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Abstract

User behaviors in social networks are microscopic
with fine grained temporal information. Predict-
ing a macroscopic quantity based on users’ collec-
tive behaviors is an important problem. However,
existing works are mainly problem-specific mod-
els for the microscopic behaviors and typically
design approximations or heuristic algorithms to
compute the macroscopic quantity. In this paper,
we propose a unifying framework with a jump
stochastic differential equation model that sys-
tematically links the microscopic event data and
macroscopic inference, and the theory to approxi-
mate its probability distribution. We showed that
our method can better predict the user behaviors
in real-world applications.

1 Introduction

Online social platforms generate large-scale event data with
fine-grained temporal information. The microscopic data
captures the behavior of individual users. For example, the
activity logs in Twitter contain the detailed timestamps and
contents of tweets/retweets, and a user’s shopping history
on Amazon contains detailed purchasing times. With the
prevalent availability of such data, a fundamental question is
to inference the collective outcome of each user’s behavior
and make macroscopic predictions (Givon et al., 2004).

Macroscopic prediction has many applications. For exam-
ple, in user behavior modeling, a practical question is to
predict the expected popularity of a song, movie, or a post.
It is important both to understand the information diffusion
and to inform content creation and feed design on social
services. For example, the business merchants may want
to popularize new products to boost sales. Social media
managers may want to highlight new posts that are more
likely to become popular, while users may want to learn
from properties of popular tweets to personalize their own.
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Furthermore, predicting the evolution of social groups, such
as Facebook groups, can also help handle the threat of on-
line terrorist recruitment. In summary, the macro prediction
task focuses on computing the expected value E[z(t)] of a
macro population quantity z(t) at time ¢.

Existing works on macro prediction are in two classes. The
first class of approaches is in the majority. They typically fit
the micro events by learning parameterized point processes,
and then design problem-specific algorithms to predict each
individual behavior (Du et al., 2012; Yang & Zha, 2013; Du
et al., 2013; Yu et al., 2015; Zhao et al., 2015; Gao et al.,
2015). They overcome the limitation of feature based clas-
sification/regression works (Cheng et al., 2014; Shulman
et al., 2016) that typically ignore event dynamics and re-
quire laborious feature engineering. The second class of
work is recently proposed to solve the influence estimation
problem (Chow et al., 2015). It only models and predicts
in macro scope, and directly models the probability dis-
tribution of the macro quantity using a problem-specific
Fokker-Planck equation.

The limitations of the first class is that they typically use
sampling based approach to approximate individual user be-
haviors and estimate E[z(¢)]. Hence the accuracy is limited
due to the approximations and heuristic corrections. The
problem with the second class is that the exact equation
coefficients are not computationally tractable in general and
hence various approximation techniques need to be adopted.
Hence the prediction accuracy heavily depends on the ap-
proximations of these coefficients. Furthermore, all prior
works are problem-specific and methods for popularity pre-
diction (Yu et al., 2015; Zhao et al., 2015; Gao et al., 2015)
are not applicable to influence prediction (Du et al., 2013;
Chow et al., 2015). Hence here is lack of a unifying frame-
work to link micro data and models to macro predictions.

In this paper, we propose a unifying framework that links
micro event data to macro prediction task. It consists of
three main stages:

o Micro model. We first fit the intensity function of micro
point process models to temporal event data using convex
optimization algorithms.

o Linkage Jump SDE. We then formulate the jump stochas-
tic differential equation (SDE) to link the fitted micro
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Figure 1: Framework illustration on group popularity prediction. (a) Micro events: users discuss in groups (book, shopping,
music) at different times. (c) Macro inference tasks: predicting the group popularity z(t), defined as # events in that group.
Our work bridges the micro event data and the macro inference systematically with four steps in four blocks. (b) The
proposed Jump SDE model for group popularity. Each black dot is the event triggered by the point process N;(t), which
captures the users’ discussion behaviors. x() increases by 1 when David or Alice posts in the group.

models with the macro quantity of interest.

e Macro inference. Finally, we approximate the stochas-
tic intensity function of point process with deterministic
functions, and propose and solve a differential equation
for the probability distribution of the macro quantity over
time, and use it for inference.

Figure 1 summarizes the workflow of our framework.
Specifically, we make the following contributions:

(i) Our framework is general and there is no need to design
problem-special algorithms, hence avoiding the limita-
tions of existing methods based only on micro or macro
modeling. Our framework also links all the existing mod-
els for micro event to the macro prediction.

(i) We propose an efficient convex optimization to fit the
micro models, and a scalable Runge-Kutta algorithm for
inference tasks.

(iii) Our framework has superior accuracy and efficiency per-
formance in diverse real-world problems, outperforming
problem-specific state-of-arts.

2 Background

Micro event data. We denote the collection of event data
as {H;(7)} in the time window [0, 7], where H;(7) =
{ti|ti <7} is the collection of history events triggered
by user 7, and the time ¢}, denotes the event timestamp.

Micro models. Temporal point processes are widely ap-
plied to model micro event data (Daley & Vere-Jones, 2007;
Aalen et al., 2008; Zhou et al., 2013a,b; Yang & Zha, 2013;
Farajtabar et al., 2014, 2015; He et al., 2015; Lian et al.,
2015; Du et al., 2015, 2016; Wang et al., 2016b,c,d). Each
user’s behavior can be modeled as a point process. It is a
random process whose realization consists of a list of dis-
crete events localized in time, {¢;} with ¢;, € RT. It can be
equivalently represented as a counting process, N (t), which
records the number of events before .

An important way to characterize temporal point processes
is via the conditional intensity function A\(¢), a stochastic
model for the time of the next event given history events.
Let H(t™) = {tx|tr < t} be the history of events happened
up to but not including ¢. Formally, A(¢) := A(¢|H(t7))

is the conditional probability of observing an event in a
window [t,t + dt) given H(t™), i.e

A(t)dt = Pleventin [¢,¢ + dt)|H(t7)] = E[AN()|H(t7)]
where two events coincide with probability 0, i.e., AN (t) €
{0,1}. The functional form of the intensity characterizes
the point process. Commonly used forms include:

e Poisson process: Its intensity function is deterministic
and independent of history.

e Hawkes process (Hawkes, 1971): It captures the mutual
excitation phenomena between events:

t) =nta Ztkeﬂ(t*) H(

where 17 > 0 captures the long-term incentive to generate
events. k(t) > 0 models temporal dependencies, and
a = 0 quantifies how the influence from each past event
evolves over time, making the intensity function depend
on the history H (¢~ ) and a stochastic process itself.

e Self correcting process (Isham & Westcott, 1979). It
seeks to produce regular event patterns with the inhibition
effect of history events:

A(t) = exp (nt - Ztkeﬂ(f) a) 2)

where 77, @ > 0. The intuition is while the intensity in-
creases steadily, when a new event appears, it is decreased
by a constant factor e < 1. Hence the probability of
new points decreases after an event has happened recently.

t—tg) Q)

The key rationale of using point process for micro behaviors
is that it models time as a continuous random variable. The
event data is asynchronously since users can interact with
each other at any time and there may not be any synchroniza-
tion between events. Hence it is more appropriate to capture
the uncertainty in real world than discrete-time models.

Macro prediction. Set z(t) to be the macro population
quantity of interest, such as # influenced users and # discus-
sion events in a group, at time ¢ > 7. The task is to predict
E[z(t)] given event data 7 (7) from all users.
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This is a challenging problem since z(¢) is the result of
collective behaviors, but the dynamics of each user is driven
by different micro models with different stochasticity. Most
existing works learn the point process models and predict
each individual user’s behavior. This introduces information
loss, such as approximating the expectation (Zhao et al.,
2015), sampling events (Du et al., 2013), and ignoring the
stochasticity (Gao et al., 2015).

A more rigorous way for prediction is to compute or approx-
imate the probability distribution of z(t) given the history
events (¢~ ). However, there is no mathematical model
that links the micro models to the macro quantity infer-
ence. Hence the existing works are specially designed for a
specific problem due to the missing link.

In the next three sections, we will present the three stages
of our inference framework. We first present how to fit the
micro models in section 3, then in section 4 we approximate
the stochastic intensity with deterministic functions, and
present a jump SDE model and a differential equation that
builds up the micro-macro connection. Finally, in section 5
we present an efficient numerical algorithm to compute the
probability distribution and discuss different inference tasks.

3 Fitting Event Data to Microscopic Models

In this section, we will show the efficient convex optimiza-
tion framework to fit micro point processes from event data.
Specifically, we set V;(t) to be the point process user 4. Its
intensity function \; (¢, p;) is parameterized with p; € P to
capture the phenomena of interests, such as online discus-
sions (Du et al., 2015; Wang et al., 2016a) and influence
diffusion (Zhao et al., 2015; Chow et al., 2015; Gao et al.,
2015). Given the event data H(7), we use maximum likeli-
hood estimation (MLE) to learn parameters {p; }.

From survival analysis theory Aalen et al. (2008),
given a time t’, for point process N;(t), the condi-
tional probability that no event happens during [t',¢) is

S(tIH(E)) = exp (7 ftt, Ai(T, i) dT) and the condi-
tional density f(¢|#(t’)) that an event occurs at time ¢ as
FRHE)) = M)S(t|H(t')). Then given events H;(7),
we express its log-likelihood as:

) T
L) = 3 Jor (Mp) = [ Mep)dt @)

Hence the likelihood from the observed events H(7) gen-
erated by all point processes is just the summation of the
likelihood of each point process: £({p;}) = > 4, 3, i(Pi)-
Furthermore, p; is typically linear (convex) in the intensity
function (Du et al., 2013; Zhou et al., 2013a; Yang & Zha,
2013; Farajtabar et al., 2014, 2015; Du et al., 2015; Wang
et al., 2016b), and the objective function max,,cp £({p;})
is concave. This is because the log(-) function and the
negative integration of the intensity are concave, and ¢ is
nondecreasing w.r.t. the intensity. Hence it can be solved ef-

ficiently with many optimization algorithms, such as Quasi-
Newton algorithm (Schmidt et al., 2009). In Section 6 we
will discuss different parameterizations of intensity func-
tions in diverse applications.

4 Linking Microscopic Models to
Macroscopic Inference

In this section, we will first present the method to approxi-
mate the stochastic intensity function of point process. Then
we present the jump SDE model, which links many works
in micro information diffusion and user behavior model-
ing to a macro quantity. We then derive the the stochastic
calculus rule for the jump SDE, and finally present the equa-
tion for computing the distribution of point processes with
deterministic intensity.

4.1 Approximating Stochastic Intensity with
Deterministic Functions

We propose to approximate the stochastic intensity function
of each point process by only conditioning on its given
history #(7), instead of (¢ ), which is unknown.

For example, for the Hawkes intensity in (1), we set
H(t™) ~ H(7), and approximate its stochastic intensity
only with events before time 7:

Alt) ~n+a ZtkEH(T) At = t)

Similarly, for the self-correcting process in (2), we approxi-
mate its stochastic intensity as follows:

At) ~ exp (nt B ZtkEH(T) a)

Note that if the prediction time ¢ is not far from 7, this
approximation scheme works well, as shown in our exper-
iment. In the following presentations of our method, we
assume the point processes {N;(t)} are all approximated
with deterministic intensities, and we use {\;(¢)} to denote
the corresponding intensity computed using {#H;(7)}.

4.2 Jump Stochastic Differential Equations

We formally define the class of point process driven stochas-
tic differential equations (SDEs) as follows.

Definition 1. The jump stochastic differential equation is a
differential equation driven by one or more point processes.

de(t) = >0 hiw(t)dNi(t) (4)

where z(t) : RT — N is the state of the stochastic process.
N;(t) is the i-th point process with deterministic intensity
Ai(t). The jump amplitude function h;(z) : N — N cap-
tures the influence of the point process. It has two paramet-
ric forms: h; = +1 or hi(x) = —x + b;, where b; € Nisa
constant state.
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The jump SDE is a continuous-time discrete-state stochastic
process. The state 2(t) is the macro quantity of interest. The
point process N;(t) governs the generation of micro events
for user 7 with the intensity \;(¢). We assume that there can
only be at most one event triggered by one of the m point
processes, i.e., if dN;(t) = 1, dN;(t) = 0 for j # 4. Hence
each time only one point process will influence the state.
The function h;(x) captures the influence with two forms.

(1) h; = £1. This term captures the smooth change and is
the most common type of influence. It means the point
process increases or decreases x(t) by 1. For example,
if a node is influenced by the information, # influenced
users is increased by 1. Figure 1 shows an example.

(ii) h; = —xz+0b;. This term captures the drastic change. It is
the special case where the point process changes current
state to a fixed state b;, i.e., if dv = —x +b;, x(t +dt) =
dz(t) + z(t) = b;. For example, the population can
suddenly decrease to a certain level due to the outbreak
of a severe disease.

Moreover, the summation in (4) captures the collective in-
fluence of all point processes. Hence the jump SDE is the
first model that systematically links all micro models to the
macro quantity. It is general since one can plug in any micro
point process models to (4). For simplicity of notation, we
use x and z(t) interchangeably.

4.3 Stochastic Calculus for Jump SDEs

Given the jump SDE, we derive the coppresponding stochas-
tic calculus rule, which describes the differential of a func-
tion g(x) with x driven by the jump SDE. It is fundamentally
different from that for continuous-state SDEs.

Theorem 2. Given the Jump SDE in (4), the differential
Sform of function g(z(t)) : N — R is:

dg(2) =D (g9(a+ hi(w)) - g(@))dN:(t)  (5)

Theorem 2 describes the fact that dg(z) is determined by
whether there is jump in dz, which is modulated by each
point process N;(t). Specifically, its influence in g(z) is
g(x + hi(z)) — g(x) and this term is modulated by its coef-
ficient dV;(¢) € {0,1}. Appendix A contains the proof.

Now we can derive the expectation of g(x(t)) as follows:

Corollary 3. Given x(7) = x,; and {H;(7)}, the expecta-
tion of g(x(t)), for t > T satisfies the following equation:

Blg(x()] = [ [ Algla(s)ds] + g(a.)
where the functional operator Alg) is defined as:

Alg)((t) =Y (9@ +hi) = g(@)Xilt),  (©)

and \;(t) is the deterministic intensity.

Proof sketch. This corollary directly follows from integrat-
ing both sides of (5) on [7,t] and taking the expectation.
Appendix B contains proof details.

4.4 Probability Distribution

We are now ready to present the result that describes the
time evolution of ¢(z,t) := P[z(t) = x|, which is the
probability distribution of z(¢) at time ¢. Specifically, we
will derive a differential equation as follows.

Theorem 4. Let ¢(z,t) be the probability distribution for
the jump process x(t) in (4) given {H;(7)}, {\i(t)} are
deterministic intensities, then it satisfies the equation:

br=—> Nort)+ 3 6@ —bi)Aa(t) ()
3 A @ =L+ Y A (el +18)

where ¢, := 2280 T = {i'\h(2) = —x + by}, T =
{i|h; = 1}. T= = {ilh; = —1}. §(x) is the delta function.

For the simplicity of explanation, we assume Z' = {i'},
It = {it}, I~ = {i"}, i.e., there is only one entry in
each index set. ¢ means the probability of state transition,
the negative sign before ¢ in the first term of (7) means
the transition starts from x, and the positive sign means the
transition ends at z. the intensity \;(t) is the transition rate.

This Theorem describes the transitions between current state
x and two classes of states, including the smooth change
to the general states {z — 1,2 + 1} and drastic change to a
constant state b;,. Next, we discuss each case in detail.

(i) x = {z — 1,z + 1}. \;+ captures the rate to jump by 1
from current state, hence it is the rate from z — 1 to z,
and from x to x + 1. Similarly, ;- captures the rate to
decrease by 1 from current state.

(i) = = by. The delta function in (7) shows z drastically
transits to b; with rate \;/. The transition from b;: to «
in the second row is a special case, and can only happen
if x = b;,. This is because of the transition rate is in the
form of A\, (¢)d(x — by). It is only nonzero if z = b;.
Hence the delta function is also a transition probability
with probability 1 if x = b; and 0 otherwise. This
captures the case where some state b;/ in the system can
have self transition.

Proof sketch. We set the right-hand-side of (7) to be B[¢).
The main idea is to show ) g(z)¢: = ) g(x)B[¢]
holds for any test function g. Then ¢ = B[¢] fol-
lows from the Fundamental Lemma of Calculus of Vari-
ations (Jost & Li-Jost, 1998). To do this, we first show
Y. 9(@)oe = > Alglo using both Corollary 3 and the
fact that each \;(t) is a deterministic intensity. Then we
show > Algl¢ = >, g(x)B[¢] by moving the operator
A from the test function g to the distribution function ¢.
Appendix C contains proof details.



Yichen Wang, Xiaojing Ye, Haomin Zhou, Hongyuan Zha, Le Song

5 Macroscopic Prediction

In this section, we present an efficient algorithm to solve the
differential equation, and show the flexibility of applying
the probability distribution in many prediction tasks.

5.1 Equivalent Linear System of Equations

We first simplify the equation (7). It holds for each x, we
show that it can be written as a system of differential equa-
tions. First, set the upper bound for x to be n, e.g., in
influence prediction, n is # users in the network. Hence the
state space is z = {0,1,2,--- ,n}. Next, we create a vector
¢(t) that collects the probability distribution of all possible

states at ¢: @(t) = (4(0,¢),--- , d(n, t))T

Hence ¢'(t) = (¢¢(0,t),- - ,gbt(n,t))T. To handle the
case with constant state b; and the delta function §(z — by ),
i’ € T', we create a sparse vector p(t) € R**L, with the
b;-th entry as p(b;r) = Ay (t) and O elsewhere. Specifically,

() = (0, Xg (1), Ay (1), ,0)

T T
the b # -thentry b, A -th entry

Now, we can express (7) as the following Ordinary Differ-
ential Equations:

#'(t) = Q1) (t) + u(t), (®)
where Q(t) is a state transition matrix with Qy r(t) =
Doicy Ai(t), Qi (1) Yier- Nit), Qrp-1(t) =
Y ezt Ai(t) for k = 1,--- n + 1. The term Qy x(t) on
the diagonal is the rate from current state x to other states,
Q. k—1(t) is the rate from = to z + 1, and Qy k1 (%) is
the rate from x + 1 to . Q(t) is a sparse matrix and it
only has nonzero entries where there is state transition. It is
tridiagonal and the number of nonzero entries is O(n).

5.2 Numerical Algorithm

It is typically difficult to get an analytical solution to (8)
since Q(t) is a function of time. We solve it numerically us-
ing the Runge-Kutta algorithm (Dormand & Prince, 1980).
It is the classic method to solve ordinary differential equa-
tions. We first divide [7,¢] into timestamps {tk}szo with
At =t — tg—1, to = 7 and tx = t. Then starting from
¢(79), the RK algorithm solves ¢(71), and use ¢(11) to
solve ¢(12). We repeat such process until 7x. This algo-
rithm is a build-in ODE45 solver in MATLAB. Algorithm 1
summarizes the procedure.

Computation complexity. The main computation to ob-
tain ¢(¢y,) at each timestamp ¢y, is the matrix-vector product
operation. Since @ is a sparse matrix with O(n) nonzero
entries, the complexity of this operation is O(n), and our
algorithm is quite scalable. For example, in influence esti-
mation problem, our algorithm is efficient and only linear
in the network size n.

Special case. If the intensity \; is a constant (@ is a con-
stant matrix) and Z' = () ( & = 0), the solution to (8) has

Algorithm 1 NUMERIC RUNGE KUTTA

: Input: {\;(¢)}, error tolerance &, ¢, time ¢,

: Output: ¢(t)

: Discretize [to, t] into {¢x} with interval length At, tx =t
: Construct Q(t) from {\;(t)} and p(t) from the model

. {¢(tr)} = ODE45([to, t], o, Q(t), p, At,€)

Do) = olix)

NN B W =

an analytical form: ¢(t) = exp(Qt)¢(0), where exp(Qt)
is called the matrix exponential. See appendix for efficient
algorithms with O(n) complexity.

5.3 Macroscopic Prediction Tasks
We discuss two prediction tasks as follows.

Size prediction. What is the expected value of x at time ¢'?
We directly compute it using the definition of expectation:

Efe(t)] = Y wd(a,t)

Time prediction. This is a new task and not considered
in most prior works. What is the expected time when x(t)
reaches size 2’ on window [7, ¢]? We model the time as a
random variable, T := inf {t|z(t) = 2'}.

We use S(t) to denote the survival probability that size «’
is not reached at time ¢. It is equal to the summation of
probability ¢(z, t) for each x < 2’

'—1

S =PT>1=>"

=0

¢(z,1)

Hence, from the theory of survival analysis (Aalen et al.,
2008), the probability density of T"is: f(t) = —S'(t) =
— %' ¢u(x,t). Then E[T] is:

E[T] = / Y (e = - / Ly

To compute this expectation, we set ¢ = ¢ in Algorithm 1
and obtain ¢ () for each timestamps ¢, in the window
[T,17]. Then the integral is computed as a Riemann sum:

d)t (’I, t)dt

B[] =3 66 ulw i)t

where ¢ () is computed using (8). With the probability
distribution, our work provides a unifying solution for these
two inference tasks.

6 Applications

In this section, we show our framework unifies different
applications. We will model event data using micro models,
use the jump SDE model to link micro models to a macro
quantity, and derive the differential equation.

Item Popularity Prediction. (Du et al., 2015) proposed
to use Hawkes process to model users’ recurrent behaviors,
such as listening to a music or watching a TV program many
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times. These repeated behaviors show the user’s implicit
interest to an item. This model has superior performance in
recommending proper items to users at the right time com-
pared with epoch based recommendation systems (Koren,
2009; Wang et al., 2015). Mathematically, this model use
point process N,,; () to model user u’s interaction events to
item 7. Based on the model, we can further inference the
item popularity x(t), defined as the total number of events
happened to the item up to ¢.

Micro model. This model parameterize the intensity function
between user « and item ¢ as follows:

u,t
tZ”"eH“J K<t - tk )v
where 7,,; > 0 is a baseline intensity and captures the users’
inherent preference to items. x(t) = exp(—t) is an expo-
nential decaying triggering kernel, o,,; > 0 is the magnitude
of influence of each past event ¢,"*, and H* is the history
events between user u and item 7. Here, the occurrence
of each historical event increases the intensity by a cer-
tain amount determined by the kernel and the weight. The
parameters (7)), (cvw,;) are collected into user-by-item ma-
trices and are assumed to be low rank, since users’ behaviors
and items’ attributes can be categorized into a limited num-
ber of prototypical types. We follow (Du et al., 2015) and
use the generalized conditional gradient algorithm to learn
parameters by maximum likelihood estimation (MLE).

Jump SDE. For a item ¢, we set z(t) to be the accumulative
number of interaction events between each user u and i:

da(t) = Zu dNi(t)

Differential equation. From Theorem 4, we can derive the
popularity distribution, ¢*(x, t) for item 7 as follows,

o= i)' (@, t) + Aui(t)¢' (w — 1,1)

Hence Q is a matrix with Qp,(t) = — >, Aui(t) and
Qr,e—1(t) = >, Aui(t). Since at initial time there is no
events with probability one, we set ¢(0) = (1,0,---,0) .

Social Influence Prediction. The goal is to compute the ex-
pected number of nodes influenced by source nodes through
information propagation over the network.

Micro model. Given a directed contact network, G = (V, £),
we use a continuous-time generative model for the infor-
mation diffusion process (Du et al., 2013; Rodriguez et al.,
2011). It begins with a set of infected source nodes, S(tg),
and the contagion is transmitted from the sources along their
out-going edges to their direct neighbors. Each transmission
through an edge entails a random spreading time, ¢;, drawn
from a density over time, f};(t;;). We assume transmission
times are independent and possibly distributed differently
across edges. Then, the infected neighbors transmit the
contagion to their respective neighbors, and the process con-
tinues. We set IN;;(t) to be the point process capturing the

infection on the edge j — ¢. Hence dNj;(¢) = 1 means
node i is infected by node j at time ¢. Set \;;(t) = «;; to be
the infection rate, then f;;(¢;;) follows an exponential dis-
tribution, f;;(t;;) = a;; exp(—ay;t;;). We use the convex
MLE algorithm (Rodriguez et al., 2011) to learn {a;; }.

Jump SDE. Since the infection can only happen if node
j is already infected, we keep track of the set S(¢) that
includes the nodes that have been infected at ¢ and V \
S is the set of non-activated nodes. Denote z(t) as the
number of influenced nodes, then only the edges satisfying
the condition C(t) = {(j,i) € £|j € S(t),i € V\S(t)}
will be potentially influenced:

dx(t) = Z(j,i)GC(t) dN]7 (t)

Differential equation. Applying Theorem 4 yields:
¢ = Z(m)ecu) —ajip(x,t) + ojid(z — 1,1)

Hence Q is also a bi-diagonal matrix. Since initially all
source nodes are activated, we set ¢(|S|,0) = 1 and other
components are 0.

7 Experiments

We evaluate our method, MIC2MAC (Micro to Macro), and
show it leads to both accuracy and efficiency improvement
on different problems: item popularity and influence predic-
tion. For different problems, we compare with different com-
petitors, which are problem specific. However, MIC2MAC
is generic and works across different applications.

Evaluation scheme. We focus on the task: Given the users’
micro behavior, can we forecast the future evolution of a
macro quantity x(¢)? We use the following metrics.

1. Size prediction. In the test data, we compute the mean
absolute percentage error (MAPE) between estimated
size &(t') and ground truth x(¢') at time ¢': |Z(¢') —
x(t")|/x(t'). For the item popularity task, the size is #
events happened to the item. For influence estimation,
the size is # infected nodes in the network.

2. Time prediction. We also predict when x(t) reaches a
threshold size z’, and report the MAPE.

7.1 Experiments on Item Popularity Prediction

Datasets. Our datasets are obtained from two different do-
mains including the TV streaming services (IPTV) and the
online media services (Reddit). IPTV contains 7,100 users’
watching history of 436 TV programs in 11 months, with
2,392,010 events. Reddit contains the online discussions of
1,000 users in 1,403 groups, with a total of 10,000 discus-
sion events. We cleaned all bots’ posts on Reddit. The code
and data will be released once published.

Competitors. The state-of-arts use different point processes
to model micro behaviors and different approximations or
heuristics for inference. The parameters of these models are
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Figure 2: Experiments on item popularity prediction. (a) predict the popularity (size) at different test times, which are the
relative times after the end of train time; (b) predict the time when the size reaches different thresholds. The train data is
fixed with 70% of total data for (a) and (b); (c) predict the size at final time by varying train data; (d) predict the time to

reach the size of 8,000 (IPTV) and 20 (Reddit) by varying train data. Results are averaged over all items.

learned using MLE from training data. SEISMIC (Zhao et al.,
2015) defines a self-exciting process with a post infectious-
ness factor and use the branching property for inference. It
introduces several heuristics to correction factors to account
for a long term decay. RPP (Gao et al., 2015) adds a re-
inforcement coefficient to Poisson process that depicts the
self-excitation phenomena and discard the stochasticity in
the system to make predictions. We also compare with a
simple heuristic, SAMPLE that makes inference by simulat-
ing future events using Ogata’s thinning algorithm (Ogata,
1981), we take the sample average of 1000 simulations to
compute the expected size.

Prediction results. We use all events with p € (0, 1) pro-
portion as the training data to learn parameters of all meth-
ods, and the rest as testing. The prediction performances
on depends on different variates: (i) items, (ii) training data
sizes, (iii) testing times t’ for the size prediction, and (iv)
threshold x’ for time prediction. Hence we make predic-
tions for each item and report the averaged results and vary
MAPE as a function of (ii)-(iv). Figure 2 shows MIC2MAC
significantly and consistently outperforms state-of-arts in
different datasets on different prediction tasks.

Size MAPE vs. test time. Figure 2 (a) shows that MAPE
increases as test time increases. Since we fix the training
data, and the farer the future, the more stochasticity and
harder to predict. However, MIC2MAC has the smallest
slope of MAPE vs. time, showing its robustness. Moreover,
MICc2MAC has 10% accuracy improvement than SEISMIC.
These two methods use different approximations, and the
accuracy improvement suggests that the heuristic scheme
in SEISMIC is less accurate compared with our intensity

approximation. Moreover, RPP discard the stochasticity in
prediction hence is less accurate than SEISMIC.

Time MAPE vs. threshold. The time prediction is especially
novel and the competitors are not designed to predict time.
For a fair comparison, we use the intensity function of SEIS-
MIC, RPP, SAMPLE to simulate events and record the time
that the size reaches the threshold. This simulation is re-
peated for 50 times for each threshold and the averaged time
is reported. Figure 2 (b) shows the time MAPE increases as
threshold increases. This is because train data size compared
with the threshold is becoming smaller as the threshold in-
creases. However, MIC2MAC is robust to the change of the
threshold and the error only changes around 10% when the
threshold changes from 6000 to 10000 on IPTV, while SEIS-
MIC changes 20%. MIC2MAC is also 10% more accurate
than SEISMIC. All competitors do not perform well since
they use the sample average for prediction.

Size & Time MAPE vs. train size. Figure 2 (c) and (d) show
that as the training data increases, MAPE decreases since
more data leads to more accurate parameters. Our work also
consistently performs the best with different training data.

7.2 Experiments on Influence Prediction

Dataset. We use the MemeTracker dataset (Leskovec et al.,
2009). It contains information flows captured by hyperlinks
between online media sites with timestamps. A site posts
a piece of information and uses hyperlinks to refer to the
same or closely related information posted by other sites.
Hence a cascade is a collection of hyperlinks between sites
that refer to the closely related information. In particular,
we extract 321,362 hyperlink cascades among 1000 nodes.
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Figure 3: Experiments on influence prediction. (a-b) training data fixed with 70% of total data. (c) predict size at final

cascade time. (d) predict the time to reach threshold size of 4.

Competitors. CONTINEST (Du et al., 2013) is the state-
of-art and uses kernel function to compute the number
of infected nodes using Monte-Carlo sampling. It learns
the model parameters using NETRATE (Rodriguez et al.,
2011) with exponential transmission functions. FPE (Chow
et al., 2015) is macroscopic method that directly computes
the probability distribution, but it learns model parameters
heuristically. We also add SAMPLE as a baseline.

Prediction results. To estimate influence on test set, we set
C(u) to be the set of cascades in which w is the source node.
Then # distinct nodes infected before ¢ quantifies the real
influence of node u. We also split the train and test data by
proportion p. The results are averaged over all test cascades.

Size prediction. Figure 3 (a) shows that MIC2MAC has
around 5% accuracy improvement over CONTINEST, and
20% improvement over FPE. This is important considering
the collective influence sources. The individual improve-
ment leads to significant improvement overall since the error
accumulates considering all source nodes.

Time prediction. CONTINEST is not designed for this task.
We collect its size output with different times as input and
choose the one when the threshold is reached. FPE uses the
same way as our method. SAMPLE predicts in the same way
as the popularity experiment. Fig. 3 (b) shows our method is
around 2 x more accurate than FPE. It highlights the impor-
tance of formulating the jump SDE model and using MLE
to learn model parameters. Although FPE also computes the
probability distribution, it learns the parameters heuristically
without looking into the micro dynamics. Hence the less
accurate parameters lead to less accurate prediction. Fig. 3
(c,d) further show that our method performs the best. The
typical length of a cascade is small and around 4 nodes, the
change of train data is also small, hence the curves are flat.

Rank prediction on two problems. Since MIC2MAC can
predict the popularity of all items and the influence of all
nodes, we also evaluate the rank prediction at the final time.
Note that for the popularity problem, the final time for each
item is the same, and is the universal final time of the dataset.
For the influence problem, since each node has different start
time of the infection, the final time is different for each node.
Specifically, for all items we obtain two lists of ranks £ and
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Figure 4: Rank prediction in different datasets.

L according to the true and estimated size. Then the accu-
racy is evaluated by the Kendall-7 rank correlation (Kendall,
1938) between the two lists. A high value means the pre-
dicted and true sizes are strongly correlated. We vary the
train size p from 0.6 to 0.8, and the error bar represents the
variance over different sets. Figure 4 (a,b) show MIC2MAC
performs the best, with accuracy more than 50% and consis-
tently identifies 10% items more correctly than SEISMIC on
the popularity prediction problem. (c) shows that it achieves
accuracy of 68% with 7% improvement over CONTINEST
on the influence prediction problem.

8 Conclusions

We have proposed a generic framework with a MLE al-
gorithm to fit point process models to event data, a jump
SDE model to link the micro behaviors to a macro quan-
tity, and an equation for the probability distribution of the
macro quantity. It has improved accuracy performance in
diverse applications, and outperforms the state-of-arts that
are specifically designed only for that application.

We point out the limitations of our method: for point pro-
cess with stochastic intensity function, we use deterministic
functions to approximate the intensity, which might be un-
desirable if (i) the prediction time is very far into the future,
(ii) the intensity function is highly stochastic, or (iii) the
model has intertwined stochasticities, such as the model
that captures the co-evolution of information diffusion and
network topology (Farajtabar et al., 2015). It remains as
future work to consider all the stochasticity in point process
models and develop efficient algorithms.
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A Proof of Theorem 2
Theorem 2. Given the following Jump SDE model and an arbitrary function g : N — R,

de(t) = 32" hi(w(®)dN;(D),

the differential form of function g(x(t)) is as follows:
dg(a(t) =" (9(e(t) + hi(x(1))) — g(x(t)))dN(2)

Proof. According to the definition of differential, we have:

dg :=g(z (t +dt)) — g(z(t))
= g(2(t) + dz(t)) — g(2(?))
( )+ Z i hi(2)dN;( )) — g(z(t))

There are three cases for (11):

1. dNV;(t) = 1 and ANy (t) = 0 for ¢’ # 7. Then (11) is equivalent to : (g(z + h;) — g)dN;(¢).
2. dN;(t) = 0 and dNy (t) = 1 for some 7’. Then (11) is equivalent to: (g(x + hy) — g)dNy (t).
3. dN;(t) = 0 for each i. Since there is no event (jump), (11) is simplified as: dg(z) = dz = 0.

Hence, (11) = (10) in all cases, and it completes the proof.

B Proof of Corollary 3

Corollary 3. Given x(7) = x, and {H;(7)}, the expectation of g(x(t)) satisfies:

Blo(a(0)] =% | [ tA[ng(s))ds] +gler)

where the functional operator Alg| is defined as:

Algl(x(t) =3 (9(@ +ha) = g(@)) Aa(t),
and \;(t) is the deterministic intensity approximated using the history H;(T).

Proof. We first integrate both sides of (10) on [r, ¢] and express g(x(t)) as follows:
t m
9(z(t)) = g(z-) + / > (gla + hi(2) — g(x))dN;(1)
T =1

Next, condition on the initial state z(7) = x,, we have take expectation to both sides of (13):
t m
Elg(a(t)] = gles) + E / (o)) = 9() AN (0)

~ g +8[ [ Z (oo + (o) = g )t

= e+ [ gl

where the functional operator A[g] is defined as:

Algl(@(®) =3 (g(a+ hi(@)) = g(2)) (1)

Note that (14) to (15) follows from the Campbell theorem (Brémaud, 1981). This finishes the proof.

(€))

(10)

(1)

12)

13)

(14)

5)

(16)

A7)
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C Proof of Theorem 4

Theorem 4. Let ¢(x,t) be the probability distribution for the jump process x(t) in (4) given {H;(7)}, {\:i(t)} are
deterministic intensities, then it satisfies the equation:

¢t:—zz_n1 e, )+ o —b)Ae () + D A (Odle —L6) + Y N (e + 1,1)

where ¢, == W, I ={ilhy(x) = —x+ by}, Tt = {ilh; = 1}. T~ = {ilh; = —1}. 6(z) is the delta function.

Proof. For notation simplicity, we merge the set Z+ and Z~ into Z := Z* UZ~ and set:

Zﬁeﬁ At (e — L)+ N (Dola +1,6) = Ziel)\i(tw(x—&—hi,t)

The goal is then to prove:

¢t:72?1 ¢,1) +Zz€l’ (@ —bir) +Zzez i)z + hi, t) = Blg] (18)

From the Fundamental Lemma of Calculus of Variations, we only need to show the equation ) g(x)¢; = >, g(x)B[¢]
holds for any choice of the test function g(z).

We first compute ) . g(x)¢;. According to the definition of E[g(z(t))], we obtain the following equality:
E ~ 9P - 19
o) = 3 gBle(t) =2] = 3 g(@)(z.1) (19)

Taking derivative with respect to time ¢, we have:

BN _ 57 gtz 20)

Next, we differentiate both sides of Corollary 3 with respect to ¢:

W _ E[gt /tt (A[g](x(s)))ds} — E|Alg]((1))] 5 > Aldl(@)s(a. 1) 1)

Remark. Note the the key equation (a) follows from the fact that A;(¢) is a deterministic intensity; hence the expectation is
only with respect to z(¢). On the contrary, if the intensity is stochastic, since the functional operator .A[g] contains \;(¢) and
x(t), the intensity and the jump SDE are dependent and have intertwined stochasticity. Hence the expectation is with respect
to the joint distribution of x(t) and {\;(¢)}, which makes it impossible to derive (a).

Now, the equivalence of (21) and (20) suggests that:) © g, = >, A[g]$. Next, we derive another expression for ) | A[g]¢
as follows.

Since the form of A[g] in (17) is a summation, we will split it into two parts based on the properties of h;(z) as follows.
D Alglo =Y Alglzo+ > Alglzé

where A[g]z- means the summation in (17) is in the set Z'. Moreover, we set B[¢] = B[]z + B[]z, where
B[(ZS]I/ - Zi’el'/ *)\l/qﬁ =+ 5(b7/ — I))\7/(t)
Blglz = Ziel’ =X+ Ai(t)p(z — hi(), 1)

Next, we define a new state variable y = x + h;(x) and compute each term in ) A[g]¢.

First, for the the special case where h;/ (x) = —x 4 b;/, we have y = b;/, which is a constant. Then }  A[g]z/ ¢ is expressed
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as follows:

2 3 (olbe) — o)At

= Z Y gbi) e (B)e(a,t) =Y g(x) Z Ao (1) (a, t
= i:g?bw)&' (t) — Zg(a:) Zx)\i/(tw(zx '

- izg@) b = (0) = (@) 3 A (9Lt
ZZZQ 25 v — ) Zg iAi/(t)qS(xt

=> gBr¢]

where we have used the fact that g(by) = > d(x — b;yr)g(x) by the property of the delta function.

Next, for general case where y is a variable, we will invert the function h;(x) with respect to « and replace z by y in the
integration. The term ) A[g]7¢ is simplified as:

3 ZI (9(z + hi) — g(@)) Xi(, t) (2, 1)
T e

= Z Zg(x + hi)Xi(z, )6 (. 1) — Z Zg(xwt)m, )

_Zzg iy — hi, )by — hi t) — Zg ZAi(tW(It

_ Zg y in y— hi, )y — hi,t) — Zg ZAi(t)sb(I t

" 2 i

=3 o2l @)

Hence, we have shown that the following equation holds for any test function g(+):

D g =Y Alglé = (Azlgl + Arlg)é =Y g(Bzlé] + Br[¢]) = >  gBl¢]

Hence we have finished our proof.

D Matrix Exponential Algorithm

Algorithm 2 MATRIX EXPONENTIAL FOR Q

1: Input: Q, error tolerance &, MaxIter M, time ¢
2: Output: matrix exponential E = exp(tQ)

3 d=minQ;t,Qu=tQ —dl,B=%, W =8B
4 p=|Qallc.p=|logp] +1,E=1+B

5: form = 2 to M do

6: W= BW/m E=FE+B

7. W - ﬁ) 1 < ¢E then

8: E = exp(d/2P)E, break

9: endif

10: end for

11:

for i = 1to pdo E = E? end for
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If the intensity function A;() is a constant, then the generator matrix @ is a constant matrix. Moreover, if 7' = (0, then
p = 0. In this case, given the initial condition ¢(ty) = ¢, we can directly compute the solution to (8) analytically:

o(t) = exp(tQ) oo

k
where exp(tQ) = >_7—, (t%) is expressed in the form of Taylor series expansion. It is called the matrix exponential.

Computing the matrix exponential is a classic problem. See (Moler & Van Loan, 2003) for a thorough survey. We adopt
the efficient algorithm in (Xue & Ye, 2013) to obtain a highly accurate approximation using the truncated Taylor series
expansion.

The main idea is as follows. First we create a shift matix, Q4 = Q — dI, then we have exp(Q) = exp(d) exp(Qg4). One

k
can then approximate exp(Q ) with the truncated Taylor series T, (Qq) = ZZZOI % with high accuracy, i.e.,

lexp(Qa) — T (Qa)| < el (Qa), (23)

where ¢ is the error tolerance. This can be achieved by the following theorem (Xue & Ye, 2013).
Theorem 5. Let m be such that p(Qg/(m + 1)) < 1, then

Qm
< x*d_
m!

Qg

(-
m+1

)~ (24)

lexp(Qa) — T (Qa)

The condition can be satisfied as follows. Let p = ||Qall and p = |logp| 4+ 1. Then the matrix exponential can be
evaluated through the scaling and repeated squaring:

exp(Qa) = (exp(d/2") exp(Qa/2))*"

Note that the scaling ensures p(Qq/2P) < 1 and accelerates the convergence of the Taylor series. It will stop if the
right-hand-side of (24) is less than 7, (Q) in (23). Algorithm 2 summarizes the procedure.



