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S:1 Appendix: Backward mapping for
M-Estimator

The graphical model MLE can be expressed as a back-
ward mapping[1] in an exponential family distribution
that computes the model parameters corresponding to
some given (sample) moments. There are however two
caveats with this backward mapping: it is not available
in closed form for many classes of models, and even
if it were available in closed form, it need not be well-
defined in high-dimensional settings (i.e., could lead to
unbounded model parameter estimates).
We provide detailed explanations about backward map-
ping from the M-estimator framework [2] and backward
mapping for Gaussian special case in this section.
Backward mapping:Suppose a random variable X ∈
Rp follows the exponential family distribution:

P(X; θ) = h(X)exp{< θ, φ(θ) > −A(θ)} (S:1–1)

Where θ ∈ Θ ⊂ Rd is the canonical parameter to be
estimated and Θ denotes the parameter space, φ(X)
denotes the sufficient statistics with a feature map-
ping function φ : Rp → Rd, and A(θ) is the log-
partition function. We define mean parameters as:
ν(θ) := E[φ(X)], which are the first moments of the
sufficient statistics φ(θ) under the exponential family
distribution. The set of all possible moments by the
moment polytope:

M = {ν|∃p is a distribution s.t. Ep[φ(X)] = ν}
(S:1–2)

Most machine learning problem about graphical model
inference involves the task of computing moments
ν(θ) ∈ M given the canonical parameters θ ∈ H .
We denote this computing as forward mapping :

A : H →M (S:1–3)

When we need to consider the reverse computing of the
forward mapping, we denote the interior ofM asM0.
The so-called backward mapping is defined as:

A∗ :M0 → H (S:1–4)

which does not need to be unique. For the exponential
family distribution,

A∗ : ν(θ)→ θ = ∇A∗(ν(θ)). (S:1–5)

Where A∗(ν(θ)) = sup
θ∈ H

< θ, ν(θ) > −A(θ).

Backward Mapping: Gaussian CaseIf the random
variable X ∈ Rp follows the Gaussian Distribution
N(µ,Σ). Then θ = (Σ−1µ,− 1

2Σ−1). The sufficient
statistics φ(X) = (X,XXT ) and the log-partition func-
tion A(θ) = 1

2µ
TΣ−1µ+ 1

2 log(|Σ|). h(x) = (2π)− k
2 .

When inferring the Gaussian Graphical Models, it is
easy to estimate the mean vector ν(θ), since it equals
to E[X,XXT ].
Because the θ contains entry Σ−1, when estimating
sGGM, we need to use the backward mapping:
For the case of Gaussian distribution,

θ = (Σ−1µ,−1
2Σ−1) = A∗(ν) = ∇A∗(ν)

= ((Eθ[XXT ]− Eθ[X]Eθ[X]T )−1Eθ[X],

−1
2(Eθ[XXT ]− Eθ[X]Eθ[X]T )−1).

(S:1–6)

By plugging in A(θ) = 1
2µ

TΣ−1µ + 1
2 log(|Σ|) into

Eq. (S:1–5), Ω is canonical parameter using backward
mapping. We get Ω as (Eθ[XXT ]−Eθ[X]Eθ[X]T )−1) =
Σ−1, which can be inferred by the estimated covariance
matrix.

S:2 Appendix: Method and
Optimization

More about Proximal Optimization:The proximal
algorithm only needs to calculate the proximity opera-
tor of the parameters to be optimized. The proximity
operator in proximal algorithms is defined as:

proxγf (x) = argmin
y

(f(y) + ( 1
2γ ||x− y||

2
2)). (S:2–1)

The benefit of the proximal algorithm is that many
proximity operators are entry-wise operators for the
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targeted parameters. The parallel proximal (initially
called proximity splitting) algorithm [3] belongs to the
general family of distributed convex optimization that
optimizes in such a way that each term (in this case,
each proximity operator) can be handled by its own
processing element, such as a thread or processor.

Figure S:1: A simple figure to show how our optimization method
works. Our optimization approach is a method with linear conver-
gence rate in finding the optimal point. It considers four properties
: (1) information from the raw data; (2) information from the group
data; (3)sparsity property; (4) group sparsity property.

More about four proximity operators for CPU
implementation of FASJEM-G:In the following,
we denote x = Ωtot, a = Σtot and g ∈ G to simply
notations. Eq. (S:2–2) and Eq. (S:2–4) are entry-wise
operators and Eq. (S:2–3) and Eq. (S:2–5) are group
entry-wise. Group entry-wise means in calculation,
the operator can compute each group of entries inde-
pendently from other groups. Entry-wise means the
calculation of each entry is only related to itself). The
optimization process of Algorithm 1 iterating among
four proximal operators is visualized by Figure S:1.
For f1(·) = || · ||1.

proxγf1(x) = proxγ||·||1(x)

=


x

(i)
j,k − γ, x

(i)
j,k > γ

0, |x(i)
j,k| ≤ γ

x
(i)
j,k + γ, x(i)

j,k < −γ

(S:2–2)

Eq. (S:2–2) is the closed form solution of Eq. (S:2–1)
when f = | · |1. Here j, k = 1, . . . , p and i = 1, . . . ,K.
This is an entry-wise operator (i.e., the calculation of
each entry is only related to itself).
Similarly, f2(·) = || · ||G,2

proxγf2(xg) = proxγ||·||G,2
(xg)

=
{
xg − γ xg

||xg||2 , ||xg||2 > γ

0, ||xg||2 ≤ γ
(S:2–3)

Here g ∈ G. This is a group entry-wise operator (com-
puting a group of entries is not related to other groups).
f3(·) and f4(·) include function forms of If(·)<D and
proxI{f(·)<D}

= proj{f(·)<D}, where projC means the
projection function to the convex set C. We can obtain

proxγf3(x) = proj||x−a||∞≤λ

=


x

(i)
,k , |x

(i)
j,k − a

(i)
j,k| ≤ λ

a
(i)
,k + λ, x(i)

j,k > a
(i)
j,k + λ

a
(i)
,k − λ, x

(i)
j,k < a

(i)
j,k − λ

(S:2–4)

where j, k = 1, . . . , p and i = 1, . . . ,K. This operator
is entry-wise (i.e., only related to each entry of x and
a).

proxγf4(xg) = proj||x−a||∗G,2≤λ

=
{

xg, ||xg − ag||2 ≤ λ
λ

xg−ag

||xg−ag||2 + ag, ||xg − ag||2 > λ

(S:2–5)

This operator is group entry-wise.
More about four proximity operators for GPU
parallel implementation of FASJEM-G:The four
proximity operators on GPU are summarized in Table 1.
More details as following:
For Eq. (S:2–2),

proxγf1(x) = proxγ||·||1(x)

= max((x(i)
j,k − γ), 0) + min(0, (x(i)

j,k + γ))
(S:2–6)

For Eq. (S:2–3)

proxγf2(xg) = proxγ||·||G,2
(xg)

= xg max((1− γ

||xg||2
), 0) (S:2–7)

For Eq. (S:2–4)

proxγf3(x) = proj||x−a||∞≤λ
= min(max(x(i)

j,k − a
(i)
j,k,−λ), λ) + a

(i)
j,k

(S:2–8)

For Eq. (S:2–5)

proxγf4(x) = proj||x−a||∗G,2≤λ

= max( λ

||xg − ag||2
, 1)(xg − ag) + ag

(S:2–9)

Here j, k = 1, . . . , p, i = 1, . . . ,K and g ∈ G.
More about Q-linearly Convergence of Opti-
mization:The proposed optimization is a first-order
method. Based on the recent study[4], the optimiza-
tion sequence {Ωi}(for i = 1 to t iteration) converges
Q-linearly. Q-linearly means:

lim sup
k→∞

||Ωk+1 − Ω∗||
||Ωk − Ω∗|| ≤ ρ (S:2–10)
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S:3 Appendix: Related previous
studies using elementary based
estimators

Related previous studies based on elementary estima-
tors are summarized in Table S:1.

S:4 Appendix: More about
Experimental Setting and
Baselines

Hyperparameter tuning:We have tried BIC method
(used in [5]) for choosing the tuning parameter λn.
As pointed out by ([6], [7] and [8]), the BIC or AIC
method may not work well for the high-dimensional
case. Therefore we have skipped adding the results
from BIC or AIC.
In our experiments, we compare our model with the
baselines by varying the same set of the tuning param-
eters.
Baseline:Recent literature[9] shows that the single
sGGM has a close form solution through the EE es-
timator (i.e., no iteration). It is not fair to compare
our estimator to such a closed-form sGGM estimator
in terms of the speed or memory usage. Therefore we
don’t include the single sGGM as a baseline.
Real World Experiments:We also tried FASJEM-I
and JGL-groupinf on the three datasets. No matched
interactions were found in one dataset. Therefore, we
omit the results.

S:5 Appendix: More Experimental
Results from Simulated Data

Figure S:3 represents a comparison between the single-
task EE estimator for sGGM and GLasso estimator.
We choose the Ω(i) in the random graph model as the
true graph. We obtain the two subfigures by varying
p in a set of {100, 200, 300, 400, 500}. The left subfig-
ure is “AUC vs. p (number of features)” while the
right subfigure is “Time vs. p (number of features)”.
Figure S:3 shows that the elementary estimator has
achieved similar performance of GLasso among differ-
ent p while the computation time of EE is much less
than the GLasso.

S:6 Experiments on Real-world
Datasets

We apply FASJEM-G and JGL-group on four differ-
ent real-world datasets: (1) the breast/colon cancer
data [10] (with 2 cell types and 104 samples, each hav-
ing 22283 features); (2) Crohn’s disease data [11] (
with 3 cell types, 127 samples and 22283 features) ,
(3) the myeloma and bone lesions data set[12] (with
2 cell types, 173 samples and 12625 features) and (4)
Encode project dataset[13] (with 3 cell types, 25185

Figure S:2: Comparison between FASJEM-I and JGL-groupinf us-
ing accuracy, speed and memory capacity. (a) FPR-TPR curves of
two methods on the simulated dataset using Random Graph Model
when p = 2000 and K = 2. (c) and (e) Time versus p(the number
of variables) curves from FASJEM-G, JGL-group and FASJEM-I’s
GPU implementation. (c) uses ni = p/2 and (e)ni = p/4 (b), (d)
and (f) include the time versus K(the number of tasks) curves for
two methods plus FASJEM-I-GPU. (b) uses p = 2000 and ni = p/2,
(d) uses p = 4000 and ni = p/2 and (f) uses p = 4000 and ni = p/4.

Figure S:3: Comparison between elementary estimator for sGGM
and GLasso for single-task sGGM. The left figure is the curve of
AUC number by varying p. The number of sample n = p/2. The
right figure is the curve of computation time by varying p. Other
settings are the same as the left one. Clearly, elementary estimator
has the similar accuracy performance as GLasso but is much faster
and scalable than it.

samples and 27 features). For the first three datasets,
we select its top 500 features based on the variance of
the variables. After obtaining estimated dependency
networks, we compare all methods using two major
existing databases [14, 15] archiving known gene in-
teractions. The number of known gene-gene interac-
tions predicted by each method has been shown as
bar graphs in Figure S:4. These graphs clearly show
that FASJEM-G outperforms JGL-group on all three
datasets and across all cell conditions within each of
the three datasets. This leads us to believe that the
proposed FASJEM-G is very promising for identifying
variable interactions in a wider range of applications
as well.
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Table S:1: Two categories of relevant studies differ over learning based on “penalized log-likelihood" or learning based on“elementary
estimator"

Problems Penalized Likelihood Elementary estimator
High dimensional
linear regression

Lasso: argmin
β
|Y − βX|F + λ|β|1 argmin

β
|β|1 subject to : |β −

(XTX + εI)−1XT y|∞ ≤ λn
sparse Gaussian
Graphical Model

gLasso: argmin
Ω≥0

−logdet(Ω)+ < Ω,Σ >

+λ|Ω|1

argmin
Ω≥0

|Ω|1 subject to: |Ω −

[Tv(Σ)]−1|∞ ≤ λn
Multi-task sGGM Different Choices for Penalty R′

argmin
Ω>0

∑
i

(−L(Ωtot) + λ1
∑
i ||Ω(i)||1 +

λ2R′(Ωtot)

Our method: FASJEM

Figure S:4: Compare predicted dependencies among genes or pro-
teins using existing databases [14, 15] with known interactions (bi-
ologically validated) in human. The number of matches among pre-
dicted interactions and known interactions is shown as bar lines.

S:7 Appendix: More about the
theoretical error bounds

Background–error bound for elementary esti-
mator:For proving the error bounds, we first briefly
review the error bound of a single-task EE-based model
using the unified framework[2]. The single task-EE fol-
lows the general formulation:

argmin
θ
R(θ)

subject to:R∗(θ̂n − θ) ≤ λn
(S:7–1)

where R(·) is the `1 regularization function and θ̂n is
the backforward mapping for θ.
Following the unified framework [2], we first decompose
the parameter space into a subspace pair(M,M̄⊥),
where M̄ is the closure ofM. HereM is the model
subspace that typically has a much lower dimen-
sion than the original high-dimensional space. M̄⊥
is the perturbation subspace of parameters. For
further proofs, we assume the regularization function
in Eq. (S:7–1) is decomposable w.r.t the subspace
pair (M,M̄⊥).
(C1) R(u+ v) = R(u) +R(v), ∀u ∈M,∀v ∈ M̄⊥.

[2] shows that most regularization norms are decom-
posable corresponding to a certain subspace pair.

Definition S:7.1. A term subspace compatibility
constant is defined as Ψ(M, | · |) := sup

u∈M\{0}

R(u)
|u|

which captures the relative value between the error norm
| · | and the regularization function R(·).

For simplicity, we assume there exists a true param-
eter θ∗ which has the exact structure w.r.t a certain
subspace pair. That is:
(C2) ∃ a subspace pair (M,M̄⊥) such that the true
parameter satisfies projM⊥(θ∗) = 0
Then we have the following theorem.

Theorem S:7.2. Suppose the regularization function
in Eq. (S:7–1) satisfies condition (C1), the true pa-
rameter of Eq. (S:7–1) satisfies condition (C2), and
λn satisfies that λn ≥ R∗(θ̂ − θ∗). Then, the optimal
solution θ̂ of Eq. (S:7–1) satisfies:

R∗(θ̂ − θ∗) ≤ 2λn (S:7–2)

||θ̂ − θ∗||2 ≤ 4λnΨ(M̄) (S:7–3)

R(θ̂ − θ∗) ≤ 8λnΨ(M̄)2 (S:7–4)

S:8 Proof
Proof of Theorem (S:7.2)

Proof. Let ∆ := θ̂− θ∗ be the error vector that we are
interested in.

R∗(θ̂ − θ∗) = R∗(θ̂ − θ̂n + θ̂n − θ∗)

≤ R∗(θ̂n − θ̂) +R∗(θ̂n − θ∗) ≤ 2λn
(S:8–1)
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By the fact that θ∗M⊥ = 0, and the decomposability of
R with respect to (M,M̄⊥)

R(θ∗)
= R(θ∗) +R[ΠM̄⊥(∆)]−R[ΠM̄⊥(∆)]
= R[θ∗ + ΠM̄⊥(∆)]−R[ΠM̄⊥(∆)]
≤ R[θ∗ + ΠM̄⊥(∆) + ΠM̄(∆)] +R[ΠM̄(∆)]
−R[ΠM̄⊥(∆)]
= R[θ∗ + ∆] +R[ΠM̄(∆)]−R[ΠM̄⊥(∆)]

(S:8–2)

Here, the inequality holds by the triangle inequality
of norm. Since Eq. (S:7–1) minimizes R(θ̂), we have
R(θ∗+ ∆) = R(θ̂) ≤ R(θ∗). Combining this inequality
with Eq. (S:8–2), we have:

R[ΠM̄⊥(∆)] ≤ R[ΠM̄(∆)] (S:8–3)

Moreover, by Hölder’s inequality and the decompos-
ability of R(·), we have:

||∆||22 = 〈∆,∆〉 ≤ R∗(∆)R(∆) ≤ 2λnR(∆)
= 2λn[R(ΠM̄(∆)) +R(ΠM̄⊥(∆))] ≤ 4λnR(ΠM̄(∆))
≤ 4λnΨ(M̄)||ΠM̄(∆)||2

(S:8–4)

where Ψ(M̄) is a simple notation for Ψ(M̄, || · ||2).
Since the projection operator is defined in terms of
|| · ||2 norm, it is non-expansive: ||ΠM̄(∆)||2 ≤ ||∆||2.
Therefore, by Eq. (S:8–4), we have:

||ΠM̄(∆)||2 ≤ 4λnΨ(M̄), (S:8–5)

and plugging it back to Eq. (S:8–4) yields the error
bound Eq. (S:7–3).
Finally, Eq. (S:7–4) is straightforward from Eq. (S:8–3)
and Eq. (S:8–5).

R(∆) ≤ 2R(ΠM̄(∆))
≤ 2Ψ(M̄)||ΠM̄(∆)||2 ≤ 8λnΨ(M̄)2.

(S:8–6)

Proof of Theorem (5.3)

Proof. In this proof, we consider the matrix parameter
such as the covariance. I = {1, 2} in the following
contents. Basically, the Frobenius norm can be simply

replaced by `2 norm for the vector parameters. Let
∆i := θ̂i − θ∗i , and ∆ = θ̂ − θ∗ = Σi∈I∆i. The error
bound Eq. (5.3) can be easily shown from the assump-
tion in the statement with the constraint of Eq. (5.2).
For every i ∈ I,

R∗i (∆) = R∗i (θ̂ − θ∗) = R∗i (θ̂ − θ̂n + θ̂n − θ∗)

≤ R∗i (θ̂n − θ̂) +R∗i (θ̂n − θ∗) ≤ 2λi.
(S:8–7)

By the similar reasoning as in Eq. (S:8–2) with the fact
that ΠM⊥

i
(θ∗i ) = 0 in C3, and the decomposability of

Ri with respect to (Mi,M̂⊥i ), we have:

Ri(θ∗i ) ≤Ri[θ∗i + ∆i] +Ri[ΠM̄i
(∆i)]

−Ri[ΠM̄⊥
i

(∆i)].
(S:8–8)

Since
{
θ̂i

}
i∈I

minimizes the objective function
of Eq. (5.2),

∑
i∈I

λiRi(θ̂i) ≤
∑
i∈I

λi{Ri(θ∗i + ∆i)

Ri[ΠM̄i
(∆i)]−Ri[ΠM̄⊥

i
(∆i)]},

(S:8–9)

Which implies

∑
i∈I

λiRi[ΠM̄⊥
i

(∆i)] ≤
∑
i∈I

λiRi[ΠM̄i
(∆i)] (S:8–10)

Now, for each structure i ∈ I, we have an application
for Hölder’s inequality: |〈∆,∆i〉| ≤ R∗i (∆)Ri(∆i) ≤
2λiRi(∆i) where the notation 〈〈A,B〉〉 denotes the
trace inner product, trace(ATB) = ΣiΣjAijBij , and
we use the pre-computed bound in Eq. (S:8–7). Then,
the Frobenius error ||∆||F can be upper-bounded as
follows:

||∆||2F = 〈〈∆,∆〉〉 =
∑
i∈I
〈〈∆,∆i〉〉 ≤

∑
i∈I
|〈〈∆,∆i〉〉|

≤ 2
∑
i∈I

λiRi(∆i) ≤ 2
∑
i∈I
{λiRi[ΠM̄i

(∆i)]+

λiRi[ΠM̄⊥
i

(∆i)]} ≤ 4
∑
i∈I

λiRi[ΠM̄i
(∆i)]

≤ 4
∑
i∈I

λiΨ(M̄i)||ΠM̄i
(∆i)||F

(S:8–11)



Running heading title breaks the line

where Ψ(M̄i) denotes the compatibility constant
of space M̄i with respect to the Frobenius norm:
Ψ(M̄i, || · ||F ).
Here, we define a key notation in the error bound:

Φ := max
i∈I

λiΨ(M̄i). (S:8–12)

Armed with this notation, Eq. (S:8–11) can be written
as

||∆||2F ≤ 4Φ
∑
i∈I
||ΠM̄i

(∆i)||F (S:8–13)

At this point, we directly appeal to the result in Propo-
sition 2 of [16] with a small modification:
Proposition 4. Suppose that the structural incoher-
ence condition (C4) as well as the condition (C3) hold.
Then, we have

2|
∑
i<j

〈〈∆i,∆j〉〉| ≤
1
2
∑
i∈I
||∆i||2F . (S:8–14)

By this proposition, we have

∑
i∈I
||∆i||2F ≤ ||∆||2F + 2|

∑
i<j

〈〈∆i,∆j〉〉|

≤ ||∆||2F + 1
2
∑
i∈I
||∆i||2F ,

(S:8–15)

which implies Σi∈I ||∆i||2F ≤ 2||∆||2F .
Moreover, since the projection operator is defined in
terms of the Frobenius norm, it is non-expansive for all
i : ||ΠM̄i

(∆i)||F ≤ ||∆i||F . Hence, we finally obtain:

(
∑
i∈I
||ΠM̄i

(∆i)||F )2 ≤ (
∑
i∈I
||∆i||F )2

≤ |I|
∑
i∈I
||∆i||2F ≤ 8|I|Φ

∑
i∈I
||ΠM̄i

(∆i)||F
(S:8–16)

and therefore,

∑
i∈I
||ΠM̄i

(∆i)||F ≤ 8|I|Φ (S:8–17)

The Frobenius norm error bound Eq. (5.5) can be
derived by plugging Eq. (S:8–17) back into Eq. (S:8–
13):

||∆||2F ≤ 32|I|Φ2. (S:8–18)

Therefore, we have

||∆||F ≤ 8Φ (S:8–19)

Which is exactly Eq. (5.5)
The proof of the final error bound Eq. (5.4) is straight-
forward from Eq. (S:8–10) and Eq. (S:8–17) as follows:
for each fixed i ∈ I,

Ri(∆i)

≤ 1
λi
{λiRi[ΠM̄i

(∆i)] + λiRi[ΠM̄⊥
i

(∆i)]}

≤ 1
λi
{λiRi[ΠM̄i

(∆i)] +
∑
j∈I

λjRj [ΠM̄j
(∆j)]}

≤ 2
λi

∑
j∈I

λjRj [ΠM̄j
(∆j)]

≤ 2
λi

∑
j∈I

λjΨ(M̄j)||ΠM̄j
(∆j)||F

≤ 2Φ
λi

∑
j∈I
||ΠM̄j

(∆j)||F ≤
16|I|Φ2

λi
= 32Φ2

λi

(S:8–20)

which completes the proof.

Proof of Theorem (5.4)

Proof. Since λn > λ′n and
√
s >
√
sG , We have that

λn
√
s > λ′n

√
sG .

By Theorem (5.3),

||Ω̂tot − Ω∗tot||F ≤ 8 max(λn
√
s, λ′n

√
sG) ≤ 8

√
sλn.

S:8.1 Useful lemma(s)
Lemma S:8.1. (Theorem 1 of [17]). Let δ be
maxij |[X

TX
n ]ij − Σij |. Suppose that ν > 2δ. Then,

under the conditions (C-SparseΣ), and as ρv(·) is a
soft-threshold function, we can deterministically guar-
antee that the spectral norm of error is bounded as
follows:

|||Tv(Σ̂)−Σ|||∞ ≤ 5ν1−qc0(p) + 3ν−qc0(p)δ (S:8–21)

Lemma S:8.2. (Lemma 1 of [18]). Let A be the event
that

||X
TX

n
− Σ||∞ ≤ 8(max

i
Σii)

√
10τ log p′

n
(S:8–22)

where p′ := max n, p and τ is any constant greater than
2. Suppose that the design matrix X is i.i.d. sampled
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from Σ-Gaussian ensemble with n ≥ 40 maxi Σii. Then,
the probability of event A occurring is at least 1 −
4/p′τ−2.

Proof of Corollary (5.5)

Proof. In the following proof, we re-denote the follow-

ing two notations: Σtot :=


Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
. . .

...
0 0 · · · Σ(K)


and

Ωtot :=


Ω(1) 0 · · · 0

0 Ω(2) · · · 0
...

...
. . .

...
0 0 · · · Ω(K)


The condition (C-SparseΣ) and condition (C-MinInfΣ)
also hold for Ω∗tot and Σ∗tot. In order to utilize Theo-
rem (5.4) for this specific case, we only need to show
that ||Ω∗tot− [Tν(Σ̂tot)]−1||∞ ≤ λn for the setting of λn
in the statement:

||Ω∗tot − [Tν(Σ̂tot)]−1||∞ = ||[Tν(Σ̂tot)]−1(Tν(Σ̂tot)Ω∗tot − I)||∞
≤ |||[Tν(Σ̂tot)w]|||∞||Tν(Σ̂tot)Ω∗tot − I||∞
= |||[Tν(Σ̂tot)]−1|||∞||Ω∗tot(Tν(Σ̂tot)− Σ∗tot)||∞
≤ |||[Tν(Σ̂tot)]−1|||∞|||Ω∗tot|||∞||Tν(Σ̂tot)− Σ∗tot||∞.

(S:8–23)

We first compute the upper bound of |||[Tν(Σ̂tot)]−1|||∞.
By the selection ν in the statement, Lemma (S:8.1)
and Lemma (S:8.2) hold with probability at least 1−
4/p′τ−2. Armed with Eq. (S:8–21), we use the triangle
inequality of norm and the condition (C-SparseΣ): for
any w,

||Tν(Σ̂tot)w||∞ = ||Tν(Σ̂tot)w − Σw + Σw||∞
≥ ||Σw||∞ − ||(Tν(Σ̂tot)− Σ)w||∞
≥ κ2||w||∞ − ||(Tν(Σ̂tot)− Σ)w||∞
≥ (κ2 − ||(Tν(Σ̂tot)− Σ)w||∞)||w||∞

(S:8–24)

Where the second inequality uses the condition (C-
SparseΣ). Now, by Lemma (S:8.1) with the selection
of ν, we have

|||Tν(Σ̂tot)− Σ|||∞ ≤ c1( log p′

ntot
)(1−q)/2c0(p) (S:8–25)

where c1 is a constant related only on τ and maxi Σii.
Specifically, it is defined as 6.5(16(maxi Σii)

√
10τ)1−q.

Hence, as long as ntot > ( 2c1c0(p)
κ2

)
2

1−q log p′ as stated,
so that |||Tν(Σ̂tot) − Σ|||∞ ≤ κ2

2 , we can con-
clude that ||Tν(Σ̂tot)w||∞ ≥ κ2

2 ||w||∞, which implies
|||[Tν(Σ̂tot)]−1|||∞ ≤ 2

κ2
.

The remaining term in Eq. (S:8–23) is ||Tν(Σ̂tot) −
Σ∗tot||∞; ||Tν(Σ̂tot) − Σ∗tot||∞ ≤ ||Tν(Σ̂tot) − Σ̂tot||∞ +
||Σ̂tot−Σ∗tot||∞. By construction of Tν(·) in (C-Thresh)
and by Lemma (S:8.2), we can confirm that ||Tν(Σ̂tot)−
Σ̂tot||∞ as well as ||Σ̂tot−Σ∗tot||∞ can be upper-bounded
by ν.
By combining all together, we can confirm that the se-
lection of λn satisfies the requirement of Theorem (5.4),
which completes the proof.
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