
Figure 1: Design DH for d = 2.
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1 INTRODUCTION

This supplementary provides proofs of the main statements from the paper. We start with description of all
statements similar to that in the paper, and then give proofs for them in separate sections. At the end there is
also Section 9 devoted to description of the real problems considered in the paper.

2 MINIMAX INTERPOLATION ERROR FOR GAUSSIAN PROCESS
REGRESSION

In case of Gaussian process regression there is a gap between theoretically tractable problems and practice.
Namely, since the main tool for theoretical investigation is the Fourier transform, it is a common approach to
consider the design of experiments based on an infinite grid [Golubev and Krymova, 2013, Stein, 2012], though
in many cases the theoretical results are transferable to practical solutions. In this section we consider a design of
experiments, belonging to some infinite grid, and later in the experimental section we show that our conclusions
remain valid under finite sample random designs.
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2.1 Interpolation Error

Let f(x) be a stationary Gaussian process on Rd with a covariance function R(x) = E(f(x0 + x) − Ef(x0 +
x))(f(x0)− Ef(x0)) and a spectral density F (ω)

F (ω) =

∫
Rd
e2πiωTxR(x)dx .

Suppose that we know values of realizations of f(·) at the infinite rectangular grid DH = {xk : xk = Hk,k ∈ Zd},
where H is a diagonal matrix with elements h1, . . . , hd. An example of such design in the case of the input
dimension d = 2 is provided in Figure 1.

We measure the interpolation error over the domain of interest ΩH = [0, h1]× . . .× [0, hd] as follows:

σ2
H(f̃ , F )

def
=

1

µ(ΩH)

∫
ΩH

E
[
f̃(x)− f(x)

]2
dx , (1)

where µ(ΩH) =
∏d
i=1 hi is the Lebesgue measure of ΩH , and f̃(x) is an interpolation of f(x). Here we consider

f̃(x) of the form

f̃(x) = µ(ΩH)
∑

x′∈DH

K(x− x′)f(xk) , (2)

where K(·) is a symmetric kernel.

Theorem 1. The error of interpolation with f̃(x) from (2), based on observations at points from DH of a
stationary Gaussian process f(x) with spectral density F (ω), is equal to

σ2
H(f̃ , F ) =

∫
Rd
F (ω)

[(
1− K̂(ω)

)2

+

+
∑

x∈DH−1\{0}

K̂2 (ω + x)

 dω ,
where K̂(ω) is the Fourier transform of K(ω). Furthermore, the optimal K̂(ω), minimizing the interpolation
error, has the form

K̂(ω) =
F (ω)∑

x∈DH−1
F (ω + x)

.

Remark 1. The function f̃(x) that minimizes the squared error E(f̃(x)− f(x))2 has the form (2), where K(·)
is a symmetric kernel. This motivates us to use f̃(x) from (2) for interpolation.

Remark 2. It is easy to see that for f̃(x) from (2) it holds that

σ2
H(f̃ , F ) = σ2

SH(f̃ , F ) ,

where S = diag(s1, . . . , sd), with si ∈ Z+, i = 1, . . . , d.

Using Theorem 1 one can estimate interpolation errors for various covariance functions. For example,

Corollary 1. For a Gaussian process on R with exponential spectral density Fθ(ω) = θ
θ2+ω2 the interpolation

error (1) for the best interpolation has the form:

σ2
h(f̃ , Fθ) ≈

2

3
π2θh+O((θh)2), θh→ 0 .

Corollary 2. For a Gaussian process on R with squared exponential spectral density Fθ(ω) = 1√
θ

exp
(
−ω

2

2θ

)
the

interpolation error (1) for the best interpolation is bounded by:

4

3
h
√
θ exp

(
− 1

8h2θ

)
≤ σ2

h(f̃ , Fθ) ≤

≤ 7h
√
θ exp

(
− 1

8h2θ

)
, θh2 → 0 .
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(a) F(10, 1) (b) F(100, 1) (c) F(1000, 1)

Figure 2: Realizations of Gaussian processes with the Matérn covariance function R(x) = (1 +√
3θ|x|) exp(−

√
3θ|x|) (ν = 3

2 ) for different values of L in F(L, 1) and d = 1.

2.2 Minimax Interpolation Error

For many covariance functions direct evaluation of the interpolation error can be technically cumbersome, espe-
cially for d > 1. Furthermore, in many cases the true covariance function is not known exactly, and calculating
the interpolation error in such misspecified cases is even a harder task.

Instead we consider a minimax interpolation error that provides an answer in the worst case scenario. We define
a set F(L,λ) of spectral densities F (ω) for a given λ = (λ1, . . . , λd) ∈ Rd and L > 0 as

F(L,λ)
def
=

{
F : E

d∑
i=1

λ2
i

(
∂fF (x)

∂xi

)2

≤ L ,x ∈ Rd
}
, (3)

where f(x) = fF (x) is a realization of a Gaussian process with the spectral density F (ω) at the point x ∈ Rd.
Sample realizations of Gaussian processes for different L in the case of d = 1 and the Matérn covariance function
[Rasmussen and Williams, 2006] are shown in Figure 2.

The minimax interpolation error that describes how large the interpolation error is for the worst case scenario
is defined as follows:

RH(L,λ)
def
= inf

f̃
sup

F∈F(L,λ)

σ2
H(f̃ , F ) .

Then

Theorem 2. For a Gaussian process f(x), defined on Rd and evaluated on the design DH , with the spectral
density from the set F(L,λ), the minimax interpolation error has the form

RH(L,λ) =
L

2π2
max

i∈{1,...,d}

(
hi
λi

)2

.

Moreover, the minimax optimal interpolation f̃(x) has the form

f̃(x) = µ(ΩH)
∑

x′∈DH

K(x− x′)f(x′) ,

where K(x) is a symmetric kernel with the Fourier transform K̂(ω) defined as

K̂(ω) =

{
1−

√∑d
i=1 ω

2
i · h2

i if
∑d
i=1 ω

2
i · h2

i ≤ 1 ,

0, otherwise .

While there is no explicit dependence of the minimax interpolation error on the input dimension d, growth of
d leads to an exponential growth of the number of points in an unit hypercube. Thus, there is an exponential
dependence of the minimax interpolation error on d if the density of observations is constant.

Note, that we can minimize the minimax interpolation error w.r.t. the diagonal matrix H in such a way as to
keep fixed the average number of points belonging to a unit hypercube:

∏d
i=1

1
hi

= n. The diagonal elements
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h∗i of the corresponding optimal matrix H∗ = diag(h∗1, . . . , h
∗
d) have the form h∗i = d

√
nλdi∏d
j=1 λj

. The minimal

minimax interpolation error is then equal to RH
∗
(L,λ) = L

2π2 d/2

√
n∏d
i=1 λi

.

3 MINIMAX INTERPOLATION ERROR FOR A VARIABLE FIDELITY
MODEL

3.1 Variable Fidelity Data Model

Suppose that the true function is modelled as

u(x) = ρf(x) + g(x) , (4)

where ρ is a fixed constant, and f(x) and g(x) are stationary independent Gaussian processes, defined on Rd. This
is the state-of-the-art cokriging approach used to model a variable fidelity data [Kennedy and O’Hagan, 2000].

We refer to a realization of u(x) as a high fidelity function, and to a realization of f(x) as a low fidelity function.
Therefore g(x) is a correction of f(x) that appears due to a low fidelity nature of f(x). The parameter ρ provides
information on a strength of the relation between f(x) and u(x).

We observe values of u(x) and f(x) and we want to construct an interpolation ũ(x) of the high fidelity function
u(x) on the basis of these variable fidelity observations.

3.2 Interpolation Error

It is natural to assume that we observe the cheap low fidelity function f(x) on denser grid than the expensive
high fidelity function u(x). We observe u(x) at points from Du = DH , and f(x) at points from Df = DH

m
with

a grid size ratio m ∈ Z+.

Using these observations we attempt to interpolate u(x) within the hypercube ΩH using a function ũ(x) in order
to minimize the interpolation error:

σ2
H,m(ũ, F,G, ρ)

def
=

1

µ(ΩH)

∫
ΩH

E [ũ(x)− u(x)]
2
dx . (5)

Theorem 3. The minimum of interpolation error (5) of the variable fidelity data model u(x) from (4), based
on observations of u(x) at points from DH and observations of f(x) at points from DH

m
, has the form:

σ2
H,m(ũ, F,G, ρ) = σ2

H(g̃, G) + ρ2σ2
H
m

(f̃ , F ) , (6)

where g̃(x) and f̃(x) minimize σ2
H(g̃, G) and σ2

H
m

(f̃ , F ) respectively.

The explicit formula for optimal ũ(x) is similar to the formula for f̃(x) in Theorem 1, while as it is more
cumbersome, we provide it in supplementary materials in the proof of the above theorem.

3.3 Minimax Interpolation Error

We obtain the minimax interpolation error for the variable fidelity case in the manner similar to the single fidelity
case. Let us assume that the true spectral densities of the processes f(·) and g(·) are unknown, but sufficiently
smooth, i.e. they belong to classes F(Lf ) = F(Lf ,1) and F(Lg) = F(Lg,1) respectively. Here for clarity of the
presentation we limit ourselves to the case λ = 1 ∈ Rd and H = hI for some h > 0, where I is an identity matrix.
In fact, results below hold in a more general setting, described in section 2 and defined by general values of
λ ∈ Rd and H. However, this additional sophistication blurs the main conclusions and provides little additional
insight.

The goal is to obtain the minimax interpolation error for u(x). In particular we want to get the minimax
interpolation error for the variable fidelity data

Rh,m(Lf , Lg)
def
= inf

ũ
sup

F∈F(Lf ),
G∈F(Lg)

σ2
hI,m(ũ, F,G, ρ) . (7)
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Theorem 4. Minimax interpolation error (7) of model (4), based on observations of u(x) at points from DH

and observations of f(x) at points from DH
m

, has the form

Rh,m(Lf , Lg) = ρ2Lf
2

(
h

mπ

)2

+
Lg
2

(
h

π

)2

. (8)

4 OPTIMAL RATIO OF SIZES OF VARIABLE FIDELITY DATA SAMPLES

Obtained results allow us to get the optimal ratio m of sizes of variable fidelity data samples. We consider the
following setting: one evaluation of u(x) costs c, whereas one evaluation of f(x) is 1; the total evaluation cost is
equal to the number of points in a unit hypercube 1

hd
multiplied by the evaluation price; and the computational

budget is set to B.

For such setup the total budget is equal to c 1
hd

+ δ 1
hd

, where δ = md is the ratio of sizes of variable fidelity data
samples.

Using Theorem 4 we prove

Theorem 5. The minimum of the minimax interpolation error (8) given the computational budget B has the
form

min
h,δ:

B= c+δ

hd

Rh,m(Lf , Lg) = ρ2Lf
2

(
c+ δ∗

πBδ∗

) 2
d

+
Lg
2

(
c+ δ∗

πB

) 2
d

,

and the optimal ratio is δ∗ =
(
Lf
Lg
cρ2
) d
d+2

.

The optimal ratio δ∗ depends on the relative cost c of the high fidelity function evaluation, the coefficient ρ and
the smoothnesses Lf and Lg of f(x) and g(x) respectively and input dimension d.

If we evaluate exclusively u(x), then we get the following minimax interpolation error given the budget B:

min
h:Bhd=c

Rh(Lf , Lg) = ρ2Lf
2

( c

πB

) 2
d

+
Lg
2

( c

πB

) 2
d

.

Note, that we can get similar results for a specific covariance function using Theorem 3 and Corollaries 1 and 2.

5 PROOFS FOR SUBSECTION 2.1

Proof of Theorem 1. It is easy to see that

E[f(x)− f̃(x)]2 =

∫
Rd
F (ω)

∣∣∣∣∣∣1− |H|
∑
k∈Zd

K(x− xk) exp(−2πiωT (xk − x))

∣∣∣∣∣∣
2

dω =

=

∫
Rd
F (ω)

∣∣∣∣∣∣1− |H|
∑
k∈Zd

(∫
Rd
K̂(u) exp(−2πiuT (x− xk))du

)
exp(−2πiωT (xk − x))

∣∣∣∣∣∣
2

dω,

where K̂(u) is the Fourier transform of K(x). As Poisson summation formula suggests:∑
k∈Zd

exp(2πikTω) =
∑
k∈Zd

δ(ω + k),

where δ(ω) is the Dirac delta function, then

E[f(x)− f̃(x)]2 =

∫
Rd
F (ω)

∣∣∣∣∣∣1− |H|
∑
k∈Zd

∫
Rd
K̂(u) exp(2πi(ω − u)Tx)δ(u− ω +H−1k)du

∣∣∣∣∣∣
2

dω =

=

∫
Rd

∣∣∣∣∣∣1−
∑
k∈Rd

K̂(ω −H−1k) exp(2πiH−1xTk)

∣∣∣∣∣∣
2

dω.



Manuscript under review by AISTATS 2017

Taking into account orthogonality of the system of functions exp(2πiH−1xTk) on x ∈ [0, h1] × . . . × [0, hd] we
integrate the equality to get the interpolation error

σ2
H(f̃ , F ) =

∫
Rd
F (ω)

∣∣∣∣∣∣[1− K̂(ω)]2 +
∑

k∈Zd\{0}

K̂2(ω +H−1k)

∣∣∣∣∣∣
2

dω.

To get K̂(ω) that minimizes the interpolation error we rewrite it as

σ2
H(f̃ , F ) =

∫
Rd

∣∣∣∣∣∣[1− K̂(ω)]2F (ω) + K̂(ω)2
∑

k∈Zd\{0}

F̂ (ω +H−1k)

∣∣∣∣∣∣
2

dω.

To minimize this error we solve this quadratic optimization problem for each ω and get:

K̂(ω) =
F̂ (ω)∑

k∈Zd F̂ (ω +H−1k)
.

Then

σ2
H(f̃ , F ) =

∫
Rd
F (ω)

∑
k∈Zd\{0} F̂ (ω +H−1k)∑

k∈Zd F̂ (ω +H−1k)
dω. (9)

Proof of Remark 1. It holds that the best approximation has the form

f̃(x) = µ(ΩH)
∑
k∈Zd

φ(x,xk)f(xk)

for some φ(x,x′). As Wiener-Hopf equations for the covariance function R(x) hold, then∑
k∈Zd

φ(x,xk)R(xk − xm) = R(x− xm) (10)

for all m ∈ Zd. Let us prove that φ(x,xk) = φ(x− xk).

Let us consider two sums from (10):∑
k∈Zd

φ(x,xk)R(xk − xm) = R(x− xm),

∑
k∈Zd

φ(x− xs,xk)R(xk − xm−s) = R(x− xs − xm−s).

As xm−s = Hm−Hs = xm − xs, then∑
k∈Zd

φ(x,xk)R(xk − xm) = R(x− xm) = R(x− xs − xm−s) =
∑
k∈Zd

φ(x− xs,xk)R(xk − xm−s).

Consequently, ∑
k∈Zd

[φ(x,xk)− φ(x− xs,xk − xs)]R(xk − xm) = 0.

Positive definiteness of the covariance function R(x) implies that

φ(x,xk) = φ(x− xs,xk − xs).

For xs = xk we get
φ(x,xk) = φ(x− xk,0) = K(x− xk).
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Due to Poisson summation formula it holds that

1

µ(ΩH)
Φ(ω)

∑
k∈Zd

F (ω − ωk) = F (ω),

where Φ(ω) is the Fourier transform of φ(x). Then

Φ(ω) =
µ(ΩH)F (ω)∑

k∈Zd F (ω − ωk)
.

So, optimal interpolation has the form:

f̃(x) = µ(ΩH)
∑
k∈Zd

K(x− xk)f(xk).

Also

K̂(ω) =
Φ(ω)

µ(ΩH)
.

Proof of Corollary 1. We get the interpolation error for an exponential covariance function of the form R(x) =√
π
2 exp (−θ|x|) for x ∈ R. The spectral density for this covariance function is F (ω) = θ

θ2+ω2 .

We want to evaluate the interpolation error

σ2
h

(
f̃ , F

)
=

∫ ∞
−∞

F (ω)

∑
k 6=0 F (ω + k

h )∑
k F (ω + k

h )
dω.

It holds that
∞∑

k=−∞

F (ω +
k

h
) =

∞∑
k=−∞

θ

(ω + k
h )2 + θ2

= h

∞∑
k=−∞

hθ

(hω + k)2 + h2θ2
=

= πh coth(πθh)
1

1 + sin2(πhω)(coth2(πθh)− 1)
.

Then ∫ ∞
−∞

F (ω)

∑
k 6=0 F (ω + k

h )∑
k F (ω + k

h )
dω =

∫ ∞
−∞

θ

θ2 + ω2

(
1− θ

θ2 + ω2

1 + sin2(πhω)(coth2(πθh)− 1)

πh coth(πθh)

)
dω.

We can integrate three terms inside the integral analytically. Namely,∫ ∞
−∞

θ

θ2 + ω2
dω = π.

Also ∫ ∞
−∞

θ2

(θ2 + ω2)2
dω =

π

2θ
.

Finally∫ ∞
−∞

θ2

(θ2 + ω2)2
sin2(πωh)dω = −π

2h

2
(cosh(πθh)− sinh(πθh))

(
cosh(πθh)−

(
1

πθh
+ 1

)
sinh(πθh)

)
.

Consequently, ∫ ∞
−∞

θ

θ2 + ω2

(
1− θ

θ2 + ω2

1 + sin2(πhω)(coth2(πθh)− 1)

πh coth(πθh)

)
dω =

π − π

2πθh coth(πθh)
+

+
π2

2
exp(−πθh)

(
exp(−πθh)− 1

πθh
sinh(πθh)

)
coth2(πθh)− 1

coth(πθh)
.
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For h→ 0 we get Taylor series for the obtained interpolation error:

σ2
h(f̃ , F ) =

2π2

3
θh+O((θh)2).

Proof of Corollary 2. Note, that the interpolation error has the form

σ2
h(f̃ , F ) =

∫ ∞
−∞

F (ω)

∑
k 6=0 F (ω + k

h )∑
s F (ω + s

h )
dω.

We get lower and upper bounds for this expression. We denote v = 1
h .

We get upper bound for the interpolation error by splitting integration region (−∞,∞) to three intervals
(−∞,−v/2], (−v/2, v/2], (v/2,+∞) and obtaining an upper bound for each of them.

Note that

0 ≤
∑
k 6=0 F (ω + kv)∑
s F (ω + sv)

≤ 1.

Consequently, using Chernov type bounds [Chang et al., 2011] we get

∫ ∞
v/2

F (ω)

∑
k 6=0 F (ω + kv)∑
s F (ω + sv)

dω ≤
∫ ∞
v/2

F (ω)dω = (11)

=

∫ ∞
v/2

1√
θ

exp

(
−ω

2

2θ

)
dω ≤

√
2 exp

(
−v

2

8θ

)
.

In a similar way get an upper bound for the interval (−∞,−v/2).

Now we get an estimate for the interval (−v/2, v/2). We start with an upper bound and a lower bound for series∑
s 6=0 F (ω+ sv). Spectral density for squared exponential covariance function decreases at [0,+∞) with respect

to ω. Thus, ∫ +∞

∆+u

F (x)dx ≤
∞∑
s=1

∆F (∆s+ u) ≤ ∆F (s+ u) +

∫ +∞

∆+u

F (x)dx.

Using [Abramowitz and Stegun, 1964], Formula 7.1.13, we get for ω such that |ω| ≤ v
2 :

4
√
θ

v +
√
v2 + 16θ

exp

(
−v

2

8θ

)
≤
∫ ∞
v
2

F (ω)dω ≤ 4
√
θ

v +
√
v2 + 32

π θ
exp

(
−v

2

8θ

)
.

And

v
∑
k∈Z+

F (ω + kv) ≤ vF (ω + v) +

∫ ∞
v
2

F (ω)dω ≤ v√
θ

exp

(
−v

2

8θ

)
+

4
√
θ

v +
√
v2 + 32

π θ
exp

(
−v

2

8θ

)
.
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Now we are ready to get an upper bound for the integral over the interval (−v/2, v/2) for big enough v:∫ v/2

−v/2
F (ω)

∑
k 6=0 F (ω + kv)∑
s F (ω + sv)

dω ≤

≤
∫ v/2

−v/2
F (ω)

F (ω + v) + F (ω − v) + 4
√
θ

v
(
v+
√
v2+ 32

π θ
) exp

(
−v

2

8θ

)
F (ω) + F (ω + v) + F (ω − v) + 4

√
θ

v
(
v+
√
v2+ 32

π θ
) exp

(
−v28θ

)dω ≤

≤
∫ v/2

−v/2
F (ω)

F (ω + v) + F (ω − v)

F (ω) + F (ω + v) + F (ω − v)
dω +

∫ v/2

−v/2
F (ω)

4
√
θ

v
(
v+
√
v2+ 32

π θ
) exp

(
−v

2

8θ

)
F (ω) + 4

√
θ

v
(
v+
√
v2+ 32

π θ
) exp

(
−v28θ

)dω ≤
≤
∫ v/2

−v/2
F (ω + v) + F (ω − v)dω +

4
√
θ

v +
√
v2 + 32

π θ
exp

(
−v

2

8θ

)
≤

≤ 12
√
θ

v +
√
v2 + 32

π θ
exp

(
−v

2

8θ

)
≤ 7
√
θ

v
exp

(
−v

2

8θ

)
.

It holds that ∑
k 6=0 F (ω + kv)∑
s F (ω + sv)

≥ F (ω + v) + F (ω − v)

F (ω) + F (ω + v) + F (ω − v)
.

For ω such that |ω| ≤ v
2 we get that:

1 +
F (ω + v)

F (ω)
+
F (ω − v)

F (ω)
≤ 3.

Then for sufficiently large v the following lower bound holds:∫ ∞
−∞

F (ω)

∑
k 6=0 F (ω + kv)∑
s F (ω + sv)

dω ≥
∫ v/2

−v/2
F (ω)

∑
k 6=0 F (ω + kv)∑
s F (ω + sv)

dω ≥

≥
∫ v

2

− v2
F (ω)

F (ω + v) + F (ω − v)

F (ω) + F (ω + v) + F (ω − v)
dω ≥

∫ v
2

− v2

F (ω + v) + F (ω − v)

3
dω =

=
2

3

∫ 3v
2

v
2

F (ω)dω ≥ 2

3

 4
√
θ

v +
√
v2 + 16θ

exp

(
−v

2

8θ

)
− 4

√
θ

3v +
√

9v2 + 32
π θ

exp

(
−9v2

8θ

) ≥
≥ 4

3

√
θ

v
exp

(
−v

2

8θ

)
.

6 PROOFS FOR SUBSECTION 2.2

We need the following lemma to complete the proof of the main result

Lemma 1. Let c ≥ 0 and ω ≥ 0 be such that c2 + ω2 ≤ 1, c2 + (1− ω2) ≤ 1. Then(
1−

√
c2 + ω2

)2

+
(

1−
√
c2 + (1− ω)2

)2

≤
(

1−
√
c2
)2

= (1− c)2. (12)

Proof. We start with a scheme of the proof. We prove that for ω, that maximizes left hand side of the inequal-
ity (12), this inequality holds. To prove this we show that for admissible ω ∈ [1 −

√
1− c2, 1

2 ] derivative of the

left hand side with respect to ω is smaller than zero for all admissible c, so ω = 1−
√

1− c2 provides maximum
of the left hand side, and for such ω inequality holds.
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Partial derivative of the left hand side with respect to ω is equal to

g(ω, c) =
∂

∂ω

((
1−

√
c2 + ω2

)2

+
(

1−
√
c2 + (1− ω)2

)2
)

=

= −2

(
1−
√
c2 + ω2

)
ω

√
c2 + ω2

+ 2

(
1−

√
c2 + (1− ω)2

)
(1− ω)√

c2 + (1− ω)2
=

= −2

(
1√

c2 + ω2
− 1

)
ω + 2

(
1√

c2 + (1− ω)2
− 1

)
(1− ω).

If ω = 1
2 , then the partial derivative is zero. We show that for such ω < 1

2 that c2 + ω2 < 1, c2 + (1− ω)2 < 1,

it holds that g(ω, c) < 0. This fact means that the initial function decreases for ω ∈ [1−
√

1− c2, 1
2 ].

We start with maximization of g(ω, c) with respect to c. The function g(ω, c) attains maximum at the edge of
admissibility region or in a local optimum with respect to c. To find local optima we search for c, such that the
partial derivative g(ω, c) with respect to c is equal to zero:

c(1− ω)

((1− ω)2 + c2)
3
2

− cω

(ω2 + c2)
3
2

= 0.

Consequently,

1− ω
ω

=
((1− ω)2 + c2)

3
2

(ω2 + c2)
3
2

. (13)

So,

c2 = ω
2
3 (1− ω)

2
3 (ω

2
3 + (1− ω)

2
3 ).

We show that this is a local maximum. Namely, we prove that the second partial derivative of g(ω, c) with
respect to c is smaller than 0:

− (1− ω)

((1− ω)2 + c2)
3
2

+
ω

(ω2 + c2)
3
2

+
3c2(1− ω)

((1− ω)2 + c2)
5
2

− 3c2ω

(ω2 + c2)
5
2

≤ 0.

Or:
ω

(ω2 + c2)
5
2

((ω2 + c2)− 3c2)− (1− ω)

((1− ω)2 + c2)
5
2

(((1− ω)2 + c2)− 3c2) ≤ 0.

In a local optimum (13) holds, and we can rewrite inequality as:

(1− ω)

(ω2 + c2)((1− ω)2 + c2)
3
2

(ω2 − 2c2)− (1− ω)

((1− ω)2 + c2)
5
2

((1− ω)2 − 2c2) ≤ 0.

Then,
(1− ω)

((1− ω)2 + c2)
5
2 (ω2 + c2)

(
((1− ω)2 + c2)(ω2 − 2c2)− (ω2 + c2)((1− ω)2 − 2c2)

)
≤ 0.

Due to constraints on values of ω this is equivalent to:

((1− ω)2 + c2)(ω2 − 2c2)− (ω2 + c2)((1− ω)2 − 2c2) ≤ 0,

or

2c2ω2 − c2(1− ω)2 − 2c2(1− ω)2 + c2ω2 ≤ 0.

This inequality holds, as ω ≤ 1
2 and (1− ω)2 ≥ ω2.
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So, the extremum is a local minimum, and the function attains maximum values at the edges of the admissibility
region. Namely, c2 = 1− (1− ω)2 or c2 = 0 provides maximum values.

For such values of c the derivative is smaller than zero. Using c2 = 1− (1− ω)2 we get —

−2

(
1√

1− (1− ω)2 + ω2
− 1

)
ω ≤ 0.

In a similar way for c2 = 0
−2(1− ω) + 2ω = 4ω − 2 ≤ 0.

Consequently, the target function decreases with respect to ω at [1 −
√

1− c2, 1
2 ], and ω = 1

2 provides a local

minimum. So, the local maximum for left hand side is at ω = 1−
√

1− c2. It is easy to see that in this case the
left side of (12) is not larger than the right side.

Let us now prove the main theorem.

Proof of Theorem 2. We provide upper and lower bounds for RH(L,λ) that are equal to L
2π2 maxi∈{1,...,d}

(
hi
λi

)2

.

We start with a lower bound, and then continue with an upper bound.

We consider a functional

Φ(F, K̂) =

∫
Rd
F (ω)

(1− K̂(ω))2 +
∑

x∈DH−1\{0}

K̂2(ω + x)

 dω,
that is equal to the interpolation error σ2

H(f̃ , F ) for

f̃(x) = µ(ΩH)
∑

x′∈DH

K(x− x′)f(x′),

such that K̂(ω) is the Fourier transform of K(x).

The functional is linear in F (ω) and quadratic in K̂(ω), and we search for a saddle point of the functional
RH(L,λ) such that:

RH(L,λ) = inf
f̃

sup
F∈F(L,λ)

σ2
H(f̃ , F ) = sup

F∈F(L,λ)

inf
f̃
σ2
H(f̃ , F ).

It holds that (9)

min
K̂

Φ(F, K̂) =

∫
Rd
F (ω)

∑
x∈DH−1\{0} F (ω + x)∑

x∈DH−1
F (ω + x)

dω.

Let us consider a class of spectral densities Fε(ω):

Fε(ω) =

{
Aε

(2ε)d
, ∃s ∈ Uh : ‖ω − s‖∞ ≤ ε,

0, otherwise,

here Uh =
{(

0, 0, . . . , 1
2hj

, . . . , 0
)
,
(

0, 0, . . . ,− 1
2hj

, . . . , 0
)}

, and an index j is such that

j = arg max
i∈{1,...,d}

(
hi
λi

)2

.

Due to (3)

(2π)2

∫
Rd
F (ω)

d∑
i=1

λ2
iω

2
i dω ≤ L,
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and for ε→ 0

Aε →
L

2π2

(
hj
λj

)2

.

Really, for ε→ 0:

(2π)2

∫
Rd
F (ω)

d∑
i=1

λ2
iω

2
i dω → 2(2π)2 Aε

(2ε)d
(2ε)d

(
λj
hj

)2

= 2Aε

(
πλj
hj

)2

= L.

Now for ε→ 0 it holds that

min
K̂

Φ(Fε, K̂)→ 2
1

2

Aε
(2ε)d

(2ε)d = Aε =
L

2π2

(
hj
λj

)2

.

Consequently, we get a lower bound that equals L
2π2

(
hj
wj

)2

. Now we continue with a proof of the upper bound.

For any K̂(ω) it holds that

RH(L,λ) ≤ max
F∈F(L,λ)

Φ(F, K̂) ≤

≤ L
(

1

2π

)2

max
ω

 1∑d
i=1 λ

2
iω

2
i

(1− K̂(ω))2 +
∑

x∈DH−1\{0}

K̂2(ω + x)

 .

Now let us consider

K̂(ω) =

{
1− ‖ω‖, ‖ω‖2 ≤ 1,

0, otherwise.

Now we prove that for such K̂(ω) it holds that(1− K̂(ω))2 +
∑

x∈Zd\{0}

K̂2(ω + x)

 ≤ 2‖ω‖2. (14)

It holds that (1− K̂(ω))2 ≤ ‖ω‖2. Now let us prove that∑
x∈Zd\{0}

K̂2(ω + x) ≤ ‖ω‖2. (15)

We use mathematical induction by d for ω such that ‖ω‖∞ < 1. We prove that for ‖ω‖∞ < 1 and c2 ≥ 0:

∑
x∈Zd\{0},
‖ω+x‖2+c2≤1

1−

√√√√c2 +

d∑
i=1

(ωi + xi)2

2

≤
∑

i∈{1,··· ,d},
c2+(1−ωi)2≤1

(
1−

√
c2 + (1− ωi)2

)2

.

For d = 1 the induction statement is trivial, as the right hand side and the left hand side coincide. Suppose that
for (d− 1) the induction statement holds. Now let us prove that the induction statement holds for d.

For ω = (ω1, ω2, . . . , ωd) such that ‖ω‖∞ < 1, i-th component of the vector ω + x,x ∈ Zd \ {0} such that
‖ω + x‖ ≤ 1 is either ωi or (1− ωi). Consequently, all such ω + x has the form sω + (1− s)(1− ω), where s is
a vector with all components of it belong to {0, 1}.

It holds that (1−
√
c2 + (1− ω1)2 + ω2

2 + . . .+ ω2
d)2 ≤ (1−

√
c2 + (1− ω1)2)2, if c2+(1−ω1)2+ω2

2 +. . .+ω2
d ≤ 1.
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Now let us consider all terms of the form (1 −
√
c2 + (1− ω1)2 + . . .)2 for which there exists j 6= 1, such that

(1− ωj)2 is in the sum inside the squared root. Due to the induction statement sum of these terms is bounded
by: ∑

i∈{2,...,d},
c2+(1−ω1)2+(1−ωi)2≤1

(1−
√
c2 + (1− ω1)2 + (1− ωi)2)2.

In the same way we prove that the sum of terms (1−
√
c2 + ω2

1 + . . .)2 with a term (1− ωj)2 inside the root is
upper bounded by: ∑

i∈{2,...,d},
c2+ω2

1+(1−ωi)2≤1

(1−
√
c2 + ω2

1 + (1− ωi)2)2.

Using Lemma 1 for a pair of terms (1−
√
c2 + (1− ω1)2 + (1− ωi)2)2 + (1−

√
c2 + ω2

1 + (1− ωi)2)2 we get:

(1−
√
c2 + (1− ω1)2 + (1− ωi)2)2 + (1−

√
c2 + ω2

1 + (1− ωi)2)2 ≤

≤ (1−
√
c2 + (1− ωi)2)2.

This upper bound also holds if there are no or only one term for i-th index. Consequently, the induction statement
holds: the target sum is bounded by

∑d
i=1(1−

√
c2 + (1− ωi)2)2.

Using c2 = 0 we get (15).

Now let us consider the case ‖ω‖∞ ≥ 1. We look at the case ω = {ω̂1 + 1, ω2, . . . , ωd}, moreover

‖(ω̂1, ω2, . . . , ωd)‖∞ < 1, and ω̂1 ≥ 0, ωi ≥ 0, i = 2, d. Then ‖ω‖2 = 1 + 2ω̂1 + ω̂2
1 +

∑d
i=2 ω

2
i . For vector

(ω̂1, ω2, . . . , ωd) we have the induction statement above (15). For the initial vector ω we have an additional
term K̂2((ω̂1, ω2, . . . , ωd)) if Euclidian norm of such a vector is below or equal 1 — but this new term is smaller
or equal to 1, as otherwise this term is not in the sum. So, the target estimate for ω holds. Other cases for
‖ω‖∞ > 1 are similar. Consequently for all ω the estimate (14) holds.

It holds that

max
ω

∑d
i=1 ω

2
i∑d

i=1

(
λi
hi

)2

ω2
i

= max
i∈{1,...,d}

(
hi
λi

)2

.

Consequently, an upper bound for minimax interpolation error holds

RH(L,λ) ≤ L

2π2
max

i∈{1,...,d}

(
hi
λi

)2

.

The upper bound coincides with the lower bound. The theorem holds.

7 PROOFS FOR SUBSECTION 3.2

Proof of Theorem 3. For convenience we redefine all points that belong to DH as DH = {xi} and all points that
belong to DH

m
as DH

m
= {x̃j}. Then for Gaussian process regression the best unbiased estimator is linear in

known values:
ũ(x) =

∑
i

kiu(xi) +
∑
j

k̃jf(x̃j).

for some ki, k̃j . Our problem is then to find coefficients ki, k̃j that minimize E(u(x)−ũ(x))2. Using independence
of random processes f(x) and g(x) we get:

E(u(x)− ũ(x))2 = E

ρf(x) + g(x)−
∑
i

ki(ρf(xi) + g(xi))−
∑
j

k̃jf(x̃j)

2

=

= E

ρf(x)−
∑
i

ρkif(xi)−
∑
j

k̃jf(x̃j)

2

+ E

[
g(x)−

∑
i

kig(xi)

]2

.
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For each i there exists an index j such xi = x̃j . Denote

k̃′j =

{
1
ρ k̃j , ∀i, x̃j 6= xi,
1
ρ k̃j + ki, ∃i, x̃j = xi.

There is a one-to-one correspondence between ({ki}, {k̃j}) and ({ki}, {k̃′j}), so minimization of E(u(x)− ũ(x))2

with respect to ki, k̃j is equivalent to minimization of this function with respect to ki, k̃
′
j . Then

E

ρf(x)−
∑
i

kiρf(xi)−
∑
j

k̃jf(x̃j)

2

+ E

[
g(x)−

∑
i

kig(xi)

]2

=

=ρ2E

f(x)−
∑
j

k̃′jf(x̃j)

2

+ E

[
g(x)−

∑
i

kig(xi)

]2

.

For terms E
[
f(x)−

∑
j k̃
′
jf(x̃j)

]2
and E [g(x)−

∑
i kig(xi)]

2
minimization problems are equivalent to that of

single fidelity data — and the first term contains only coefficients k̃′j , the second term contains only coefficients ki.

For ki and k̃′j that minimize interpolation error at point for the single fidelity scenario it holds that k̃′j =
Kf (x− xj), ki = Kg(x− xi) for some symmetric kernels Kf (x− xj), Kg(x− xi).

Now we continue proof for f(x) and g(x) in a way similar to the single fidelity case. For

E [g(x)−
∑
iKg(x− xi)g(xi)]

2
it holds that

1

|H|

∫
xi∈[0,hi],

i=1,d

E

[
g(x)−

∑
i

Kg(x− xi)g(xi)

]2

dx =

=

∫
Rd
G(ω)

[1− K̂g(ω)
]2

+
∑

k∈Zd\{0}

K̂2
g

(
ω +H−1k

) dω

In a similar way we get for the interval [0, h1

m ] · . . . · [0, hdm ] for E
[
f(x)−

∑
j Kf (x− x̃j)f(x̃j)

]2
:

md

|H|

∫
xi∈[0,

hi
m ],

i=1,d

E

f(x)−
∑
j

Kf (x− x̃j)f(x̃j)

2

dx =

=

∫
Rd
F (ω)

[1− K̂f (ω)
]2

+
∑

k∈Zd\{0}

K̂2
f

(
ω +H−1k

) dω.
Consequently,

1

|H|

∫
xi∈[0,hi],

i=1,d

E

f(x)−
∑
j

Kf (x− x̃j)f(x̃j)

2

dx =

=

∫
Rd
F (ω)

[1− K̂f (ω)
]2

+
∑

k∈Zd\{0}

K̂2
f

(
ω +mH−1k

) dω.
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So, the target interpolation error (5) has the form:

σ2
H,m(ũ, F,G, ρ) =

∫
Rd
G(ω)

[1− K̂g(ω)
]2

+
∑

k∈Zd\{0}

K̂2
g

(
ω +H−1k

) dω+

+ ρ2

∫
Rd
F (ω)

[1− K̂f (ω)
]2

+
∑

k∈Zd\{0}

K̂2
f

(
ω +mH−1k

) dω.
Finally,

σ2
H,m(ũ, F,G, ρ) = σ2

H(g̃, G) + ρ2σ2
H
m

(f̃ , F ).

8 PROOFS FOR SECTION 4

In this section we provide a proof of Theorem 5.

Proof of Theorem 5. Minimax interpolation error has the form:

R2 =
Lg
2

1

π2

(
c+ (m∗)d

B

) 2
d

+ ρ2Lf
2

1

π2

(
c+ (m∗)d

(m∗)dB

) 2
d

.

Denote δ = (m∗)d. Then we need to minimize with respect to a the following expression

Lg
2

(c+ δ)
2
d + ρ2Lf

2

(
c+ δ

δ

) 2
d

.

Partial derivative with respect to δ should equal 0:

Lg
2

(c+ δ)
2
d−1 2

d
+ ρ2Lf

2

(
c+ δ

δ

) 2
d−1

2

d

−c
δ2

= 0.

Consequently

Lg
2

+ ρ2Lf
2
δ1− 2

d
−c
δ2

= 0.

So

Lg = Lf
ρ2c

δ1+ 2
d

.

Finally,

δ =

(
cρ2Lf

Lg

) d
d+2

.

And

m∗ = d+2

√
cρ2

Lf
Lg
.
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9 REAL DATA PROBLEMS

We consider the following real data problems. The first three of them (Euler, Airfoil [Bernstein et al., 2011],
MachAngle) are devoted to calculation of lift and drag coefficients of an airfoil depending on flight conditions
and airfoil geometry. To evaluate these outputs we use different solvers as high and low fidelity data sources.
The next two problems (Press [Burnaev and Zaytsev, 2015], Disk [Zaytsev, 2016]) investigates dependence of
maximum stress and maximum displacement on geometry of these tools. As there are three fidelities for Press
problem we use in each experiment only two of them. The last two problems ([Kandasamy et al., 2016], SVM,
Supernova) consider modeling of a dependence of goodness of fit on model parameters.

Euler. Eleven input variables parametrize geometry of an airfoil.

Airfoil. The geometry of an airfoil and the flight regime (the speed and the angle of attack) are described by
52 input variables. We employ a dimension reduction procedure similar to the PCA, and model the dependence
on six input factors [Bernstein et al., 2011].

MachAngle. Two input variables are the Mach number and the angle of attack for a specific airfoil. Low fidelity
solver provides almost linear dependence.

Press. We model the maximum stress and the maximum displacement for a C-shaped
press [Burnaev and Zaytsev, 2015]. Six input variables describe the geometry of the press, and the fi-
delity of output depends on a mesh size. We generate three different data samples that correspond to high,
moderate and low fidelity outputs. We refer to the case when we model the high fidelity output by u(x) and the
moderate fidelity output by f(x) as Press12, and the case when we model the high fidelity output by u(x) and
the low fidelity output by f(x) as Press13.

Disk. We model the maximum stress and the maximum displacement of a rotating disk in an en-
gine [Zaytsev, 2016]. Six input variables describe the geometry of the disk. We use two different solvers to
obtain high and low fidelity values.

SVM. We model the dependence of the SVM classifier accuracy from the sklearn [Pedregosa et al., 2011]
on the kernel bandwidth and the margin coefficient for the “MAGIC Gamma Telescope”
dataset [Kandasamy et al., 2016]. We have two input variables. As a measure of accuracy we use the
area under the ROC curve as suggested by the authors of the dataset [Bock et al., 2004]. To generate the low
fidelity dataset we estimate the accuracy of the classifier constructed using 500 training points, and to generate
the high fidelity dataset we estimate the accuracy of the classifier constructed using 2000 training points.

Supernova. We model the dependecy of the likelihood of the supernova redshift data on the three fundamental
physical constants, similarly to [Kandasamy et al., 2016, Davis et al., 2007]. To get a variable fidelity data we
vary the grid size for a one-dimensional integration: we generate the low fidelity data using the grid of size 3
and the high fidelity data using the grid of size 1000. We note that if the size of the grid is greater than 3, then
the high and low fidelity functions become indistinguishable.
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