sor product: for any measurable Q C Sy_1,¢ > 1,

(v s r(v) > 1, 0(v) € Q) = %@(Q), 5)

where the angular measure ®(Q) = p(v : r(v) >
1,0(v) € Q) can be turned into a probability distribution
as ®(S4—1) < co. The measure P thus describes the prob-
ability distribution of the directions formed by the most ex-
treme realizations. Notice incidentally that no parametric
representation for ® is provided by the theory. Any finite
measure on S;_1 is a possible angular measure. The choice
of the sup norm is mathematically convenient for the anal-
ysis of the error (Section 3.2), but alternative choices (such
as any || - ||, norm, p > 1) would also be valid in a multi-
variate EVT setting.

Anomalies and extremal dependence structure. Our
novel anomaly detection approach relies on a multivariate
Peaks-Over-Threshold analysis. The focus is on the depen-
dence structure of the components X (/) of large observa-
tions X, where large means that at least one of the X ()’s
is large: e.g. can some variables be large simultaneously
or can only one variable be large at a time? In this con-
text, given that at least one feature X () is large, X is an
anomaly if it deviates from a characterization of the depen-
dence structure of such observations (those X’s such that
at least one of the X /) is large).
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The starting point is the combination of (4) and (5) which
imply that for Q C Sy,

1

P(T(V) >t O(V) e Q) g ?I)(Q) (6)
The angular measure ® thus encapsulates the structure of
the tail. Figure 1 illustrates this fact by showing extreme
samples (in black) projected on the sup norm sphere. Two
samples are generated from two distinct bi-dimensional ex-
treme value logistic distributions (refer to Section 4.1 for
the model description). The first (respectively, second)
sample has a high (respectively, small) coefficient of de-
pendence. Figure 1(a) shows that in the strongly dependent
case, angular data are mostly concentrated around the angle
/4 whereas in the weakly dependent case (Figure 1(b)),
angular data lie mostly around the two axes. In the limiting
cases of these two situations, the angular measure would
degenerate respectively into a single Dirac mass located at
the angle 7/4 and two Dirac masses at angles 0 and 7/2.

Recovering MV-sets of high mass (i.e. corresponding to
high values of «) for the angular measure ® gives access
to the most probable directions of extremes. In the case
where the angular component alone should be considered
for anomaly detection, those angular MV -sets would allow
to pin the complementary sets as abnormal.

Remark 1 (Anomaly score). In practice, the radial part
does play a role (see equation (6)) and we shall define an
anomaly score which is a product of a radial score and an
angular score based on a family of nested MV-sets (see
Section 4).

It is noteworthy to mention that the choice of standardized
variables V fully avoids scaling effects due to unit choices
and appears as well-founded in a variety of practical situa-
tions.

Motivated by these preliminary observations and in order
to build critical regions for anomaly detection, the issue
of estimating MV-sets of a sub-asymptotic version of the
angular probability distribution is considered in the next
section, from a theoretical and practical perspective.

3 MYV-set Estimation on the Sphere

We now rigorously formulate the M'V-sets statistical prob-
lem on the sphere. Denoting by B(S;—1) the Borel o-
algebra on the sphere, the generic goal in a MV-set con-
text is to recover from training observations X1,..., X,
which are independent copies of the generic heavy-tailed
r.v. X, a solution of the problem mingep(s,_,) Aa(£2) sub-
jectto (Q) > a. Note that o € (0, D(S4—1)), instead of
a € (0,1), as @ is not a probability distribution.

In practice, the angular measure ® is an asymptotic object,
whereas the data at hand is non asymptotic. Also, it may
be argued from a practical perspective that our interest lies

in large, but non asymptotic regions {@ : r(T(x)) > t}.
Consider thus the sub-asymptotic angular measure at finite
level t, ®4(Q) = tP(r(V) > t,6(V) € Q) and notice
from (6) that ®,(2) — ®(2) as t — oco. In the sequel we
shall thus consider the modified, non asymptotic optimiza-
tion problem

min  A\g(Q)

subject to
QeB(Sq—-1)

() > (D
In order to ensure existence and uniqueness of the solution
of this optimization problem, we consider the following as-
sumptions, which are commonly used in the MV-set liter-
ature to ensure the existence and uniqueness of the M'V-set
optimization problem [15].

A; For any ¢ > 1, the distribution ®;(-) is absolutely
continuous w.r.t. the Lebesgue measure Ay on Sy_1
with density ¢;. In addition, the r.v. ¢,(#(V)) has no
flat parts: Ve > 0, P{¢:(0(V)) = c} = 0.

Ay The density ¢:(0) of ®;(-) is uniformly bounded :
SUP;~1 pes, , Pt(0) < o0.

Given assumptions A; and A, one can show that (7) has a
unique solution, given by the density level set B}, , = {6 €
Sa—1: ¢4(0) > K3 (®(Sa—1) — )}, where K, (y) =
({60 € Sa—1: ¢:(0) < y}).

The general method described and studied in the next sec-
tion consists in replacing in (7) the angular measure ®; by
a sharp estimate, involving a fraction of the original obser-
vations (i.e. the most extreme observations).

3.1 Empirical MV-sets on the Sphere

Additional notations are required. For any j € {1,...,d},
the j-th empirical marginal c.d.f. is denoted by ﬁj (u) =
(1/n) >0, H{Xi(J) < u}, v € R. A natural empiri-
cal version of the Vi’sA is obtained bX means of a rank
transformation, V; = T(X;), where T is defined for all
ie{l,...,n}by

=~ def 1 1
T(X;) = — e, — . (8
(X2) <1 — F(xM) 1— Fd(X(d))> ®)

i i

This data standardization is widely used in multivariate
EVT to study dependence among extremes, see [1] and the
references therein for instance. From a practical angle, it is
of disarming simplicity and fully avoids any distributional
assumptions for the margins. Of course, the feature vari-
ables (8) are not independent anymore and analyzing the
accuracy of an estimate of the angular distribution ® in-
volved in (5) based on the latter is far from straightforward.
However, it has been sAhown in [4, 6] that using the rank
transformed variables V';’s instead of the probability inte-
gral transformed ones V'; does not damage the asymptotic
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Figure 1: Illustration of the directions §(V') obtained with a sample generated from a logistic model with a high coefficient
of dependence (a) and a small coefficient of dependence (b). Non extreme samples are in gray, extreme samples in black
and directions #(V') (extreme samples projected on the sup norm sphere) in red. Note that not all extreme samples are
shown as the plot has been truncated for a better visualization. However all projections on the sphere are shown.

properties of the empirical estimator of the angular measure
(in dimension 2, under suitable regularity assumptions). In
arbitrary dimension, Goix et al. [7] have obtained a similar
result for the finite sample case, concerning an alternative
characterization of the angular measure, which is an inte-
grated version of ®.

The algorithm we propose to estimate an MV-set of the
distribution of extreme data directions is implemented in
three main steps described in Algorithm 1. The output is
meant to approach a MV-set of the angular measure
fort = n/k, where k € {1, ..., n} is the number of
extreme observations to be retained along each axis. The
choice of & should depend on n, in the sense that k = o(n)
and k — oo as n — oo. The practical choice of k results
from a bias/variance trade-off which is a recurrent issue in
extreme values analysis, that we shall not investigate. In
practice, k is chosen in a stability region of the output, and
k = O(y/n) appears to be a reasonable default choice.

Statistical guarantees for the general algorithm 1 and a
practical method for solving the optimisation problem (9)
it involves are detailed in the following subsections. As
shall be seen, from a practical perspective, a crucial advan-
tage of the approach we promote lies in the compactness
of the feature space S;_1 used to detect abnormal direc-
tions. Our analysis proceeds as if the marginal distributions
were known, i.e. as if the true transformed variables V';’s
were observables. Controlling the additional sample error
induced by the discrepancy V; — V; is reserved for future
work.

3.2 Main Result

The result stated below shows that with high probability
over the data set the empirical MV-set estimated on the ex-
tremes is an approximation of the true MV-set.

Algorithm 1 Empirical estimation of an angular M'V-set
Inputs: Training data set {X;, ..., X,}, k €
{1, ..., n}, mass level a, tolerance (), confidence
level 1 — 6, collection G of subsets of S;_1
Standardization: Apply the rank-transformation (8) to
the X;’s, yielding the empirically marginally standard-
izedvectors V, =T(X,),i=1, ..., n.
Thresholding: Retain the indexes

I:{ie{l,...,n}:T(‘A/i)Z%}

- {z e{l,....n}: 3 <dF(xD)>1- k/n}

and consider the angles 8; = 9(‘71) fori € 7.
Empirical MV-set estimation: Form the empirical an-
gular measure @, = (1/k)> ;.7 s, and solve the
constrained minimization problem.

min A (€2) subject to D, 5 () > a—Pp(8). ()

Output: Estimated MV-set ﬁa € G of the angular mea-
sure D, /1.

Theorem 1. Assume that assumptions A1 — Ay are ful-
filled by the finite distance angular measure ®,,t > 1 re-
lated to X’s heavy-tailed distribution with \g as reference
measure. Let G be a finite class of sets with cardinality |G|.

Fix a mass level o and § € (0,1) and consider the empiri-
cal MV -set Q, solution of (9) related to the tolerance

0(0) = [/ 210810 + 3/ oa 177

Then, with probability at least 1 — §, we simultaneously
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have:

{@n J6(a) > a—ka(é)} and {Ad(ﬁa) < )\d(Q)} :

where G, = {Q € G, ®(Q) > a}.

As expected, the rate of statistical recovery of the solution
B, .k of (7) when ¢t = n/k is of order Op(1/1/k), the
learning procedure involving the |Z| € [k,dk] most ex-
treme standardized observations only. Before presenting
a practical implementation of the approach analyzed here,
a few remarks are in order.

Remark 2 (FINITENESS OF THE CLASS AND LEARNING
RATE). The argument originally developed in [7] for con-
trolling the accuracy of an empirical estimation of the sta-
ble tail dependence function (STDF) is crucially exploited
to cope with the dependence structure of the transformed
variables (8). The finite class assumption fits our purposes
in the present paper, since we consider unions of rectangles
paving the sphere (see Section 3.3). A minor modification
of the argument in the supplementary material would allow
to replace log(|G|) with Vg log(dke/Vg), where Vg is the
VC-dimension of the class G, and dk is an upper bound for
the average number of points hitting the extreme regions
(see the proof of Lemma 1 in the Supplementary Material).
Then the learning rate bound given by the result above is of
order Op(+/(log k)/k), as expected, since O(k) observa-
tions are actually involved in the learning procedure, due
to the thresholding stage.

Remark 3. (ON THE CONTINUITY ASSUMPTION) In or-
der to place oneself in the framework of Theorem 1 (i.e. in
the situation where the angular measure is absolutely con-
tinuous w.r.t. Lebesgue measure on the sphere), applying
a preliminary dimension reduction technique to the origi-
nal observations in the extremes can be necessary. It is the
precisely the goal of the methods proposed in [8, 9] (see
also [2]) to identify possible degenerate components of the
angular measure, as well as subsets of variables forming
random subvectors fulfilling Theorem 1’s assumptions.

3.3 Paving the Sphere

We now address the issue of solving (9) from a computa-
tional perspective. As a first go, we build empirical MV-
sets on the sphere by binding together elementary subsets
S of S4—1 with same volume (i.e. same Lebesgue measure

Ad(9)).

Again, empirical estimation <f>nk of the angular measure is
based on the fraction {6, : i € Z} of the transformed data
and we consider the partition of Sy_1 in d.J¢~! hypercubes
S; with same volume as shown in Figure 2.

We therefore consider the class G that corresponds to the
class G of subsets obtained as union of cubes S;. In this
case, |G| = exp(dJ9~1log?2). Figure 2 shows an exam-
ple of such a partition for d = 3 and J = 5. Sorting the

elements by decreasing order with respect to the number
of samples they contain and binding them together until
reaching a mass greater than a—1(9) yields Q,, (see [19]).

The number of hypercubes of the partition increases expo-
nentially with the dimension d. Therefore as d increases,
most hypercubes will be empty and there is no need to
take them into account when sorting the elements of the
partition. The solution is to rather loop over the samples
0;, i € 7 and apply a geometric hash function assign-
ing a signature to each sample. The signature of a sam-
ple O characterizes the hypercube it belongs to. Such a
signature can be defined as the sign of (e,,8) — j/J for
pe{l,...,d},je{l,...,J}, where e, denotes the vec-
tor of R such that ') = &;, forall ¢ € {1,...,d}. The
hash function thus takes its values in {—1, 1}/, Its com-
putation for one @; requires a single loop over the dimen-
sions ¢ € {1,...,d} and examination of the integer part of
J2(©). The complexity for m samples is thus O(dm).

The number of unique signatures is equal to the number of
non empty hypercubes of the partition and the number of
identical signatures is equal to the number of samples in
the corresponding hypercube. We have therefore identified
all the non empty hypercubes and the number of samples
in each of them. Using Algorithm 2 we then obtain an esti-
mated MV-set with level mass «, i.e., the solution of (9).

Algorithm 2 Solution of (9) when G is the regular grid on
Sq-1
Sorting: Sort the elementary subsets S; so that:
q)n,k(S(l)) Z s Z (pn,k(S(J))
Concatenation: Bind together the elementary subsets
sequentially, until the empirical angular measure of the
resulting set exceeds o — ¥ (9), yielding the region

J(x)

Qe = Su (10)
j=1

where J(o) = min{j > 1: 7

j=1 cf)TLJC(S(J‘)) 2 a—
V() }

Remark 4. While the complexity of the algorithm is linear
in the dimension d, this approach suffers from the curse
of dimensionality. Indeed, as the number of hypercubes
increases exponentially with d, only a small proportion of
hypercubes will be non-empty and the solution will tend to
overfit.

Remark 5. When implementing the hash function we have
to carefully deal with the samples 0 that are located on the
edges of Sy_1, i.e., such that at least two of their compo-
nents are equal to 1. Under assumption A+, the probability
of a sample 0 to be located on an edge of S;_1 is equal to
0. However it is not always the case in practice, especially
if we use the empirical marginals for the standardization
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step. The hash function defined above assigns a signature
to an edge sample 0 that is equal to none of the signatures
of the adjacent hypercubes of 0. Therefore we arbitrarily
assign such samples to one of their adjacent hypercubes.

Figure 2: Estimated angular MV-set on the sphere based on
Gaussian data. In red, the border of the true MV-set with
mass at least 0.9. In gray the estimated M V-set with relative
level mass 0.9 and J = 5.

Toy example. Figure 2 illustrates the MV-set obtained
via algorithm 2 on a simple example. Here d = 3, so that
S, has 3 faces. Angular points on each faces are generated
according to truncated bivariate Gaussian distributions on
each face, centered at (1,1, 1) in the 3-dimensional space.
The estimated M V-set shown in Figure 2 has a relative level
mass of 0.9 and is obtained with J = 5.

Bias induced by the finite grid. Looking for the MV-set
in the class G instead of all the measurable subsets of the
sphere induces a bias which can be controlled with mild
assumptions on the angular distribution, such as the box
counting class introduced in [20] (see Supplementary Ma-
terial).

Model selection. The resolution level J should be chosen
with care as it can impact significantly the M'V-set estima-
tion procedure. This issue can be addressed through com-
plexity penalization (see Supplementary Material). How-
ever for the numerical experiments we resort to cross val-
idation selecting the resolution level giving an empirical
angular mass close to « on a test set. Indeed if the grid is
too coarse, the estimated MV-set should have an empirical
measure much greater than « on a test set. Similarly, if the
grid is too fine, the estimated M V-set will have an empirical
measure much smaller than « on a test set.

3.4 Application to anomaly detection

As already mentioned in Remark 1, considering angular
MV-sets only does not yield an optimal decision function,

since the density of the largest observations includes a ra-
dial part. More precisely, in view of (6), the density (with
respect to dr @ df) on the most extreme regions is propor-
tional to r%gb( 6). A standard approach in anomaly detection
is to define a scoring function §, which should be ideally
proportional to the density, and then to declare as abnormal
regions of the kind {z : §(x) < s¢}, where s( can be tuned
so that a given proportion of the samples are pinned as ab-
normal. It turns out that as a byproduct of our algorithm,
we can also estimate a scoring function S on Sy_1, such
that the smaller $¢(0) is, the more abnormal the direction
6. We define 5y as the piecewise constant function defined
on each hypercube of the partition of S;_; by the number
of samples it contains (see Figure 3(a)). One can then con-
sider the scoring function on the whole space defined by

8(r(V),0(V)) =1/r(V)*-39((V)).  (1D)

Again, the smaller §(r(V'),0(V')) is, the more abnormal
(r(V),0(V)), i.e. V. Using such a scoring function, ob-
servations with very large sup norm but with high angular
score have a chance to be considered as anomalies, which
would not be the case if the M'V-set estimates on S;_; only
were considered.

4 Numerical Experiments

We first illustrate our approach on a bivariate simulated toy
example. We then compare our approach to two state-of-
the-art unsupervised anomaly detection algorithms, Isola-
tion Forest [13] and One-Class SVM (OCSVM) [18], on
five real data sets. We set k = /n in all experiments. As
we do not know the normalization constant ®(S,_1) of the
angular measure, we use |Z| to normalize the empirical an-
gular measure and consider relative mass levels in (0, 1).
The penalty ¢ (d) in (9) would require k to be too large
to allow us to consider it in practice. We therefore solve
the optimization problem (9) setting 1 (d) = 0 (see Sup-
plementary Material for the connection with the theoreti-
cal result). Finally, we use the implementation of Isolation
Forest and OCSVM provided by Scikit-Learn [14].

4.1 Toy example - Logistic model

We consider a 2-dimensional sample {X,...,X,} of
size n = 50000 generated from an extreme value logistic
model ([1], section 9.2.2) which is defined by its parametric
cdf. G(z) = exp{ - (Z?Zl(a:(j))*l/ﬂ)ﬁ}, x() >0,
for some parameter 8 € (0, 1]. The smaller the parameter
[, the more dependent the variables. We choose 5 = 0.2
(strong dependence). The data are simulated according to
Algorithm 2.1 of [22]. We use the scoring function § de-
fined by (11) and fix the anomaly threshold sq so that 30%
of the extreme data are normal. Figure 3 displays the re-
sults: extremes outside the sy level set of s are considered
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Figure 3: Illustration of our approach on a sample generated from a logistic model. Figure (a) shows the angular score
obtained with our algorithm. In (b) and (c) the red contour shows the frontier between abnormal and normal regions. Non

extreme samples are in gray and extreme anomalies are in red.

as anomalies.

4.2 Anomaly detection on real data sets

We now compare the performance of our approach (Al-
gorithm 1, scoring function § (11)) with Isolation Forest
and OCSVM on five classical anomaly detection data sets
whose characteristics are summarized in Table 1. The shut-
tle, ann and forestcover data sets are available at the UCI
Machine Learning repository [12]. For the shuttle data set,
instances with label 4 are removed and instances with la-
bels different than 1 are considered as abnormal. For the
ann and forestcover data sets we only keep the continu-
ous variables. The abnormal instances of the ann data set
are those with label 1 or 2. For the forestcover data set,
instances with label 2 are normal whereas instances with
labels 4 and 5 are abnormal. The SF data set is obtained
from the KDD Cup’99 intrusion detection data set follow-
ing [24]. The anomaly class is the attack class. The http
data set corresponds to all instances of the SF data set
whose third feature is http. For the SF and http data sets
only 10% of the whole data set is used.

Table 1: Data sets

Data set n d  Anomaly ratio
shuttle 85,849 9 7.2%
SF 699,691 4 0.3%
http 619,052 3 0.4%
ann 7,200 6 7.4%
forestcover 581,012 5 4.1%

In all experiments, the suggested algorithm, Isolation For-
estand OCSVM are trained on half of the normal instances,
chosen at random. The test set for both algorithms con-
sists in all instances (normal and abnormal) not used in the
training set. This test set is then restricted to the extreme

region in accordance with the thresholding step of Algo-
rithm 1 and performance is assessed with the available la-
bels. For all data sets, the results are averaged over 10 ex-
periments conducted with normal training samples selected
at random.

Table 2: ROC-AUC

Dataset OCSVM Isolation Forest Score §
shuttle 0.981 0.963 0.987
SF 0.478 0.251 0.660
http 0.997 0.662 0.964
ann 0.372 0.610 0.518
forestcover 0.540 0.516 0.646

Areas under the Receiver Operating Characteristic curve
(ROC-AUC) obtained on all data sets are dispayed in Ta-
ble 2. Our approach outperforms Isolation Forest and
OCSVM in the extreme region on three out of five data
sets and is never the worst one.

5 Conclusion

This paper addresses the issue of anomaly detection in ex-
treme regions. The methodology we propose is based on
statistical recovery of MV-sets for the angular measure on
the sphere, a functional measure of the dependence struc-
ture of extreme observations. Anomalies correspond to un-
usual relative contributions of specific variables to the con-
sidered extreme event. Future work will aim at controlling
the error induced by the empirical estimation of margins.
Another natural extension will be to consider an adaptive
paving of S;_; instead of a fixed partition in elements of
identical volume.
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