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Abstract

We propose a communication-e�cient dis-
tributed estimation method for sparse linear
discriminant analysis (LDA) in the high di-
mensional regime. Our method distributes
the data of size N into m machines, and esti-
mates a local sparse LDA estimator on each
machine using the data subset of size N/m.
After the distributed estimation, our method
aggregates the debiased local estimators from
m machines, and sparsifies the aggregated es-
timator. We show that the aggregated esti-
mator attains the same statistical rate as the
centralized estimation method, as long as the
number of machines m is chosen appropri-
ately. Moreover, we prove that our method
can attain the model selection consistency
under a milder condition than the centralized
method. Experiments on both synthetic and
real datasets corroborate our theory.

1 INTRODUCTION

High dimensionality is a frequently confronted prob-
lem in many applications of machine learning. It in-
creases time and space requirements for processing the
data. Moreover, many machine learning methods tend
to over-fit and become less interpretable in the pres-
ence of many irrelevant or redundant features. A com-
mon way to address this problem is the dimensional-
ity reduction. Principal Component Analysis (PCA)
(Jolli↵e, 2002) is probably the most widely used di-
mensionality reduction method. However, it is an un-
supervised dimensionality reduction method and does
not consider the labels of the data. In order to take
the label information into account, supervised dimen-
sionality reduction methods are favored. Linear Dis-
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criminant Analysis (LDA) (Anderson, 1968), which is
initially proposed as a classification method, is an im-
portant supervised dimensionality reduction method.
Let X and Y be two d-dimensional random vectors
following two normal distributions, X ⇠ N(µ

1

,⌃⇤)
and Y ⇠ N(µ

2

,⌃⇤), which share the same covari-
ance matrix ⌃

⇤ but with di↵erent mean vectors µ
1

and µ
2

. For a new observation Z that is drawn with
equal prior probability from the two normal distribu-
tions, the Fisher’s linear discriminant rule is

 (Z) = 1((Z � µ)>⇥⇤µd > 0), (1.1)

where µ = (µ
1

+ µ
2

)/2, µd = µ
1

� µ
2

, ⇥⇤ = ⌃

⇤�1

is the precision matrix (a.k.a., the inverse covariance
matrix), and 1(·) is the indicator function. It is well
known that the Fisher’s linear discriminant rule min-
imizes the misclassification rate and it is Bayesian
optimal. In practice, µ

1

,µ
2

and ⌃

⇤ are unknown,
and we need to estimate µ

1

, µ
2

and ⌃

⇤ from ob-
servations. More specifically, let {Xi : 1  i  n

1

}
and {Yi : 1  i  n

2

} be independently and identi-
cally distributed random samples from N(µ

1

,⌃⇤) and
N(µ

2

,⌃⇤) respectively. The classical estimations of
µ

1

,µ
2

and ⇥

⇤ in the classical regime are the sam-
ple means bµ

1

= n�1

1

Pn1

i=1

Xi and bµ
2

= n�1

2

Pn2

i=1

Yi,

and b

⇥ = b

⌃

�1, where b

⌃ = n�1

⇥

Pn1

i=1

(Xi � bµ
1

)(Xi �
bµ
1

)>+
Pn2

i=1

(Yi� bµ
2

)(Yi� bµ
2

)>
⇤

is the pooled sample
covariance matrix with n = n

1

+ n
2

. Plugging these
estimators into (1.1) gives rise to the empirical version

of  (Z), i.e., b (Z). Theoretical properties of b (Z)
have been well studied when d is fixed, e.g., see Ander-
son (1968). However, in the high-dimensional regime
where d increases as n, the pooled sample covariance
matrix procedure is not well-conditioned and the plug-
in estimator is not reliable. For example, Bickel and
Levina (2004) showed that it is asymptotically equiv-
alent to random guess when the dimensionality in-
creases at some rate comparable to the number of sam-
ples. To overcome this curse of dimensionality, it is
natural to impose some structural assumptions on the
parameters of the discriminant rule in (1.1). For ex-
ample, Cai and Liu (2011) made the assumption that
�⇤ = ⇥

⇤µd is a sparse vector and proposed the fol-
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lowing estimator:

b� = argmin
�

k�k
1

,

subject to kb⌃� � (bµ
1

� bµ
2

)k1  �, (1.2)

where k�k
1

=
Pd

j=1

|�j | is the `1 norm, and k · k1 is

the element-wise max norm, b⌃, bµ
1

and bµ
2

are defined
as above and � > 0 is a tuning parameter. In our
study, we will focus on the above sparse LDA estima-
tor, because it is comparable to or even better than
many other sparse LDA estimators (Shao et al., 2011;
Mai et al., 2012; Fan et al., 2012).

On the other hand, with the increase in the volume
of data used for machine learning, and the availability
of distributed computing resources, distributed statis-
tical estimation (Mcdonald et al., 2009; Balcan et al.,
2012; Zhang et al., 2012, 2013; Rosenblatt and Nadler,
2014; Lee et al., 2015; Battey et al., 2015) and dis-
tributed optimization (Zinkevich et al., 2010; Boyd
et al., 2011; Dekel et al., 2012) have received increas-
ing attention. The main bottleneck in distributed
computing is usually the communication between ma-
chines, so the overarching goal of the algorithm design
in distributed setting is to reduce the communication
costs, while trying to achieve comparable performance
as centralized algorithms. The problem becomes even
more challenging when high dimensionality meets huge
data size.

To address the challenge of both high dimensionality
and huge data size, in this paper, we propose a dis-
tributed sparse linear discriminant analysis method.
In the proposed algorithm, each “worker” machine
generates a local estimator for the sparse LDA and
sends it to the “master” machine, where all local esti-
mators are averaged to form an aggregated estimator.
At the core of our algorithm is an unbiased estimator
for the sparse linear discriminant analysis. It is worth
noting that our proposed algorithm requires only one
round of communication between the worker nodes and
the master node. That is, each worker machine only
needs to send a vector to the master node. Thus, our
algorithm is very communication-e�cient. We prove
the estimation error bounds for the proposed algo-
rithm in terms of di↵erent norms. More specifically,
we show that the proposed distributed algorithm at-
tains O(

p

s log d/N +max(s, s0)m
p
s log d/N) estima-

tion error bound in terms of `
2

norm, where N is the
total sample size, m is the number of machines, d is the
dimensionality, s = k�⇤k

0

and s0 = max
1jd k✓⇤

j k0
are the number of nonzero elements in �⇤ and ✓⇤

j

respectively, with ✓⇤
j being the j-th column of ⇥

⇤.
From the estimation error bound, we address an im-
portant question that how to choose m such that the
information loss due to the data parallelism is negligi-

ble. In particular, if the machine number m satisfies
m .

p

N/log d/max(s, s0), our distributed algorithm
attains the same statistical rate as the centralized esti-
mator (Cai and Liu, 2011), which is O(

p

s log d/N) in
terms of `

2

-norm. Furthermore, we show that given
minj |�⇤

j | &
p

log d/N , our estimator achieves the
model selection consistency, which matches the min-
imax lower bound for support recovery in sparse LDA
(Fan et al., 2012; Kolar and Liu, 2015). However,
the model selection consistency established in Kolar
and Liu (2015) relies on the irrepresentable condition,
which is very stringent. In sharp contrast, the model
selection consistency of our algorithm does not need
this condition.

Notation We summarize here the notations to be
used throughout the paper. We use lowercase let-
ters x, y, . . . to denote scalars, bold lowercase let-
ters x,y, . . . for vectors, and bold uppercase letters
X,Y, . . . for matrices. We denote random vectors by
X,Y . We denote ej as the column vector whose j-th
entry is one and others are zeros. Let A = [Aij ] 2
Rd⇥d be a d⇥ d matrix and x = [x

1

, . . . , xd]> 2 Rd be
a d-dimensional vector. For 0 < q < 1, we define the
`
0

, `q and `1 vector norms as kxk
0

=
Pd

i=1

1(xi 6=
0), kxkq = (

Pd
i=1

|xi|q)1/q, kxk1 = max
1id |xi|,

where 1(·) represents the indicator function. For any
real number C and symmetric matrixA, A � C means
that the minimum eigenvalue of A is larger than C.
Specifically, A � 0 means that A is a positive definite
matrix. We use the following notation for the matrix
`1, `

1

, `1,1 and `
1,1 norms:

kAk1 = max
1jd

d
X

k=1

|Ajk|, kAk
1

= kA>k1,

kAk1,1 = max
1i,jd

|Aij |, kAk
1,1 =

X

1i,jd

|Aij |.

For a vector x and an index set S, xS denotes the
vector such that [xS ]j = xj if j 2 S, and [xS ]j = 0
otherwise. For sequences fn, gn, we write fn = O(gn)
if |fn|  C|gn| for some C > 0 independent of n and
all n > D, where D is a positive integer. We also make
use of the notation fn . gn (fn & gn) if fn is less than
(greater than) gn up to a constant. In this paper, C,
c, C 0, C

1

etc. denote various absolute constants, not
necessarily the same at each occurrence.

2 RELATED WORK

In this section, we briefly review the related work
on sparse linear discriminant analysis (LDA) and dis-
tributed estimation.

LDA has been widely studied in the high dimensional
regime where the number of features d can increase
as the sample size n (Shao et al., 2011; Cai and Liu,
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2011; Mai et al., 2012; Fan et al., 2012). One impor-
tant problem in the high dimensional regime is that
the estimation of ⇥⇤ will be unstable because the sam-
ple covariance matrix b

⌃ is often singular. To address
this problem, a common assumption is that both µd

and ⌃

⇤ are sparse. Under this assumption, Shao et al.
(2011) proposed to use a thresholding procedure to
estimate µd and ⌃

⇤ respectively, followed by the stan-
dard procedure to estimate  (Z). Cai and Liu (2011)
assumed that �⇤ = ⇥

⇤µd is sparse and estimated it di-
rectly. While sparse LDA has been investigated exten-
sively, it is not clear how to extend it to the distributed
setting, where the data are distributed on multiple ma-
chines.

With the growth of the size of available datasets, dis-
tributed algorithms become more and more attractive
in the machine learning and optimization communi-
ties. In general, distributed algorithm can be cate-
gorized into two families: (1) data parallelism, which
distributes the data across di↵erent parallel comput-
ing nodes/machines; and (2) task parallelism, which
distributes tasks performed by threads across di↵er-
ent parallel computing nodes. In this paper, we focus
on data parallelism. The most important problem in
data parallelism is how to minimize the communica-
tion cost among di↵erent machines. A commonly used
approach in distributed statistical estimation is aver-
aging: each “worker” machine generates a local esti-
mator and sends it to the “master” machine where all
local estimators are averaged to form an aggregated
estimator. This type of approach has been first stud-
ied by Mcdonald et al. (2009); Zinkevich et al. (2010);
Zhang et al. (2012, 2013); Balcan et al. (2012). Nev-
ertheless, the above distributed statistical estimation
methods are in the classical regime. In the high di-
mensional regime, averaging is not an e↵ective way
for aggregation (Rosenblatt and Nadler, 2014). More-
over, many estimators in the high dimensional regime
are based on the penalized estimation, which intro-
duces some bias to the estimator. For example, the
Lasso estimator (Tibshirani, 1996) is biased due to the
`
1

-norm penalty. Since averaging only reduces vari-
ances, not the bias, the performance of averaged esti-
mator is no better than the local estimator due to the
aggregation of bias when averaging. To address this
problem, Lee et al. (2015) proposed distributed sparse
regression methods, which exploits the debiased esti-
mators proposed in Javanmard and Montanari (2014);
Van de Geer et al. (2014) for distributed sparse regres-
sion. Similar distributed regression methods are pro-
posed by Battey et al. (2015) for both distributed sta-
tistical estimation and hypothesis testing. However,
all the above studies on distributed statistical estima-
tion are focused on regression. It is not easy to extend
them to distributed dimensionality reduction.

In fact, the problem of distributed dimensionality re-
duction is still relatively under-studied. Liang et al.
(2014) proposed a distributed approximate PCA algo-
rithm, which speeds up the computation and needs low
communication cost but with a low accuracy loss. Bal-
can et al. (2015) extended the kernel PCA to the
distributed setting and proposed a communication-
e�cient distributed kernel PCA algorithm. Valcar-
cel Macua et al. (2011) developed a distributed algo-
rithm for linear discriminant analysis on a single-hop
network. Nevertheless, all these algorithms are in the
classical regime, and cannot be applied to sparse LDA
in the high dimensional regime.

3 DISTRIBUTED SPARSE LINEAR
DISCRIMINANT ANALYSIS

In this section, we present a distributed linear discrim-
inant analysis algorithm. The problem setup of dis-
tributed sparse linear discriminant analysis is as fol-
lows: Let X(l) 2 Rn1l⇥d, l 2 {1, 2, . . . ,m} be the data
matrix of the first class stored on the l-th machine,
each row of which is sampled i.i.d. from the multi-
variate normal distribution N(µ

1

,⌃⇤). Similarly, let
Y

(l) 2 Rn2l⇥d, l 2 {1, 2, . . . ,m} be the data matrix
of the second class stored on the l-th machine, where
each row is sampled i.i.d. from the multivariate nor-
mal distribution N(µ

2

,⌃⇤). Without loss of gener-
ality, we assume n

11

= n
12

= . . . = n
1m = n

1

and
n
21

= n
22

= . . . = n
2m = n

2

. Let n = n
1

+ n
2

, which
is the total number of data stored in a single machine.
We also assume n

1

 n
2

and n
1

= rn, where r  1/2
is a constant. We propose a distributed sparse LDA
algorithm based on Cai and Liu (2011) to directly es-
timate �⇤ in Algorithm 1.

Algorithm 1 Distributed Sparse Linear Discriminant
Analysis

Require: X

(1), . . . ,X(m),Y(1), . . . ,Y(m)

Ensure: �̄, the aggregated sparse discriminant vector

Workers:

Each worker computes b

⌃

(l) and bµ(l)
1

, bµ(l)
2

Each worker computes a local sparse LDA estimator
b�(l) by (3.1)

Each worker computes a debiased estimator e�(l) by
(3.4)

Each worker sends e�(l) to the master machine

Master:

while waiting for e�(l) sent from all workers do
if received e�(l) from all workers then
Compute the aggregated sparse estimator �̄ by
(3.5)

end if

end while
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In detail, for the l-th machine, we denote by X(l)
i and

Y (l)
i the i-th row of X

(l) and Y

(l) respectively. On
each machine, we can use the sparse LDA estimator in
(1.2) to obtain a local estimator as the following:

b�(l) = argmin
�2Rd

k�k
1

subject to
�

�

�

b

⌃

(l)� � bµ(l)
d

�

�

�

1
 �,

(3.1)

where � > 0 is a tuning parameter, bµ(l)
d = bµ(l)

1

� bµ(l)
2

with sample means bµ(l)
1

= (
Pn1

i=1

X(l)
i )/n

1

and bµ(l)
2

=

(
Pn2

i=1

Y (l)
i )/n

2

and

b

⌃

(l) =
1

n

 n1
X

i=1

(X(l)
i � bµ(l)

1

)(X(l)
i � bµ(l)

1

)>

+
n2
X

i=1

(Y (l)
i � bµ(l)

2

)(Y (l)
i � bµ(l)

2

)>
�

,

which is the total intra-class sample covariance matrix
of the l-th machine. The choice of � will be discussed
in Section 4.

The estimator in (3.1) is biased due to the shrinkage
property of the estimator. Since averaging only reduce
the variance, rather than the bias, if we naively average
b�(l)’s, the error bound of the averaged estimator will
remain in the same order as that of the local estima-
tors. To address the bias, several debiasing techniques
have been proposed, such as Lee et al. (2015) and Bat-
tey et al. (2015). However, Lee et al. (2015) focused
on the Lasso estimator, and the debiasing method pro-
posed in Battey et al. (2015) is only suitable for regu-
larized estimators. In order to construct an unbiased
estimator for the Dantzig-type estimator, we propose a
new debiasing procedure as follows: First, the CLIME
estimator (Cai et al., 2011) is used to estimate the
precision matrix:

b

⇥

(l) = argmin k⇥k
1,1

subject to k⇥>
b

⌃

(l) � Ik1,1  �0, (3.2)

where �0 is a tuning parameter, and its choice will be
clear from Section 4. It is worth noting that (3.2)
can be decomposed into d independent optimization
problems, where each one takes the form

b✓(l)
j = argmin k✓k

1

subject to kb⌃(l)✓ � ejk1  �0,

(3.3)

for j 2 {1, 2, . . . , d} and b✓(l)
j corresponds to the j-

th column of b

⇥

(l). Therefore, they can be solved in
parallel.

Second, based on b

⇥

(l), we construct a debiased esti-
mator e�(l) in the following way:

e�(l) = b�(l) � b

⇥

(l)>
⇣

b

⌃

(l)
b�(l) � bµ(l)

d

⌘

. (3.4)

Note that the second term in the right hand side of
(3.4) can be seen as the estimation of the bias intro-
duced by the penalized estimator in (3.2). We subtract

the estimation of the bias from b�(l) and obtain an un-
biased estimator e�(l).

Finally, the workers send back the unbiased local esti-
mators in (3.4) generated by di↵erent machines to the
master node, and the master node averages all the de-
biased local estimators followed by hard thresholding
in order to get a sparse estimator. More specifically,
the sparse aggregated estimator is as follows

�̄ = HT

✓

1

m

m
X

l=1

e�(l), t

◆

, (3.5)

where HT(·) is the hard thresholding operator, which
is defined as

[HT(�, t)]j =

⇢

�j , if |�j | > t,
0, if |�j |  t.

Here t > 0 is a pre-specified threshold. The setting of
t will be discussed in Section 4.

The proposed distributed algorithm has a low com-
munication cost. In detail, compared with the naive

distributed algorithm in which b

⌃

(l)’s and bµ(l)
d ’s are

computed separately on each machine and then sent
back to the master node, our algorithm only needs
to send d-dimensional vectors rather than d ⇥ d ma-
trices to the master node, which significantly reduces
the communication cost. Moreover, we will prove later
that, while keeping low communication cost, our algo-
rithm can attain the same convergence rate as the cen-
tralized method if we choose the number of machines
appropriately.

The time complexity of our algorithm can be illus-
trated as follows: in order to obtain b�(l), the main
computation overhead lies on computing b

⌃

(l), whose
time complexity is O(Nd2/m). For the CLIME es-
timator, using the FastCLIME method (Pang et al.,
2014), the time complexity is O(d2). Thus the total
time complexity of the proposed algorithm per ma-
chine is O(Nd2/m). In contrast, for centralized esti-
mator which collects the data from all local machines
and performs the estimation, the time complexity is
O(Nd2). Therefore, as the number of machine grows,
a near linear speedup in the number of machines can
be achieved for our distributed algorithm. Further-
more, as will be demonstrated in the main theory, in
order to make the information loss caused by the data
parallelism negligible, the appropriate choice of m can
be as large as O(

p
N), which implies a time complexity

of O(d2
p
N) on each machine. This suggests that the

proposed algorithm has a lower time complexity while
attaining the same statistical rate as the centralized
method.
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4 MAIN THEORY

In this section, we establish the main theory for our
distributed LDA algorithm. Before we present the
main result of this paper, we first lay out some neces-
sary assumptions.

We make the following assumptions on the covariance
matrix and the precision matrix of the two normal
distributions.

Assumption 4.1 There exists a constant K � 1,
such that the maximum and minimal eigenvalues of
⌃

⇤ can be bounded as follows:

1/K  �
min

(⌃⇤)  �
max

(⌃⇤)  K.

Furthermore we assume that K does not increase as d
goes to infinity.

Assumption 4.2 ⇥

⇤ belongs to the following set:

U(s0,M) =
n

⇥ : ⇥ � 0, k⇥k
1

 M,

max
1jd

d
X

k=1

1(⇥jk 6= 0)  s0
o

.

Assumption 4.2 is a common assumption made in the
literature of sparse precision matrix estimation (Cai
et al., 2011). It implies that the data can be viewed
as generated from a sparse Gaussian graphical model,
where the maximum degree of the graph is no larger
than s0. Note that Assumption 4.2 immediately im-
plies that k✓⇤

j k1  k⇥⇤k
1

 M for all j 2 {1, 2, . . . , d}.

In most literatures on high dimensional sparse estima-
tion (Bickel et al., 2009; Negahban et al., 2009), it is
assumed that the sample covariance matrix satisfies
the restricted eigenvalue condition. Following is the
definition of the restricted eigenvalue condition that
we use in this paper.

Definition 4.3 A matrix A 2 Rd⇥d satisfies the re-
stricted eigenvalue (RE) condition with parameters
(s,↵, �) if and only if for any index set S with |S|  s,
for any vector v in the cone

C(S,↵) = {v 2 Rd : kvSck
1

 ↵kvSk1},

we have v

>
Av � �kvk2

2

.

With this definition, the assumption made on the sam-
ple covariance matrices can be presented as follows.

Condition 4.4 For each l 2 {1, 2, . . . ,m}, b

⌃

(l) satis-
fies the restricted eigenvalue condition with respect to
the parameters (max{s, s0}, 1,�

min

(⌃⇤)/16).

The following proposition shows that Condition 4.4 is
satisfied with high probability when the sample size n
is su�ciently large.

Proposition 4.5 If n > max{s, s0}r�1C
1

K3 log d,
Condition 4.4 is satisfied with probability at least 1 �
mC

2

exp(�C
3

n)�2m/d, where C
1

, C
2

and C
3

are ab-
solute constants.

Now we are ready to present the main theorem bound-
ing the estimation error of �̄.

Theorem 4.6 Under Assumptions 4.1, 4.2 and Con-
dition 4.4, if � = C

1

K2

p

log d/(rn)k�⇤k
1

, �0 =

C
2

K2M
p

log d/n for some C
1

and C
2

, and t is chosen
as

t=C 0M

r

log d

N
k�⇤k

1

+C 00 max(s, s0)M
m log d

N
k�⇤k

1

,

(4.1)

where C 0 and C 00 are absolute constants, then the fol-
lowing inequality holds with probability at least 1 �
18m/d� 4/d:

k�̄ � �⇤k1  C 0M

r

log d

N
k�⇤k

1

+ C 00 max(s, s0)M
m log d

N
k�⇤k

1

. (4.2)

Moreover, with probability at least 1�18m/d�4/d we
have

k�̄ � �⇤k
2


p
sC 0M

r

log d

N
k�⇤k

1

+
p
sC 00 max(s, s0)M

m log d

N
k�⇤k

1

, (4.3)

and with probability at least 1� 18m/d� 4/d we have

k�̄ � �⇤k
1

 sC 0M

r

log d

N
k�⇤k

1

+ sC 00 max(s, s0)M
m log d

N
k�⇤k

1

. (4.4)

The proof of Theorem 4.6 is in Appendix A. It is
worth noting that in the linear discriminant analysis,
only the direction of �̄ a↵ects the discrimination, while
the norm of �̄ does not matter. Therefore, the rela-
tive error, i.e., the ratio of the norm of �̄ � �⇤ to the
norm of �⇤, can better characterize the accuracy of
the estimator.

Remark 4.7 The centralized estimator can be re-
garded as a special case of the biased estimator (3.1)
where m = 1 and n = N . Hence by Lemma B.4 the er-
ror bound of the centralized estimator can be obtained:
with probability at least 1� 6/d we have

kb�centralized � �⇤k
1

 sCK

r

log d

N
k�⇤k

1

,
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where C is a constant. Compared with our distributed
estimator, it can be seen that the error bound of the
centralized estimator is of the same order with the first
term of our proposed estimator, which is in the order
of O(

p

log d/N). And the second term of the error
bound of our estimator is in the order of O(m log d/N),
reflecting the loss caused by the data distribution and
one round of communication.

Corollary 4.8 Under the same assumptions with
Theorem 4.6, if the number of machines m is chosen
to be

m . 1

max(s, s0)

s

N

log d
, (4.5)

then with probability at least 1� 18m/d� 4/d the fol-
lowing inequalities holds:

k�̄ � �⇤k1  CM

r

log d

N
k�⇤k

1

,

k�̄ � �⇤k
2


p
sCM

r

log d

N
k�⇤k

1

,

k�̄ � �⇤k
1

 sCM

r

log d

N
k�⇤k

1

,

where C is a constant.

Remark 4.9 Generally speaking, the distributed es-
timation may cause information loss and lead to a
worse estimation error bound. However, Corollary 4.8
suggests that if the number of machines m satisfies
m .

p

N/ log d/max(s, s0) when N, d, s and s0 grow,
the information loss is negligible and the distributed
algorithm can attain the same rate of convergence as
the centralized algorithm.

In fact, the `1 estimation error bound in Theorem 4.6
ensures that the estimated parameter vector correctly
excludes all non-informative variables and includes all
useful variables provided that

|�⇤
j | >C 0M

r

log d

N
k�⇤k

1

+ C 00 max(s, s0)M
m log d

N
k�⇤k

1

,

where C 0 and C 00 are the same as in Theorem 4.6.
Therefore, in order to achieve the model selection con-
sistency, it is su�cient to assume that the minimum
signal strength �

min

:= minj2S |�⇤
j | is not too small.

More specifically, we have the following theorem:

Theorem 4.10 Under the same assumptions with
Theorem 4.6, if

�
min

>C 0M

r

log d

N
k�⇤k

1

+ C 00 max(s, s0)M
m log d

N
k�⇤k

1

, (4.6)

where C 0 and C 00 are those appeared in Theorem 4.6,
we have with probability higher than 1� 18m/d� 4/d
that sign(�̄j) = sign(�⇤

j ) for any j 2 {1, 2, . . . , d}.

Similar to Corollary 4.8, we have the following conclu-
sion:

Corollary 4.11 Under the same assumptions with
Theorem 4.10, if the following two condition holds:

m . 1

max(s, s0)

s

N

log d
, �

min

> CM

r

log d

N
k�⇤k

1

(4.7)

for some C, then we have with probability at least 1�
18m/d � 4/d that sign(�̄j) = sign(�⇤

j ) for any j 2
{1, 2, . . . , d}.

Remark 4.12 In Cai and Liu (2011), the authors
did not provide theoretical guarantee on the support
recovery. Mai et al. (2012) showed that the condi-
tion on �

min

needed for model selection consistency is
�
min

& s
p

log(sd)/N . The condition for the ROAD
estimator proposed in Fan et al. (2012) to satisfy the
model selection consistency is �

min

&
p

log d/N (Ko-
lar and Liu, 2015), which is proved to be minimax opti-
mal. It is obvious that our condition implied by Corol-
lary 4.11 matches the minimax lower bound in Kolar
and Liu (2015) and is better than Mai et al. (2012).
However, for the ROAD estimator, a very stringent
irrepresentable condition is required for the model se-
lection consistency to hold. For our algorithm, the ir-
representable condition is not required.

5 EXPERIMENTS

In this section, we verify the performance of the dis-
tributed LDA algorithm using both synthetic data and
real data. We compared it with the centralized sparse
LDA estimator, and naively averaged sparse LDA es-
timator. In the centralized SLDA, all samples are col-
lected in one machine and the model is estimated by
Cai and Liu (2011). In the naively averaged SLDA
estimator, we apply Cai and Liu (2011) to the data
on each machine to obtain local estimators. The local
estimators are directly averaged without debiasing. In
other words, the naively averaged SLDA estimator can
be written as b�

n

= (
Pm

l=1

b�(l))/m.

5.1 Synthetic Data Experiments

The synthetic data are generated by setting ⌃

⇤ and
µ

1

,µ
2

as follows: ⌃

⇤ 2 Rd⇥d with d = 200, and
⌃⇤

jk = 0.8|j�k| for all j, k 2 {1, . . . , d}. Addition-

ally, we choose µ
1

,µ
2

2 Rd as µ
1

= 0 and µ
2

=
(1, 1, . . . , 1, 0, 0, . . . , 0)>, where the number of 1’s is
10. It is easy to get that �⇤ is a sparse vector with
11 nonzero entries. We set r = 0.5, which means that
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Figure 1: The F
1

score and estimation error (in `
2

and `1 norms) of the proposed estimator versus the centralized
estimator and the naive averaged estimator when the total sample size N is fixed as 10000.
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Figure 2: The F
1

score and estimation error (in `
2

and `1 norms) of the proposed estimator versus the centralized
estimator and the naive averaged estimator when the sample size on each machine n is set to 200.

there are equal number of samples from the two nor-
mal distributions on each machine.

We use the following metrics to evaluate the perfor-
mance of algorithms for comparison: the `

2

and `1
norms of parameter estimation error. Additionally, to
measure the support recovery, F

1

score is used to mea-
sure the overlap of estimated supports and true sup-
ports. The definition of F

1

score is as follows

F
1

=
2 · precision · recall
(precision + recall)

,

where precision = | supp(�̄) \ supp(�⇤)|/| supp(�̄)|,
recall = | supp(�̄) \ supp(�⇤)|/| supp(�⇤)|, where �̄
is some estimator. Here | · | is the cardinality of a set.

For the centralized estimator and the naively averaged
estimator, there is one regularization parameter �. By
the theoretical result, a proper choice of � should be
in the order of O(

p

N�1 log d) for centralized estima-
tor, and O(

p

n�1 log d) for naively averaged estimator.

Therefore, we set � = C
p

N�1 log d (or C
p

n�1 log d)
and tune C by grid search. For the proposed estima-
tor, other than �, there are two more parameters to
be tuned: �0 and t. The theoretical result reveals that
�0 should be in the order of O(

p

n�1 log d). Thus, we
simply set �0 = �. The parameter t is tuned in a simi-
lar way as the tuning of �. We report the best results
for all methods for the sake of fairness.

To investigate the e↵ect of number of machines m, we

fix the total sample size N = 10000 and vary the num-
ber of machines. Figure 1 shows how the F

1

score and
estimation error (in `

2

and `1 norm) of the proposed
estimator change as the number of machine grows.
The widths of the curves represent the standard devi-
ations of metrics such as F

1

scores and `
2

, `1 norms.
The standard deviations are obtained after repeating
the experiments 20 times.

From Figure 1, it can be seen that the proposed dis-
tributed LDA algorithm is comparable to the central-
ized LDA estimator in both support recovery and pa-
rameter estimation when m is small, while the naive
averaged estimator is much worse. Moreover, we can
see that the estimation error of distributed LDA will
be larger than that of centralized LDA as m surpasses
a certain threshold. This is consistent with the result
of Theorem 4.6. That is, if m is too big, the domi-
nating term in the estimation error bound will be the
second term, which depends on m.

Next we focus on the e↵ect of averaging. We increase
the number of machines m linearly as the total sam-
ple size N , that is, the sample size on each machine
n is fixed. More specifically, we choose n = 200. Fig-
ure 2 displays the F

1

score, estimation error of our
estimator, naively averaged estimator and centralized
estimator in terms of `

2

and `1 norms. We can see
that the performance of distributed LDA is compara-
ble to that of centralized LDA, while the performance
of naively averaged estimator is much worse. We can
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Table 1: The computation time of distributed LDA vs. centralized LDA (m = 1 indicates centralized algorithm).

m 1 20 40 60 80 100

time (in second) 863.4 48.37 33.65 21.87 15.46 10.38

Table 2: Result of Real Data Experiments: Misclassification rates of di↵erent methods

m Centralized SLDA Naive Averaged SLDA Distributed SLDA

4 0.208± 0.012 0.329± 0.035 0.220± 0.017

also observe that as N grows linearly with respect to
m (i.e., n is fixed), the estimation error of distributed
LDA decreases slower than that of centralized LDA.
This is consistent with what Theorem 4.6 suggests: in
(4.2) and (4.3), if n is fixed and m is growing, the first
term of the error bounds will decrease because it is of
the order O(1/

p
N). However, the second term in the

error bounds will not decrease because it depends on
m/N = 1/n. Therefore, the total estimation error of
our algorithm will converge to a positive constant.

The empirical computation time of distributed LDA
and centralized LDA are summarized in Table 1. We
set d = 200, N = 106 and vary m between 20 and 100.
For distributed LDA algorithm, we only take into ac-
count the time used in one local machine, rather than
the total CPU time consumed by all machines, because
the local computations are carried out in parallel. The
experiment platform is Linux operating system with
2.8GHz CPU. From Table 1 we can see that the dis-
tributed algorithm has lower time cost than the cen-
tralized algorithm. Furthermore, Table 1 also demon-
strates a near linear speedup with the number of ma-
chines, which is consistent with the time complexity
analysis in Section 3.

5.2 Real Date Experiments

To verify the e↵ectiveness of the proposed algorithm
on real datasets, we use the Heart Disease dataset1 to
conduct the experiment. This dataset contains infor-
mation of 920 heart disease patients across 4 hospitals.
For each patient, there are 13 attributes associated,
including gender, age, laboratory test results, etc. Ev-
ery patient is labeled with the diagnosis result, i.e.,
whether he or she is diagnosed as heart disease. In the
preprocessing step, we extend all categorical attributes
into binary dummy variables. For the missing values in
any numeric attributes in the dataset, we replace them
with the average value of the attribute that it belongs
to. After the preprocessing, we get 920 entries, each
with 22 numerical attributes.

The dataset is naturally divided into 4 parts by the

1https://archive.ics.uci.edu/ml/datasets/Heart+Disease

hospital where each patient is diagnosed. We consider
each part as the local data stored in one machine. In
every part, we randomly choose half of the data as
the training set and the remaining half as the test set.
To get a proper choice of parameters, as in the syn-
thetic data experiment, we set � = C

p

N�1 log d (or

C
p

n�1 log d), �0 = � and use 5-fold cross validation
on the training set to tune C and t. After the training
phase, we test the misclassification rate of classifiers
obtained by di↵erent methods on the test set. The ex-
periment is repeated 10 times (i.e., training and test
set splitting) and the averaged misclassification rates
with their standard deviations are reported in Table
2. It can be seen that the proposed method greatly
decreases the misclassification rate compared with the
naive averaged estimator, and achieves a comparable
performance with the centralized estimator. This ver-
ifies the e↵ectiveness of our algorithm on real data.

6 CONCLUSIONS AND FUTURE
WORK

We proposed a communication e�cient distributed al-
gorithm for sparse linear discriminant analysis in the
high dimensional regime. The key idea is constructing
a local debiased estimator on each machine and aver-
aging them over all machines. We addressed an impor-
tant question that how to choose the number of ma-
chines such that the aggregated estimator will attain
the same convergence rate as the centralized estima-
tor. Experiments on both synthetic and real datasets
support our theory. In the future, we will extend our
algorithm and theory to multi-class sparse LDA.
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