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Abstract

This paper considers the quantification of the
prediction performance in Gaussian process
regression. The standard approach is to base
the prediction error bars on the theoretical
predictive variance, which is a lower bound
on the mean square-error (MSE). This ap-
proach, however, does not take into account
that the statistical model is learned from the
data. We show that this omission leads to a
systematic underestimation of the prediction
errors. Starting from a generalization of the
Cramér-Rao bound, we derive a more accu-
rate MSE bound which provides a measure
of uncertainty for prediction of Gaussian pro-
cesses. The improved bound is easily compu-
ted and we illustrate it using synthetic and
real data examples.

1 Introduction

In this paper we consider the problem of learning a
function f(x) from a dataset DN = {xi, yi}Ni=1 where

y = f(x) + ε ∈ R. (1)

The aim is to predict f(x?) at a test point x?. In ma-
chine learning, spatial statistics and statistical signal
processing, it is common to model f(x) as a Gaus-
sian process (GP) and ε as an uncorrelated zero-mean
Gaussian noise (Bishop 2006; Murphy 2012; Pérez-
Cruz et al. 2013; Stein 1999). This probabilistic frame-
work shares several properties with kernel and spline-
based methods (C. Rasmussen and C. Williams 2006;
Schölkopf and Smola 2002; Suykens et al. 2002). One
of the strengths of the GP framework is that both a
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predictor f̂(x?) and its error bars are readily obtained
using the mean and variance of f(x?). This quantifi-
cation of the prediction uncertainty is valuable in itself
but also in applications that involve decision making,
e.g. in the exploration-exploitation phase of active le-
arning and control (Deisenroth, Fox, et al. 2015; Dei-
senroth and C. Rasmussen 2011; Likar and Kocijan
2007). Another recent example is Bayesian optimiza-
tion techniques using Gaussian processes (Shahriari et
al. 2016).

In general, however, the model for f(x) is not fully
specified but contains unknown hyperparameters, de-
noted θ, that can be learned from data. Plugging an
estimate θ̂ into the predictor f̂(x?) will therefore in-
flate its errors due to the uncertainty of the learned
model itself. In this case the standard error bounds
will systematically underestimate the actual prediction
errors. One possibility is to assign a prior distribu-
tion to θ and marginalize out the parameters from
the posterior distribution of f̌? (C. K. I. Williams and
C. E. Rasmussen 1996). While conceptually straight-
forward, this approach is challenging to implement in
general as it requires the user to choose a reasonable
prior distribution and computationally demanding nu-
merical integration techniques.

Our contribution in this paper is the derivation of
more accurate error bound for prediction after lear-
ning, using a generalization of the Cramér-Rao Bound
(CRB) (Cramér 1946; Rao 1945). The bound is com-
putionally inexpensive to implement using standard
tools in the GP framework. We illustrate the bound
using both synthetic and real data.

2 Problem formulation and related
work

We consider a general input space x ∈ X . To establish
the notation ahead we write the Gaussian process and
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the vector of hyperparameters as

f(x) ∼ GP (mα(x), kβ(x,x′)) and θ =




α
β
σ2


 , (2)

where σ2 denotes the variance of ε in (1). The vec-
tors α and β parameterize the mean and covariance
functions, mα(x) and kβ(x,x′), respectively. For an
arbitrary test point x? we write f? = f(x?) and con-
sider the mean-square error

MSE
(
f̂?

)
, E

[
|f? − f̂?|2

]
,

where the expectation is taken with respect to f? and
the data y. When θ is given, the optimal predictor is

f̌?(θ) = m? + wT(y−m), (3)

where w =
(
K + σ2I

)−1 k?, m? = mα(x?) and
m = [m(x1) · · ·m(xN )]T. In addition, k? =
[kβ(x?,x1) · · · kβ(x?,xN )]T and K = {kβ(xi,xj)}i,j .
Eq. (3) is equal to the mean of the predictive distri-
bution p(f?|y,θ) and is a function of both y and θ
(C. Rasmussen and C. Williams 2006). The minimum
MSE then follows directly from the predictive variance,
denoted σ2

?|y(θ). Here, however, we provide an alter-
native derivation based on a generalization of the CRB
(Gill and Levit 1995; Van Trees and Bell 2013 [1968];
Zachariah and Stoica 2015). This tool will also enable
us to tackle the general problem considered later on.

Result 1. When θ is known,

MSE
(
f̂?

)
≥ k?? − kT

?

(
K + σ2I

)−1 k?︸ ︷︷ ︸
=σ2

?|y
(θ)

, (4)

where k?? = kβ(x?,x?).

Proof. The Bayesian Cramér-Rao Bound (BCRB) is
given by

MSE
(
f̂?

)
≥ J−1

? ,

where J? , E
[(

∂
∂f?

ln p(y, f? |θ)
)2
]
is the Bayesian

information of f? (Van Trees and Bell 2013 [1968]).
Using the chain rule, ln p(y, f? |θ) = ln p(f? |y,θ) +
ln p(y |θ), we obtain

∂

∂f?
ln p(y, f?|θ) = ∂

∂f?
ln p(f?|y,θ) + 0

= ∂

∂f?

(
−1

2 ln(2πσ2
?|y)− 1

2σ2
?|y

(f? − f̌?(θ))2

)

= −σ−2
?|y

(
f? − f̌?(θ)

)
,

(5)

under the assumptions made. Then the Bayesian in-
formation equals

J? = E
[
σ−4
?|y

(
f? − f̌?(θ)

)2
]

= 1
σ2
?|y
. (6)

Remarks: The lower bound (4) on the MSE, and the
corresponding minimum error bars for a predictor f̂?,
reflects the uncertainty of f? alone. The bound is at-
tained when f̂? coincides with (3) which depends on θ.
In general, however, θ is unknown and typically lear-
ned from the data. Then the bound (4) will not reflect
the additional errors of f̂? arising from the unknown
model parameters θ. The effect is a systematic un-
derestimation of the prediction errors. For illustrative
purposes we present an example with one-dimensional
inputs, see Example 1 below.
Example 1. Consider the Gaussian process (1) for
x ∈ R with a linear mean function and a squared-
exponential covariance function. That is, mα(x) = αx

and kβ(x, x′) = β2
0 exp

(
− 1

2β2
1
‖x− x′‖2

)
in (2). The

process is sampled at N = 10 different points and
the unknown hyperparameters are learned from the
dataset by maximizing the marginal likelihood, θ̂ =
arg maxθ

∫
p(y, f |θ)df , where the vector f contains

the N latent function values in the data.

Figure 1 illustrates a realization of f(x) along with
the predicted values f̂(x). The error bars are obtained
from (4) which was derived under the assumption of
θ being known. The bars severely underestimate the
uncertainty of the predictor since they remain nearly
constant along the input space and do not contain the
example realization of f(x).
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Figure 1: Predictions of f(x) using hyperparameters that
have been learned from data. The shaded error bars are
credibility regions corresponding to f̂(x)± 3σ?|y.
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A tighter MSE bound than (4) has been derived for
the special case in which β is assumed to be known
and the mean function is linear in the parameters, i.e.,
mα(x) = αTu(x) where u(x) is a given basis function
(Stein 1999). In the statistics literature, there have
been attempts to extend to the analysis to models in
which the covariance parameters β are unknown. The
results do, however, not generalize to nonlinear mα(x)
and are either based on computationally demanding
Taylor-series expansions or bootstrap techniques (Den
Hertog et al. 2006; Zimmerman and Cressie 1992).

The goal of this paper is to derive a computationally
inexpensive lower bound on the MSE that will provide
more accurate error bars on f̂? when θ is unknown.

3 Prediction errors after learning the
hyperparameters

In the general setting when θ is unknown we have the
following lower bound on the MSE.
Result 2. When θ is learned from y using an unbiased
estimator, we have that:

MSE(f̂?) ≥ σ2
?|y + gTM−1g, (7)

where
g = ∂

∂α
(m? −mTw) and

M = ∂mT

∂α
(K + σ2I)−1 ∂m

∂αT .

(8)

Comparing with (4), the nonnegative term gTM−1g ≥
0 is the additional error incurred due to the lack of
information about θ.

Remarks: Eq. (7) is the Hybrid Cramér-Rao Bound
which we abbreviate as HCRB(θ) , σ2

?|y + gTM−1g
(Rockah and Schultheiss 1987; Van Trees and Bell
2013 [1968]).

First, note that gTM−1g will be non-zero even in the
simplest models where the data has an unknown con-
stant mean, i.e., mα(x) ≡ α.

Second, eq. (7) depends on the unknown covariance
parameters β only via M and not through any gra-
dients as would be expected. As we show in the proofs
below, this is follows from the properties of the Gaus-
sian data distribution. In the special case of linear
mean functions, mα(x) = αTu(x), (7) coincides with
MSE of the universal kriging estimator which assumes
β to be known (Stein 1999).

Third, under standard regularity conditions, the max-
imum likelihood approach will yield estimates of θ
that are asymptotically unbiased and attain their cor-

responding error bounds (Van Trees and Bell 2013
[1968]).

Proof. The HCRB for f? is given by

MSE
(
f̂?

)
≥ (J? − JT

θ,?J−1
θ Jθ,?)−1, (9)

where the matrices are given by the hybrid information
matrix

J , E



[
∂ ln p(y,f?|θ)

∂f?
∂ ln p(y,f?|θ)

∂θ

][
∂ ln p(y,f?|θ)

∂f?
∂ ln p(y,f?|θ)

∂θ

]T



=
[
J? JT

θ,?

Jθ,? Jθ

]
.

(10)

To prepare for the subsequent steps, we introduce
u = [yT f?]T and let µ and Σ denote the joint mean
and covariance matrix respectively, i.e. u ∼ N (µ,Σ).
Next, we define the linear combiner

w̃T =
[
0 1

]
−wT [I 0

]

and note that

w̃T(u− µ) = w̃T
([

y
f?

]
−
[

m
m?

])
= f? − f̂?. (11)

Similarly, w̃T ∂µ
∂αT = ∂

∂αT w̃Tµ = gT.

To compute the block Jθ,? in (10), we first establish
the following derivatives:

∂

∂α
ln p(u|θ) = ∂µT

∂α
Σ−1(u− µ),

∂

∂βi
ln p(u|θ) = −1

2tr
{

Σ−1 ∂Σ
∂βi

}
+

+ 1
2(u− µ)TΣ−1 ∂Σ

∂βi
Σ−1(u− µ),

∂

∂σ2 ln p(u|θ) = −1
2tr
{

Σ−1 ∂Σ
∂σ2

}
+

+ 1
2(u− µ)TΣ−1 ∂Σ

∂σ2 Σ−1(u− µ)

∂

∂f?
ln p(u|θ) = −σ−2

?|yw̃
T(u− µ),

where the last equality follows from (5) and (11). Then
we obtain

E
[
∂

∂f?
ln p(u|θ) ∂

∂αT ln p(u|θ)
]

=

= −σ−2
?|yw̃

T E
[
(u− µ)(u− µ)T]Σ−1 ∂µ

∂αT

= −σ−2
?|yg

T
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E
[
∂

∂f?
ln p(u|θ) ∂

∂βi
ln p(u|θ)

]
=

= 1
2σ
−2
?|yw̃

T E[(u− µ)]︸ ︷︷ ︸
=0

tr
{

Σ−1 ∂Σ
∂βi

}

− 1
2σ
−2
?|yw̃

T E
[
(u−µ)(u−µ)TΣ−1 ∂Σ

∂βi
Σ−1(u−µ)

]

︸ ︷︷ ︸
=0

= 0.

Similarly, E
[
∂
∂f?

ln p(u|θ) ∂
∂σ2 ln p(u|θ)

]
= 0. There-

fore

JT
θ,? =

[
−σ−2

?|yg
T 0 0

]
. (12)

Next, using the distribution of u, Jθ is obtained via
Slepian-Bangs formula (Bangs 1971; Slepian 1954;
Stoica and Moses 2005):

{Jθ}i,j = ∂µT

∂θi
Σ−1 ∂µ

∂θj
+ 1

2tr
{

Σ−1 ∂Σ
∂θi

Σ−1 ∂Σ
∂θj

}
.

This yields a block-diagonal matrix

Jθ =



∂µT

∂α Σ−1 ∂µ
∂αT 0 0

0 ∗ ∗
0 ∗ ∗


 . (13)

where the right-lower block does not affect (9) due to
the zeros in (12). Inserting (12), (13) and (6) into (9)
then yields

MSE
(
f̂?

)
≥

(
σ−2
?|y−σ

−2
?|yg

T
(
∂µT

∂α
Σ−1 ∂µ

∂αT

)−1

gσ−2
?|y

)−1

= σ2
?|y + gT

(
∂µT

∂α
Σ−1 ∂µ

∂αT − σ
−2
?|yggT

)−1

g,

(14)
where the last equality follows from the matrix in-
version lemma. Using the properties of the block-
inverse of Σ, we show that the inner parenthesis equals
∂mT

∂α (K + σ2I)−1 ∂m
∂αT in Appendix B.

Remark: Result 2 is based on the framework in
Rockah and Schultheiss (1987), se also Van Trees and
Bell (2013 [1968]). This assumes that the bias of the
learning method θ̂ is zero. In Appendix A we pro-
vide an alternative proof of Result 2 that relaxes this
assumption.
Example 1. (cont’d) To illustrate the difference be-
tween (4) and (7), consider Figure 2. It shows the
same realization of f(x) as in Figure 1, along with the
predicted values f̂(x). The error bars are now obtai-
ned from (7) which takes into account that θ has to

be learned from the data. These bars clearly quantify
the errors more accurately and contain the realization
f(x), in contrast to the standard approach.
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Figure 2: Predictions of f(x) using hyperparameters that
have been learned from data. The dark shaded error bars
are regions corresponding to f̂(x)± 3

√
HCRB.

Example 2. (Time series prediction) Here we
consider a temporal process with an unknown linear
trend and periodicity (per) modeled by mean function
mα(x) = α1 + α2x, covariance kernel kper

β (x, x′) =
β2

1 exp
(
− 2
β2

2
sin2

(
π
β3
‖x− x′‖

)
+ 1

β2
4
‖x− x′‖2

)
and

unit noise level. In Figure 3 we show a single realiza-
tion of the process together with the prediction error
bars computed using both the predictive variance and
the HCRB. As can be seen, f(x) falls outside of the
credibility region provided by the standard method.
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Figure 3: Predictions of f(x) using hyperparameters that
have been learned from data. The dark shaded error bars
are regions corresponding to f̂(x)± 3

√
HCRB.
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4 Examples

We illustrate the HCRB and its practical utility by me-
ans of several examples. For the sake of visualization,
we have considered problems with one-dimensional in-
puts, but the HCRB is of course valid for any dimen-
sion of X . The first set of examples use synthetically
generated datasets in order to assess the accuracy of
the error bound. The final example uses real CO2
concentration data. We used the maximum likelihood
approach to learn θ in all examples but alternative
methods, such as cross-validation, could be considered
as well.

4.1 Synthetic data

First, we consider a process f(x) with the popular
squared-exponential covariance (SE) function

kSEβ (x, x′) = β2
1 exp

(
− 1

2β2
2
‖x− x′‖2

)
, (15)

where we assume both the signal variance β2
1 and

length scale β2 to be unknown. As mean function,
we assign the most basic model, a constant mean
mα(x) = α, where α is unknown. The unknown hy-
perparameters generating the data are denoted

θ0 =



α0
β0
σ2

0


 , where





α0 = 20,

β0 =
[
2 0.8

]T
,

σ2
0 = 22.

(16)

Figure 4 shows the empirical MSE of (3) after le-
arning the hyperparameters from N = 25 obser-
vations (obtained from 103 Monte Carlo iterations),
where f̂(α,β, σ2) denotes evaluating the predictor
using mean parameter α, covariance parameter β and
noise level σ2. We compare this error with the theo-
retical bounds given by (4) and (7). We see that the
bound HCRB(θ0) is tight as expected in this exam-
ple and that σ2

?|y(θ0) systematically underestimates
the errors. Similarly, when using estimated bounds
by inserting the learned hyperparameters θ̂ into (4)
and (7) the gap between σ2

?|y(θ̂) and HCRB(θ̂) not
extreme, but still present, with the latter giving a bet-
ter representation of the true error than the estimated
predictive variance.

Another simple but common mean function is the li-
near mean mα(x) = αx. Again, using a process with
the squared exponential covariance function,(15), with
hyperparameters β0 and noise level σ2

0 as in (16) but
with a linear mean function with α0 = 2, we evalu-
ate the empirical MSE (obtained by 103 Monte Carlo
samples) and the theoretical bounds in Figure 5. The
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Figure 4: MSE of predictors along x ∈ X using learned hy-
perparameters and the bounds (4) and (7). The red curves
show the true and estimated HCRB, based on θ0 and θ̂,
respectively. In blue, we show predictive variances σ2

? | y
corresponding to θ0 and θ̂, respectively. The black dots
indicate the input sample locations x. f(x) has a constant
mean function, mα(x) = α and a squared exponential co-
variance function (15) with hyperparameters as in (16).

hyperparameters were learned using N = 25 observa-
tions. The gap between the bounds become even more
pronounced in predictions outside the sampled region.

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

HCRB(θ0)

HCRB(θ̂)

σ2
? | y(θ0)

σ2
? | y(θ̂)

f̂(α̂,β0, σ
2
0)

f̂(θ̂)

Figure 5: MSE of predictors using learned hyperparame-
ters and the bounds (4) and (7). Here f(x) has a linear
mean function, mα(x) = αx and a squared exponential co-
variance function (15) with α0 = 2, and β0 and σ2

0 as in
(16).

Next, we consider an example inspired by frequency
estimation in colored noise, which is a challenging pro-
blem. We model a process f(x) using a sinusoid mean
function

mα(x) = α1 sin (α2x+ α3) . (17)

with unknown amplitude, frequency and phase, and a
squared exponential covariance function (15). Here,
we let α0 =

[
3 2 π/4

]T, β0 =
[
0.5 3

]T and
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σ2
0 = 0.52. The process was sampled at 25 non-

uniformly spaced input points, cf. Firuge 6. Note how
the conditional variance σ2

? | y severly underestimates
the uncertainty in the predictions between −5 and −3,
but how the HCRB, even when estimated from data,
provides a much more accurate bound.
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Figure 6: Empirical MSE and theoretical and estima-
ted lower bound on MSE for a process f(x) with a si-
nusoidal mean function mα(x) = α1 sin (α2x+ α3) and
squared exponential covairance function (15), with α0 =[
3 2 π

4
]T, β0 =

[
0.52 3

]T and σ2
0 = .52.

4.2 Marginalizing the mean parameters

For the special case in which the mean function is
linear in the parameters, that is, mα(x) = αTu(x),
it is possible to consider an alternative parameteriza-
tion: A Gaussian hyperprior α ∼ N (0,diag(β̃)) can
be assigned with positive covariance parameters β̃. By
marginalizing out α from f(x), we then obtain an ad-
ditional term to the covariance function k

β̃
(x,x′) =

uT(x)diag(β̃)u(x′) where β̃ is augmented to the hy-
perparameters. Correspondly, the mean function be-
comes m(x) ≡ 0, which is a common assumption in
the Gaussian process literature (C. Rasmussen and C.
Williams 2006). This model parameterization will the-
refore have an alternative predictive variance σ2

?|y that
captures the uncertainty of the linear mean parame-
ters.

To study the effect of this alternative parameteriza-
tion on the bounds and prediction, we consider a li-
near trend mα(x) = α1 + α2x along with kβ(x, x′) =
kSEβSE(x, x′) as given in (15). The data was generated
according to this model and the HCRB is evaluated in
Figure 7. The marginalized model is here m(x) ≡ 0
and kSEβSE(x, x′) + kβaff(x, x′), where

kβaff(x, x′) = β1 + β2xx
′

corresponds to the unknown linear mean function. The

predictive variance of this model was evaluated lear-
ning its hyperparameters using data from the original
model and inserting them into σ2

?|y.

For the special case in which only βaff is learned, the
correspondence between σ2

?|y and HCRB is striking in
Figure 7. In this case, also the the predictors, using the
original and marginalized models, respectively, per-
form nearly identically. When all hyperparameters are
learned in the original and marginal models, respecti-
vely, the empirical σ2

?|y turns out to be more accurate
than the empirical HCRB in the extremes. The re-
sults suggest that for linear mean functions there is
a potential advantage in using the marginalized mo-
del to assess the prediction accuracy. However, in this
case we also note that the performance of the predic-
tor based on the marginalized model is degraded in
comparison to that based on the original model.

4.3 CO2 concentration data

With the previous examples in mind, we now consi-
der real CO2 concentration data1 analyzed in C. Ras-
mussen and C. Williams (2006). The data exhibits
a trend as well as periodicities. These features can
be modeled using the mean and covariance functi-
ons considered in the previous example. In addition,
to capture smooth variations as well as erratic pat-
terns, we consider using a squared-exponential ker-
nel kSE(x, x′) and a rational quadratic (RQ) kernel
kRQβ (x, x′) = β2

1

(
1 + 1

2β2β2
3
‖x− x′‖2

)−β3
. The final

covariance function can be written as:

kβ(x, x′) = kSEβ (x, x′) + kperβ (x, x′) + kRQβ (x, x′).

In this example, the hyperparameters are learned using
monthly data from the years 1995 to 2003. The pre-
diction error bars using the predictive variance and
HCRB are plotted in Figure 8. Using validation data
from 2004 to March 2016 we assess the error bars. As
can be seen several data points fall outside of standard
approach fall outside of the 99.7% credibility region
but are contained in the HCRB region.

5 Discussion

We used the Hybrid Cramér-Rao Bound as a tool to
analyze the prediction performance of Gaussian pro-
cess regression after learning. When comparing the
new bound with the commonly used predictive vari-
ance we showed that the latter will systematically un-
derestimate the minimum MSE, even for the simplest
datasets with unknown constant mean. This leads to

1ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_
mlo.txt
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Figure 7: A comparison between bounds and MSE for an original and marginalized data model. Left: The corresponding
HCRB and predictive variance. Right: MSE of corresponding predictors.
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Figure 8: Monthly average atmospheric CO2 concentration measured at Mauna Loa. GP model fit on data until December
2003. Error bars based on f̂(x)± 3σ?|y and f̂(x)± 3

√
HCRB.

incorrect prediction error bars. The underestimation
gap arises from uncertainty of the hyperparameters
and we provide an explicit and general characteriza-
tion of it. The resulting HCRB is a simple closed-form
expression and computationally cheap to implement.

In the examples we showed that the HCRB provides
a tighter lower bound of the MSE for the standard
predictor than the nominal predictive variance. The
HCRB is easily computed using the quantities in the
predictor itself and provides more accurate error bars,
even when using estimated hyperparameters. In future
work, we will investigate the accuracy of the estima-
ted HCRB further. For the special case of linear mean
functions, the results indicate a possible advantage of
using an alternative marginalized model and assessing
its corresponding BCRB using learned model parame-
ters.
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A Alternative derivation of the bound

Unlike Rockah and Schultheiss (1987) and Van Trees
and Bell (2013 [1968]), we will here prove Result 2 as-
suming only that the bias of the estimator with respect
to f̌? is invariant to θ. That is,

b(θ) , Ey
[
f̌?(θ)− f̂?

]
≡ b,

where b is a constant.

We begin by decomposing the MSE of an estimator f̂?:

MSE
(
f̂?

)
= E[|f? − f̂?|2]

= Ey
[
Ef |y

[
|f? − f̌? + f̌? − f̂?|2

]]

= σ2
?|y + Ey

[
|f̌? − f̂?|2

]
,

(18)

where f̌? = f̌?(θ) is the conditional mean (3) of f?.
Since the first term in (18), σ2

?|y, is independent of the
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estimator we will focus on finding a lower bound for
the second term.

For notational simplicity, define the score function of
the training data pdf as:

φ = ∂

∂θ
ln p(y|θ).

Then the correlation between the score function and
the estimation error is

g̃ = Ey
[
φ(f̌? − f̂?)

]

=
∫ [

∂

∂θ
p(y|θ)

]
(f̌? − f̂?) dy

=
∫

∂

∂θ

[
p(y|θ)(f̌? − f̂?)

]
− p(y|θ)

[
∂

∂θ
(f̌? − f̂?)

]
dy

= 0− Ey
[
∂

∂θ
f̌?

]

= −
[
gT 0 0

]T
.

The first set of zeros follows from

Ey
[
∂

∂β
f̌?

]
=
(
∂

∂β
wT
)

Ey [(y−m)] = 0.

The final zero follows in a similar manner.

The Fisher information matrix is given by Slepian-
Bangs formula:

J̃ , Ey
[
∂

∂θ
ln p(y|θ) ∂

∂θ
ln p(y|θ)T

]
=




M 0 0
0 ∗ ∗
0 ∗ ∗




The zeros therefore follow from the properties of the
Gaussian distribution. We now form the product
g̃TJ̃−1φ and the nonnegative quadratic function

0 ≤ Ey
[
|(f̌? − f̂?)− g̃TJ̃−1φ|2

]

= Ey
[
|f̌? − f̂?|2

]
+ g̃TJ̃−1g̃− 2g̃TJ̃−1 Ey

[
φ(f̌? − f̂?)

]

= Ey
[
|f̌? − f̂?|2

]
− g̃TJ̃−1g̃.

It follows that

Ey
[
|f̌? − f̂?|2

]
≥ g̃TJ̃−1g̃

Thus (18) is lower bounded by

MSE
(
f̂?

)
≥ σ2

?|y + gTM−1g,

which is Result 2.

B Proof of equality

Recall that µ =
[
mT m?

]T, Σ =
[
K + σ2I k?

kT
? k??

]
, w =

(
K + σ2I

)−1 k?, g = ∂
∂α (m? − w>m), and σ2

? | y =

k?? − kT
?

(
K + σ2I

)−1 k?. Then the following holds.

∂µT

∂α
Σ−1 ∂µ

∂αT − σ
−2
?|yggT = ∂mT

∂α
(K + σ2I)−1 ∂m

∂αT

Proof. Let Σy = K + σ2I.

∂µT

∂α
Σ−1 ∂µ

∂αT = ∂µT

∂α

[
Σy k?
kT
? k??

]−1
∂µ

∂αT

= ∂

∂α

[
mT m?

]
[
Σ−1
y + Σ−1

y k?σ−2
? | yk

T
?Σ−1

y −Σ−1
y k?σ−2

? | y
−σ−2

? | yk
T
?Σ−1

y σ−2
? | y

]
∂

∂αT

[
m
m?

]

= ∂

∂α

[
mT m?

] [Σ−1
y 0
0 0

]
∂

∂αT

[
m
m?

]
+ σ−2

? | y
∂

∂α

[
mT m?

] [wwT −w
−wT 1

]
∂

∂αT

[
m
m?

]

= ∂mT

∂α
Σ−1
y

∂m
∂αT + σ−2

? | y
∂

∂α
(m? −wTm) ∂

∂αT (m? −wTm)T

= ∂mT

∂α

(
K + σ2I

)−1 ∂m
∂αT + σ−2

? | yggT
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