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Abstract

We propose a unified framework for estimat-
ing low-rank matrices through nonconvex op-
timization based on gradient descent algo-
rithm. Our framework is quite general and
can be applied to both noisy and noiseless
observations. In the general case with noisy
observations, we show that our algorithm is
guaranteed to linearly converge to the un-
known low-rank matrix up to a minimax op-
timal statistical error, provided an appropri-
ate initial estimator. While in the generic
noiseless setting, our algorithm converges to
the unknown low-rank matrix at a linear rate
and enables exact recovery with optimal sam-
ple complexity. In addition, we develop a new
initialization algorithm to provide the desired
initial estimator, which outperforms existing
initialization algorithms for nonconvex low-
rank matrix estimation. We illustrate the
superiority of our framework through three
examples: matrix regression, matrix comple-
tion, and one-bit matrix completion. We also
corroborate our theory through extensive ex-
periments on synthetic data.

1 INTRODUCTION

Low-rank matrix estimation has broad applications
in many fields such as collaborative filtering (Srebro
et al., 2004). Numerous efforts have been made in
order to efficiently estimate the unknown low-rank
matrix, among which nuclear norm relaxation based
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methods (Srebro et al., 2004; Candès and Tao, 2010;
Rohde et al., 2011; Recht et al., 2010; Recht, 2011;
Negahban and Wainwright, 2011, 2012; Gui and Gu,
2015) are most popular. Although nuclear norm based
methods enjoy nice theoretical guarantees for recov-
ering low-rank matrices, the computational complex-
ities of these methods are very high. For example,
to estimate a rank-r matrix, most of these algorithms
require to compute a rank-r singular value decom-
position per-iteration, which is computationally pro-
hibitive for huge matrices. In order to get over such a
computational barrier, many recent studies proposed
to estimate the unknown low-rank matrix via ma-
trix factorization, or more generally speaking, non-
convex optimization. Specifically, for a rank-r matrix
X ∈ Rd1×d2 , it can be factorized as X = UV>, where
U ∈ Rd1×r, V ∈ Rd2×r, and such a reparametriza-
tion automatically enforces the low-rankness of the un-
known matrix. While matrix factorization makes the
optimization problem nonconvex, it can significantly
improve the computational efficiency. A series of work
(Jain et al., 2013; Zhao et al., 2015; Chen and Wain-
wright, 2015; Zheng and Lafferty, 2015; Tu et al., 2015;
Bhojanapalli et al., 2015; Park et al., 2016a,b) has been
carried out to analyze different nonconvex optimiza-
tion algorithms for various low-rank matrix estimation
problems.

In this paper, we propose a unified framework for non-
convex low-rank matrix estimation, which integrates
both optimization-theoretic and statistical analyses.
Instead of considering specific low-rank matrix esti-
mation problems, we consider general ones, which cor-
respond to optimizing a family of loss functions which
satisfies restricted strong convexity and smoothness
conditions (Negahban et al., 2009). We highlight our
major contributions as follows:

1. We propose a general algorithm, which is appli-
cable to both low-rank matrix estimation with noisy
observations and that with noiseless observations. We
establish the linear convergence rate to the unknown
low-rank matrix for our algorithm. In particular, for
noisy observations, our algorithm achieves statistical



A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation

error that matches the minimax lower bound (Negah-
ban and Wainwright, 2012; Koltchinskii et al., 2011).
While in the noiseless case, our algorithm enables ex-
act recovery of the global optimum (i.e., unknown low-
rank matrix) and achieves optimal sample complexity
(Recht et al., 2010; Tu et al., 2015).

2. We develop a new and generic initialization algo-
rithm to provide suitable initial estimator. We prove
that our initialization procedure relaxes the strin-
gent requirement on condition number of the objec-
tive function, assumed in recent studies (Bhojanapalli
et al., 2015; Park et al., 2016a,b), thereby resolving an
open question in Bhojanapalli et al. (2015).

3. We apply our unified framework to specific prob-
lems, such as matrix regression, matrix completion and
one-bit matrix completion. We establish the linear
convergence rates and optimal statistical error bounds
of our method for each examples. We also demonstrate
the superiority of our approach over the state-of-the
art methods via thorough experiments.

Notation. We use [d] to denote the index set
{1, 2, . . . , d}. For any index set Ω ⊆ [d1] × [d2], de-
note Ωi,∗ =

{
(i, j) ∈ Ω

∣∣ j ∈ [d2]
}

, and Ω∗,j =
{

(i, j) ∈
Ω
∣∣ i ∈ [d1]

}
. For any matrix A ∈ Rd1×d2 , we de-

note the i-th row and j-th column of A by Ai,∗ and
A∗,j , respectively. The (i, j)-th entry of A is denoted
by Aij . Denote the `-th largest singular value of A
by σ`(A). Let x = [x1, x2, · · · , xd]> ∈ Rd be a d-
dimensional vector. For 0 < q < ∞, denote the `q
vector norm by ‖x‖q = (Σdi=1|xi|q)1/q. As usual, let
‖A‖F , ‖A‖2 be the Frobenius norm and the spectral
norm of matrix A, respectively. The element-wise in-
finity norm of A is defined as ‖A‖∞ = maxi,j |Aij |.
Besides, we define the largest `2 norm of its rows as
‖A‖2,∞ = maxi ‖Ai,∗‖2.

2 RELATED WORK

In recent years, a surge of nonconvex optimization al-
gorithms for estimating low-rank matrices have been
established. For example, Jain et al. (2013) analyzed
the convergence of alternating minimization approach
for matrix regression and matrix completion. Zhao
et al. (2015) provided a more unified analysis by prov-
ing that, with a reasonable initial solution, a broad
class of nonconvex optimization algorithms, including
alternating minimization and gradient-type methods,
can successfully recover the unknown low-rank matrix.
However, they also required a stringent form of the re-
stricted isometry property that is similar to Jain et al.
(2013). Recently, Zheng and Lafferty (2015, 2016) an-
alyzed the gradient descent based approach for matrix
regression and matrix completion. They showed that
their algorithm is guaranteed to converge linearly to

the global optimum with an appropriate initial solu-
tion, and improves the alternating minimization algo-
rithm in terms of both computational complexity and
sample complexity. Tu et al. (2015) provided an im-
proved analysis of matrix regression via gradient de-
scent, compared to Zheng and Lafferty (2015), through
a more sophisticated initialization procedure and a re-
fined restricted isometry assumption on the measure-
ments.

The most related work to ours is Chen and Wain-
wright (2015); Bhojanapalli et al. (2015); Park et al.
(2016b). In detail, Chen and Wainwright (2015) pro-
posed a projected gradient descent framework to re-
cover the positive semidefinite low-rank matrices. Al-
though their work can be applied to a wide range of
problems, the iteration complexity derived from their
optimization framework is very high for many specific
examples. Bhojanapalli et al. (2015) proposed a fac-
torized gradient descent algorithm for nonconvex op-
timization over positive semidefinite matrices. They
proved that, when the general empirical loss function is
both strongly convex and smooth, their algorithm can
recover the unknown low-rank matrix at a linear con-
vergence rate. Built upon Bhojanapalli et al. (2015),
Park et al. (2016b) derived the theoretical guaran-
tees of the factorized gradient descent algorithm for
rectangular matrix factorization problem under simi-
lar conditions. Nevertheless, their analyses (Bhojana-
palli et al., 2015; Park et al., 2016b) are limited to the
optimization perspective, and do not support the case
with noisy observations. Our proposed framework, on
one hand, simplifies the conditions of nonconvex low-
rank matrix estimation to restricted strong convexity
and smoothness, and on the other hand, integrates
both optimization-theoretic and statistical analyses.
In fact, it achieves the best of both worlds, and pro-
vides a simple but powerful toolkit to analyze various
low-rank matrix estimation problems. Furthermore,
our proposed initialization algorithm relaxes the strict
constraint on condition number of the objective func-
tion, which is imposed by Bhojanapalli et al. (2015);
Park et al. (2016a,b), thereby resolving an open ques-
tion in Bhojanapalli et al. (2015).

We also note that in order to get rid of the disadvan-
tages of initialization procedure, Bhojanapalli et al.
(2016); Park et al. (2016c) proved that for matrix re-
gression, all local minima of the nonconvex optimiza-
tion based on matrix reparametrization are close to
a global optimum under the restricted isometry prop-
erty assumption. And for positive semidefinite matrix
completion, Ge et al. (2016) proved a similar result.
However, for general low-rank matrix completion such
as one-bit matrix completion, it is still unclear whether
the global optimality holds for all local minima.
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3 LOW-RANK MATRIX
ESTIMATION

In this section, we provide a general problem setup
for low-rank matrix estimation, together with several
illustrative examples to show the applicability of our
general framework.

3.1 General Problem Setup

Let X∗ ∈ Rd1×d2 be an unknown low-rank matrix with
rank r. Our goal is to estimate X∗ through a collection
of n observations. Let Ln : Rd1×d2 → R be the sample
loss function, which measures the fitness of any matrix
X with respect to the given observations. Thus, the
low-rank matrix estimation can be formulated as the
following optimization problem

min
X∈Rd1×d2

Ln(X), subject to X ∈ C, rank(X) ≤ r,

where C ⊆ Rd1×d2 is a feasible set, such that X∗ ∈ C.

In order to solve the low-rank matrix estimation prob-
lem more efficiently, following Jain et al. (2013); Tu
et al. (2015); Zheng and Lafferty (2016); Park et al.
(2016a), we reparameterize X as UV>, and solve the
following nonconvex optimization problem

min
U∈Rd1×r

V∈Rd2×r

Ln(UV>), subject to U ∈ C1,V ∈ C2, (3.1)

where C1 ⊆ Rd1×r, C2 ⊆ Rd2×r are the corresponding
rotation-invariant1 feasible sets implied by C. Suppose
X∗ can be decomposed as X∗ = U∗V∗>, we need to
ensure that U∗ ∈ C1 and V∗ ∈ C2.

3.2 Illustrative Examples

Here we briefly introduce matrix regression, matrix
completion and one-bit matrix completion as three ex-
amples, to demonstrate the applicability of our generic
framework.

Matrix Regression. In matrix regression (Recht
et al., 2010; Negahban and Wainwright, 2011), our goal
is to estimate the unknown rank-r matrix X∗ ∈ Rd1×d2
based on a set of noisy measurements y = A(X∗) + ε,
where A : Rd1×d2 → Rn is a linear operator such
that A(X∗) = (〈A1,X

∗〉, 〈A2,X
∗〉, . . . , 〈An,X

∗〉)>,
and ε is a noise vector with i.i.d. sub-Gaussian en-
tries with parameter ν. Specifically, each random ma-
trix Ai ∈ Rd1×d2 has i.i.d. standard normal entries.
As discussed before, in order to estimate the low-rank

1We say C1 is rotation-invariant, if for any A ∈ C1,
AR ∈ C1,where R is an arbitrary r-by-r orthogonal matrix.

matrix more efficiently, we consider the following non-
convex optimization problem

min
U∈Rd1×r

V∈Rd2×r

Ln(UV>) :=
1

2n
‖y −A(UV>)‖22.

Note that here the convex feasible sets C1 and C2 in
(3.1) are both Rd1×r, which give rise to an uncon-
strained optimization.

Matrix Completion. In the noisy matrix comple-
tion (Rohde et al., 2011; Koltchinskii et al., 2011; Ne-
gahban and Wainwright, 2012), our goal is to recover
the unknown rank-r matrix X∗ ∈ Rd1×d2 based on
a set of randomly observed noisy entries from X∗.
For instance, one uniformly observes each entry in-
dependently with probability p ∈ (0, 1). Specifically,
we represent these observations by a random matrix
Y ∈ Rd1×d2 such that

Yjk :=

{
X∗jk + Zjk, with probability p,

∗, otherwise,

where Z = (Zjk) ∈ Rd1×d2 is a noise matrix with i.i.d.
entries, such that each entry Zjk follows sub-Gaussian
distribution with parameter ν. Let Ω ⊆ [d1] × [d2] be
the index set of the observed entries, then we can esti-
mate the low-rank matrix X∗ by solving the following
nonconvex optimization problem

min
U∈Rd1×r

V∈Rd2×r

LΩ(UV>) :=
1

2p

∑
(j,k)∈Ω

(Uj∗V
>
k∗ − Yjk)2,

where p = |Ω|/(d1d2). Here the feasible sets C1
and C2 in (3.1) are defined as follow Ci =

{
A ∈

Rdi×r
∣∣ ‖A‖2,∞ ≤ γ

}
, where i ∈ {1, 2}, and γ > 0

is a constant, which will be defined in later analysis.

One-Bit Matrix Completion. In one-bit matrix
completion (Davenport et al., 2014; Cai and Zhou,
2013), we observe the sign of a random subset of noisy
entries from the unknown rank-r matrix X∗ ∈ Rd1×d2 ,
instead of observing the actual entries. In particular,
we consider one-bit matrix completion problem under
the uniform random sampling model (Davenport et al.,
2014; Cai and Zhou, 2013; Ni and Gu, 2016). Given
a differentiable function f : R → [0, 1] and an index
set Ω ⊆ [d1] × [d2], we observe the corresponding set
of entries from a binary matrix Y according to the
following probabilistic model:

Yjk =

{
+1, with probability f(X∗jk),

−1, with probability 1− f(X∗jk).
(3.2)

If f is the cumulative distribution function of −Zjk,
where Z = (Zjk) ∈ Rd1×d2 is a noise matrix with i.i.d.
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entries, then we can rewrite the above model as

Yjk =

{
+1, if X∗jk + Zjk > 0,

−1, if X∗jk + Zjk < 0.
(3.3)

One widely-used function is the logistic function
f(Xjk) = eXjk/(1 + eXjk), which is equivalent to the
fact that Zjk in (3.3) follows the standard logistic dis-
tribution. Given the function f , the objective loss
function for one-bit matrix completion is given by

LΩ(X) := −1

p

∑
(j,k)∈Ω

{
1
{
Yjk = 1

}
log
(
f(Xjk)

)
+ 1

{
Yjk = −1

}
log
(
1− f(Xjk)

)}
,

where p = |Ω|/(d1d2). Similar to the previous case,
we can efficiently estimate X∗ by solving a nonconvex
optimization problem through matrix factorization.

4 THE PROPOSED ALGORITHM

In this section, we propose an optimization algorithm
to solve (3.1) based on gradient descent. It is impor-
tant to note that the optimal solution to (3.1) is not
unique. To be specific, for any solution (U,V) to the
optimization problem (3.1),

(
UP,V(P−1)>

)
is also a

valid solution, where P ∈ Rr×r can be any invertible
matrix. In order to address this issue, following Tu
et al. (2015); Zheng and Lafferty (2016); Park et al.
(2016b), we consider the following optimization prob-
lem, which has an additional regularizer to force the
two factors to be balanced:

min
U∈C1,V∈C2

Ln(UV>) +
1

8
‖U>U−V>V‖2F . (4.1)

We propose a gradient descent algorithm to solve the
proposed estimator in (4.1), which is displayed in Al-
gorithm 1.

Algorithm 1 Gradient Descent (GD)

1: Input: Loss function Ln, step size η, number of
iterations T , initial solutions U0,V0.

2: for: t = 0, 1, 2, . . . , T − 1 do
3: Ut+1 = Ut − η

(
∇ULn(UtVt>)

− 1
2Ut(Ut>Ut −Vt>Vt)

)
4: Vt+1 = Vt − η(∇V Ln(UtVt>)

− 1
2Vt(Vt>Vt −Ut>Ut)

)
5: Ut+1 = PC1(Ut+1)
6: Vt+1 = PC2(Vt+1)
7: end for
8: Output: XT = UTVT>

Here PCi denotes the projection operator onto the fea-
sible set Ci, where i ∈ {1, 2}. Algorithm 1 is more gen-
eral than Tu et al. (2015); Zheng and Lafferty (2015,

2016), because it applies to a larger family of loss func-
tions. Therefore, various low-rank matrix estimation
problems including those examples discussed in Sec-
tion 3.2 can be solved by Algorithm 1. Compared with
the algorithm proposed by Park et al. (2016b), we in-
clude a projection step to ensure the estimators lie in
a feasible set, which is essential for many low-rank ma-
trix recovery problems such as matrix completion and
one-bit matrix completion.

As will be seen in our theoretical analysis, it is guaran-
teed to converge to the unknown parameters U∗ and
V∗, only if the initial solutions U0 and V0 are suffi-
ciently close to U∗ and V∗. Thus, inspired by Jain
et al. (2010), we propose an initialization algorithm,
which is displayed in Algorithm 2, to satisfy this re-
quirement. For any matrix X ∈ Rd1×d2 , we denote
its rank-r singular value decomposition by SVDr(X).
Moreover, if SVDr(X) = [U,Σ,V], then we denote the
best rank-r approximation of X by Pr(X) = UΣV>,
where Pr is a projection operator onto the rank-r ma-
trix subspace.

Algorithm 2 Initialization

1: Input: Loss function Ln, parameter τ , number of
iterations S.

2: X0 = 0
3: for: s = 1, 2, 3, . . . , S do
4: Xs = Pr

(
Xs−1 − τ∇Ln(Xs−1)

)
5: end for
6: [U

0
,Σ0,V

0
] = SVDr(XS)

7: U0 = U
0
(Σ0)1/2, V0 = V

0
(Σ0)1/2

8: Output: U0,V0

5 MAIN THEORY

In this section, we are going to present our main the-
oretical results for the proposed algorithms. To begin
with, we introduce some notations and facts to sim-
plify our proof.

Let the singular value decomposition (SVD) of X∗ be

X∗ = U
∗
Σ∗V

∗>
, where U

∗ ∈ Rd1×r, V
∗ ∈ Rd2×r are

orthonormal matrices, and Σ∗ ∈ Rr×r is a diagonal
matrix. Let σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 be the sorted
nonzero singular values of X∗, and denote the condi-
tion number of X∗ by κ, i.e., κ = σ1/σr. Besides, let

U∗ = U
∗
(Σ∗)1/2 and V∗ = V

∗
(Σ∗)1/2, then follow-

ing Tu et al. (2015); Zheng and Lafferty (2016), we
can lift the low-rank matrix X∗ ∈ Rd1×d2 to a positive
semidefinite matrix Y∗ ∈ R(d1+d2)×(d1+d2) in higher
dimension

Y∗ =

[
U∗U∗> U∗V∗>

V∗U∗> V∗V∗>

]
= Z∗Z∗>,
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where Z∗ is defined as Z∗ = [U∗; V∗] ∈ R(d1+d2)×r.
Observant readers may have already noticed that the
symmetric factorization of Y∗ is not unique. In or-
der to address this issue, it is convenient to define a
solution set, which can be seen as an equivalent class
of the optimal solutions. Thus, we define the solution
sets with respect to the true parameter Z∗ as

Z =
{

Z ∈ R(d1+d2)×r ∣∣ Z = Z∗R for some R ∈ Qr
}
,

where Qr denotes the set of r-by-r orthonormal matri-
ces. Note that for any Z ∈ Z, we have X∗ = ZUZ>V ,
where ZU and ZV denote the top d1 and bottom d2

rows of matrix Z ∈ R(d1+d2)×r, respectively.

Definition 5.1. Define the estimation error D(Z,Z∗)
as the minimal Frobenius norm between Z and Z∗ with
respect to the optimal rotation, namely

D(Z,Z∗) = min
Z̃∈Z
‖Z− Z̃‖F = min

R∈Qr

‖Z− Z∗R‖F .

Definition 5.2. We denote the local region around
optimum Z∗ with radius R as

B(R) =
{

Z ∈ R(d1+d2)×r
∣∣∣ d(Z,Z∗) ≤ R

}
.

Before we present our main results, we first lay out
several necessary conditions regarding the sample loss
function Ln. First, we impose two conditions on the
sample loss function Ln. These two conditions are
known as restricted strong convexity (RSC) and re-
stricted strong smoothness (RSS) conditions (Negah-
ban et al., 2009; Loh and Wainwright, 2013), assuming
that there are both quadratic lower bound and upper
bound, respectively, on the remaining term of the first
order Taylor expansion of Ln.

Condition 5.3 (Restricted Strong Convexity). For a
given sample size n, Ln is restricted strongly convex
with parameter µ, such that for all matrices X,Y ∈
Rd1×d2 with rank at most 3r

Ln(Y) ≥ Ln(X) + 〈∇Ln(X),Y −X〉+
µ

2
‖Y −X‖2F .

Condition 5.4 (Restricted Strong Smoothness).
Given a fixed sample size n, Ln is restricted strongly
smooth with parameter L, such that for all matrices
X,Y ∈ Rd1×d2 with rank at most 3r

Ln(Y) ≤ Ln(X) + 〈∇Ln(X),Y −X〉+
L

2
‖Y −X‖2F .

Both Conditions 5.3 and 5.4 can be verified for the
illustrative examples discussed in Section 3.2.

Next, we assume the gradient of the sample loss func-
tion at X∗ is upper bounded, in terms of spectral
norm.

Condition 5.5. For a given sample size n and toler-
ance parameter δ ∈ (0, 1), we let ε(n, δ) be the smallest
scalar such that with probability at least 1−δ, we have

‖∇Ln(X∗)‖2 ≤ ε(n, δ),

where ε(n, δ) depends on sample size n and δ.

Condition 5.5 is essential to derive the statistical error
of the estimator returned by our algorithm.

5.1 Results for the Generic Model

In this subsection, we first provide the theoretical
guarantees of our proposed algorithm for the generic
model, where the sample loss function Ln satisfies
Conditions 5.3, 5.4 and 5.5.

Theorem 5.6 (Gradient Descent). Recall that X∗ =
U∗V∗> is the unknown rank-r matrix. For any Z0 ∈
B(c2
√
σr), where c2 ≤ min{1/4,

√
2µ′/5(4L+ 1)}, if

the sample size n is large enough such that ε2(n, δ) ≤
c22µ
′σ2
r/(10c3r), where µ′ = min{µ, 1} and c3 =

2/L + 4/µ, then with step size η = c1/σ1, where
c1 ≤ min{1/(64L), 1/32}, the estimator at iteration
t of Algorithm 1 satisfies

D2(Zt+1,Z∗) ≤
(

1− c1µ
′

10κ

)
D2(Zt,Z∗) + ηc3rε

2(n, δ),

with probability at least 1 − δ. If we let ρ = 1 −
c1µ
′/(10κ), then the iterates {Zt}∞t=0 satisfy

d2(Zt,Z∗) ≤ ρtd2(Z0,Z∗) +
10c3r

µ′σr
ε2(n, δ),

with probability at least 1− δ.

Thus, it is sufficient to perform T = O
(
κ log(1/ε)

)
iterations for ZT to converge to a close neighbor-
hood of Z∗, where ε depends on the statistical error
term rε2(n, δ). Note that in Theorem 5.6, the step
size η is chosen according to 1/σ1. In practice, we
can set the step size as η = c′/‖Z0‖22, where c′ is
a small constant, since

√
σ1 ≤ ‖Z0‖2 ≤ 2

√
σ1 holds

as long as Z0 ∈ B(
√
σr/4). Moreover, the recon-

struction error ‖XT − X∗‖2F can be upper bounded
by Cσ1D

2(ZT ,Z∗), where C is a universal constant.
Therefore, XT is indeed a good estimator for X∗.

Theorem 5.7 (Initialization). Recall that X∗ =
U∗V∗> is the unknown rank-r matrix. Consider U0,
V0 produced in the initialization Algorithm 2, and let
X0 = U0V0>. If L/µ ∈ (1, 4/3), then with step size
τ = 1/L, we have

‖X0 −X∗‖F ≤ ρS‖X∗‖F +
2
√

3rε(n, δ)

L(1− ρ)
,

with probability at least 1− δ, where ρ = 2
√

1− µ/L
is the contraction parameter.
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Remark 5.8. According to Lemma 5.14 in Tu et al.
(2015), if we have ‖X0 − X∗‖F ≤ cσr, where c ≤
min{1/2, 2c2}, then the following inequality holds

d2(Z,Z∗) ≤
√

2− 1

2

‖X0 −X∗‖2F
σr

≤ c22σr.

Therefore, in order to satisfy the initial assumption
Z0 ∈ B(c2

√
σr) in Theorem 5.6, it is sufficient to make

sure X0 is close enough to the unknown rank-r ma-
trix X∗, i.e., ‖X0 −X∗‖F ≤ cσr. In addition, we can
assume the sample size n is large enough such that
ε(n, δ) ≤ cL(1 − ρ)σr/(2

√
3r), which has the same

order as the error bound in Theorem 5.6. Thus ac-
cording to Theorem 5.7, it is sufficient to perform
S = log(c′σr/‖X∗‖F )/ log(ρ) number of iterations in
Algorithm 2 to make sure ‖X0 − X∗‖F ≤ cσr. Fur-
thermore, our initialization algorithm only requires the
condition L/µ ∈ (1, 4/3), which significantly relaxes
the condition required in Park et al. (2016b), i.e.,

L

µ
≤ 1 +

σ2
r

4608‖X∗‖2F
.

5.2 Results for Specific Examples

The deterministic results in Theorem 5.6 are fairly ab-
stract in nature. Here, we consider the specific ex-
amples of low-rank matrix estimation in Section 3.2,
and demonstrate how to apply our general results in
Section 5.1 to these examples. In the following discus-
sions, we denote d = max{d1, d2}.

5.2.1 Matrix Regression

For matrix regression, we obtain the restricted strong
convexity and smoothness parameters µ = 4/9 and
L = 5/9. Moreover, we derive the upper bound of the
gradient ∇Ln at X∗ in terms of spectral norm.

Corollary 5.9. Suppose the previously stated condi-
tions are satisfied. There exist constants {ci}5i=1 such
that if we choose step size η ≤ c1/σ1, for the out-
put of Algorithm 1, we have, with probability at least
1− c2 exp

(
− c3d

)
, that

D2(Zt+1,Z∗) ≤
(

1− 2σrη

45

)
D2(Zt,Z∗) + ηc4ν

2 rd

n
,

for any initial solution Z0 ∈ B(c5
√
σr).

Remark 5.10. In the noisy case, Corollary 5.9 sug-
gests that, after O

(
κ log(n/(rd))

)
number of itera-

tions, the output of our algorithm achieves O(
√
rd/n)

statistical error, which matches the minimax lower
bound for matrix regression (Negahban and Wain-
wright, 2011). While in the noiseless case, in order
to satisfy restricted strong convexity and smoothness

conditions, we require the sample size n = O(rd),
which achieves the optimal sample complexity for ma-
trix regression (Recht et al., 2010; Tu et al., 2015).

5.2.2 Matrix Completion

For matrix completion, we consider a partially ob-
served setting, such that we only observe entries of
X∗ over a subset X ⊆ [d1] × [d2]. We assume a
uniform sampling model such that ∀(j, k) ∈ X , j ∼
uniform([d1]), k ∼ uniform([d2]). It is observed
in Gross (2011) that if X∗ is equal to zero in nearly all
elements, it is impossible to recover X∗ unless all of its
entries are sampled. In other words, there will always
be some low-rank matrices, which are too spiky (Ne-
gahban and Wainwright, 2012; Gunasekar et al., 2014)
to be recovered without sampling the whole matrix.
In order to avoid the overly spiky matrices in ma-
trix completion, we add an infinity norm constraint
‖X∗‖∞ ≤ α into our estimator, which is known as
spikiness condition (Negahban and Wainwright, 2012).
It is argued that the spikiness condition is much less
restricted than incoherence conditions (Candès and
Recht, 2009) imposed in exact low-rank matrix com-
pletion (Negahban and Wainwright, 2012; Klopp et al.,
2014).

Therefore, we consider the class of low-rank matrices
with infinity norm constraint as follows C(α) =

{
X ∈

Rd1×d2
∣∣‖X‖∞ ≤ α}. Based on C(α), we further define

feasible sets Ci = {A ∈ Rdi×r
∣∣ ‖A‖2,∞ ≤ √α}, where

i ∈ {1, 2}. In this way, for any U ∈ C1 and V ∈ C2, we
have UV> ∈ C(α). By imposing spikiness condition,
we can establish the restricted strong convexity and
smoothness conditions with parameters µ = 8/9 and
L = 10/9. Moreover, we obtain the upper bound of
‖∇Ln(X∗)‖2.

Corollary 5.11. Suppose the previously stated con-
ditions are satisfied and X∗ ∈ C(α). There exist
constants {ci}4i=1 such that if we choose step size
η ≤ c1/σ1, for the output of Algorithm 1, we have,
with probability at least 1− c2/d, that

D2(Zt+1,Z∗) ≤
(

1− 4σrη

45

)
D2(Zt,Z∗)

+ ηc3 max{ν2, α2}rd log d

p
,

for any initial solution Z0 ∈ B(c4
√
σr).

Remark 5.12. For matrix completion with noisy
observations, Corollary 5.11 suggests that after
O
(
κ log(n/(rd log d))

)
number of iterations, for the

standardized error term ‖XT−X∗‖F /
√
d1d2, our algo-

rithm attains O(
√
rd log d/n) statistical error, which

matches the minimax lower bound for matrix comple-
tion established in Negahban and Wainwright (2012);



Lingxiao Wang*, Xiao Zhang*, Quanquan Gu

Koltchinskii et al. (2011). While in the noiseless
case, in order to guarantee restricted strong convex-
ity and smoothness conditions, we require the sample
size n = O(rd log d), which obtains optimal sample
complexity for matrix completion (Candès and Recht,
2009; Recht, 2011; Chen et al., 2013).

5.2.3 One-Bit Matrix Completion

For one bit matrix completion, we establish the re-
stricted strong convexity and smoothness condition
with parameters µ = C1µα and L = C2Lα, where
C1, C2 are constants and µα, Lα satisfy

µα ≤ min

(
inf
|x|≤α

{
f ′2(x)

f2(x)
− f ′′(x)

f(x)

}
,

inf
|x|≤α

{
f ′2(x)

(1− f(x))2
+

f ′′(x)

1− f(x)

})
, (5.1)

Lα ≥ max

(
sup
|x|≤α

{
f ′2(x)

f2(x)
− f ′′(x)

f(x)

}
,

sup
|x|≤α

{
f ′2(x)

(1− f(x))2
+

f ′′(x)

1− f(x)

})
, (5.2)

where α is the upper bound of the absolute value for
every entry Xjk, and f(x) is the differential function in
(3.2). Given α and f(x), µα and Lα are fixed constants
which do not depend on dimension. For instance, we
have µα = eα/(1 + eα)2 and Lα = 1/4 for the logistic
function. Another important quantity is γα, which
reflects the steepness of the objective loss function
γα ≥ sup|x|≤α

{
|f ′(x)|/

(
f(x)(1 − f(x))

)}
. Moreover,

similar to the previous models, we obtain the upper
bound of ‖∇Ln(X∗)‖2.

Corollary 5.13. Suppose the previously stated con-
ditions are satisfied and X∗ ∈ C(α). A subset of en-
tries of the unknown matrix X∗ is uniformly sampled
with index set Ω, and the binary matrix Y in (3.2) is
generated based on the log-concave function f . There
exist constants {ci}4i=1 such that if we choose step size
η ≤ c1/σ1, for the output of Algorithm 1, with proba-
bility at least 1− c2/d, we have

D2(Zt+1,Z∗) ≤
(

1− µσrη

10

)
D2(Zt,Z∗)

+ ηc3 max{γ2
α, α

2}rd log d

p
,

for any initial solution Z0 ∈ B(c4
√
σr).

Remark 5.14. For one-bit matrix completion, Corol-
lary 5.13 suggests that after O

(
κ log(n/(rd log d))

)
number of iterations, for the standardized error
term ‖XT − X∗‖F /

√
d1d2, our algorithm obtains

O(
√
rd log d/n) statistical error, which matches the

minimax lower bound of one-bit matrix completion
problem provided by Davenport et al. (2014); Cai and
Zhou (2013).

6 NUMERICAL EXPERIMENTS

In this section, we perform experiments on synthetic
data to further illustrate the theoretical results of our
method. We consider three approaches for initializa-
tion: (a) One step SVD of ∇Ln(0) (One Step), which
has been used in Bhojanapalli et al. (2015); Park et al.
(2016a,b); (b) Random initialization (Random), which
is suggested by Bhojanapalli et al. (2016); Park et al.
(2016c); Ge et al. (2016); (c) Our proposed initial-
ization Algorithm 2. We investigate the convergence
rates of gradient descent under different initialization
approaches, and evaluate the sample complexity that
is required to recover the unknown low-rank matrices.
All the results are based on 30 trials.

Matrix Regression and Matrix Completion. For
matrix regression and matrix completion, we consider
the unknowing matrix X∗ in the following settings: (i)
d1 = 100, d2 = 100, r = 5; (ii) d1 = 200, d2 = 200, r =
10; and (iii) d1 = 300, d2 = 300, r = 20. In all these
settings, we first randomly generate U∗ ∈ Rd1×r,V∗ ∈
Rd2×r to get X∗ = U∗V∗>. Next, we generate mea-
surements based on their observation models, respec-
tively. For matrix regression, each entry of the ob-
servation matrix Ai follows i.i.d. standard Gaussian
distribution. For both problems, we consider both (1)
noisy case: the noise follows i.i.d. zero mean Gaussian
distribution with standard deviation σ = 0.1 · ‖X∗‖∞;
and (2) noiseless case.

To illustrate the convergence rate, we report the
squared relative error ‖X̂ − X∗‖2F /‖X∗‖2F and mean

squared error ‖X̂ − X∗‖2F /(d1d2) for matrix regres-
sion and matrix completion respectively. For differ-
ent settings, we generate n = 0.2 · d1d2 observations.
To illustrate the sample complexity, we consider the
empirical probability of exact recovery under different
sample size. We get the output X̂ of our algorithm
given n random observations, and a trial is considered
to be successful if the relative error is less than 10−3.
The convergence results under different initializations
in the setting (i) are illustrated in Figures 1(a) and
1(d), which confirm the linear convergence rate of our
algorithm. The results of empirical probability of ex-
act recovery with different initializations for matrix
regression in the setting (i) are displayed in Figure
1(b). We conclude that there exists a phase transi-
tion around n = 4rd, which implies that the sample
complexity n is linear with rd. In the noisy case, the
statistical error rates under our proposed initialization
are shown in 1(c) and 1(e). Since the optimization er-
ror is eventually dominated by the statistical error,
the total error converges to the statistical error rather
than zero. Other experimental results can be found in
the longer version of this paper.
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Figure 1: Simulation Results: (a)(d) Convergence rates for matrix regression and matrix completion in the
noiseless case, which implies the linear convergence rate of our algorithm; (b) Empirical probability of exact
recovery versus the rescaled sample size n/rd for matrix regression, which demonstrates the optimal sample
complexity; (c)(e) Statistical error for matrix regression and matrix completion in the noisy case respectively,
which confirms the statistical error bound; (f) Statistical error for one bit matrix completion under our proposed
initialization, which is consistent with our theory.

One Bit Matrix Completion. For one-bit ma-
trix completion, we consider the similar settings as
in (Bhaskar and Javanmard, 2015; Davenport et al.,
2014). We first generate the unknown low-rank ma-
trix as X∗ = U∗V∗>, where U ∈ Rd1×r,V ∈ Rd2×r
are randomly generated from a uniform distribution
on [−1/2, 1/2]. Then, we scale X∗ to make ‖X∗‖∞ =
α = 1. Here we consider the Probit model under uni-
form sampling, namely f(Xij) = Φ(Xij/σ) in (3.2),
where Φ is the CDF of the standard Gaussian distri-
bution. We set dimension d1 = d2 ∈ {100, 200}, rank
r ∈ {5, 10}, and noise σ = 0.18.

In order to measure the performance of our estimator,
we use the squared relative error which is defined as
‖X̂−X∗‖2F /‖X∗‖2F . The results are illustrated in Fig-
ure 1(f). It can be observed that the squared relative
error decreases as the percentage of observed entries
increases in all the settings. It also implies that under
the same percentage of observed entries, the squared
relative error decreases as the dimensionality increases,
which further confirms the statistical rate.

7 Conclusions

In this paper, we developed a unified framework for
estimating low-rank matrices, which integrates both
optimization-theoretic and statistical analyses. Our
algorithm and theory can be applied to low-rank ma-
trix estimation based on both noisy observations and
noiseless observations. In addition, we proposed a new
initialization algorithm to provide a desired initial es-
timator, which outperforms existing initialization al-
gorithms for nonconvex low-rank matrix estimation.
Thorough experiments on synthetic data verified the
advantages of our algorithm and theory.
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