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Abstract

Engineering problems often involve data
sources of variable fidelity with different costs
of obtaining an observation. In particular,
one can use both a cheap low fidelity func-
tion (e.g. a computational experiment with
a CFD code) and an expensive high fidelity
function (e.g. a wind tunnel experiment) to
generate a data sample in order to construct
a regression model of a high fidelity function.
The key question in this setting is how the
sizes of the high and low fidelity data sam-
ples should be selected in order to stay within
a given computational budget and maximize
accuracy of the regression model prior to
committing resources on data acquisition.

In this paper we obtain minimax interpola-
tion errors for single and variable fidelity sce-
narios for a multivariate Gaussian process re-
gression. Evaluation of the minimax errors
allows us to identify cases when the vari-
able fidelity data provides better interpola-
tion accuracy than the exclusively high fi-
delity data for the same computational bud-
get. These results allow us to calculate the
optimal shares of variable fidelity data sam-
ples under the given computational budget
constraint. Real and synthetic data experi-
ments suggest that using the obtained opti-
mal shares often outperforms natural heuris-
tics in terms of the regression accuracy.

1 INTRODUCTION

In some cases sample data for regression model-
ing has variable fidelity: some data comes from
a high fidelity source, some – from a low fidelity
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source [Forrester et al., 2007]. While there are
many approaches to handle variable fidelity data
including transfer learning [Pan and Yang, 2010]
and space mapping [Bandler et al., 2004] tech-
niques, engineers often use cokriging ap-
proach [Kennedy and O’Hagan, 2000] based on
the Gaussian process framework [Zaytsev et al., 2014,
Rasmussen and Williams, 2006]. Numerous
applications of cokriging include geostatis-
tics [Xu et al., 1992], aerospace [Han et al., 2013],
and engineering [Koziel et al., 2014]. In this paper
we also consider this approach for modeling data,
obtained from high and low fidelity data sources.

The interest in accuracy of Gaussian process models
for single fidelity data dates back to Wiener and
Kolmogorov [Wiener, 1949, Kolmogorov, 1941]. They
obtained an error at a specified point in the univariate
case. Further progress in refining this estimate is
available in the book by Stein [Stein, 2012], inspired
by Ibragimov results [Ibragimov and Rozanov, 2012].
Recent results expand this setting by considering a
more general interpolation error, equal to the integral
of the squared difference between the true function
and an its interpolation over the domain of in-
terest, see [van der Vaart and van Zanten, 2008]
for finite sample results in the multivariate
case, and [Golubev and Krymova, 2013] for re-
sults about the minimax error of interpola-
tion over an infinite regular univariate sample.
References [Zhang et al., 2015b, Suzuki, 2012,
Bhattacharya et al., 2014], to name a few, report
similar results.

While in case of single fidelity data results are
quite well established, there is only one pa-
per [Zhang et al., 2015a], to our knowledge, that in-
vestigates the interpolation error for the variable fi-
delity data case from a theoretical point of view. For a
squared exponential covariance function and a squared
error at a single point, authors identify cases when
regression modeling based on variable fidelity data is
superior to using only the high fidelity data. Other
papers dealing with variable fidelity regression mod-
eling, [Velandia et al., 2016, Bevilacqua et al., 2015,
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Pascual and Zhang, 2006], focus on statistical proper-
ties of regression parameters estimates, but provide
little insight into understanding how and why the vari-
able fidelity modeling works.

Due to current apparent scarcity of theoretical foun-
dations practitioners usually adopt heuristic rules
in determining sizes of data samples of different
fidelity and quantify when to use the variable fidelity
data [Alexandrov et al., 1999, Simpson et al., 2008,
Kuya et al., 2011]; or they use adaptive design
of experiments approaches and surrogate based
optimization directly, see [Ranjan et al., 2011,
Kandasamy et al., 2016, Burnaev and Panov, 2015,
Le Gratiet and Cannamela, 2015] and references
therein.

The main contributions of this paper are the following:

• Minimax interpolation error for the multi-
variate case. We start with obtaining the in-
terpolation error for the Gaussian process regres-
sion with a known covariance function. Then
we derive the minimax interpolation error for
functions from a general smoothness class in the
multivariate case. This error is a nontrivial
generalization of the univariate results obtained
in [Golubev and Krymova, 2013].

• The optimal ratio of sizes of variable fidelity
data samples. We obtain the interpolation error
for the specified covariance function in the vari-
able fidelity case, and then derive the minimax
interpolation error in the general additive setting
(cokriging) [Kennedy and O’Hagan, 2000]. With
the derived minimax interpolation error we iden-
tify when and to which extent the variable fidelity
regression modeling is beneficial compared to the
regression modeling using only a high fidelity data
under the same computational budget. We calcu-
late the optimal ratio of sizes of variable fidelity
data samples given the budget constraint. There
is a certain gap between the theoretical setup we
consider and the real world: we consider a setting
that uses an infinite grid as a design of experi-
ments and requires knowledge of relative complex-
ities of high and low fidelity functions to calculate
the optimal ratio of sample sizes. Nevertheless
these theoretical results are sufficient to provide
justification for the corresponding applied algo-
rithm we develop.

• The technique to select the ratio of sizes
of variable fidelity data samples. We elab-
orate on a method to choose the ratio inspired
by our theoretical investigations. While the ex-
isting approaches usually work in adaptive design

of experiments setting and pick points using suffi-
ciently accurate regression models constructed be-
forehand [Ranjan et al., 2011], we offer a method
to select sizes of high and low fidelity data sam-
ples to fit into a given computational budget and
maximize accuracy of a resulting regression model
prior to spending any significant resources on data
generation. Our estimate depends only on the
computational cost of variable fidelity data gen-
eration and on a correlation between high and low
fidelity functions. As after an application of our
approach we hope to get a good enough model,
our approach can be used at a step that antici-
pates further adaptive design of experiments. We
investigate the applicability of the proposed tech-
nique by comparing it to a number of natural
baselines on synthetic and real datasets.

We provide proofs of all theorems in the supplemen-
tary materials.

2 MINIMAX INTERPOLATION
ERROR FOR GAUSSIAN
PROCESS REGRESSION

In case of Gaussian process regression there is a gap
between theoretically tractable problems and practice.
Namely, since the main tool for theoretical investiga-
tion is the Fourier transform, it is a common approach
to consider the design of experiments based on an in-
finite grid [Golubev and Krymova, 2013, Stein, 2012],
though in many cases the theoretical results are trans-
ferable to practical solutions. In this section we con-
sider a design of experiments, belonging to some in-
finite grid, and later in the experimental section we
show that our conclusions remain valid under finite
sample random designs.

2.1 Interpolation Error

Let f(x) be a stationary Gaussian process on Rd with
a covariance function R(x) = E(f(x0 + x) − Ef(x0 +
x))(f(x0)− Ef(x0)) and a spectral density F (ω)

F (ω) =

∫
Rd
e2πiωTxR(x)dx .

Suppose that we know values of realizations of f(·)
at the infinite rectangular grid DH = {xk : xk =
Hk,k ∈ Zd}, where H is a diagonal matrix with el-
ements h1, . . . , hd. An example of such design in the
case of the input dimension d = 2 is provided in Fig-
ure 1.

We measure the interpolation error over the domain of
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Figure 1: Design DH for d = 2.

interest ΩH = [0, h1]× . . .× [0, hd] as follows:

σ2
H(f̃ , F )

def
=

1

µ(ΩH)

∫
ΩH

E
[
f̃(x)− f(x)

]2
dx , (1)

where µ(ΩH) =
∏d
i=1 hi is the Lebesgue measure of

ΩH , and f̃(x) is an interpolation of f(x). Here we
consider f̃(x) of the form

f̃(x) = µ(ΩH)
∑

x′∈DH

K(x− x′)f(xk) , (2)

where K(·) is a symmetric kernel.

Theorem 1. The error of interpolation with f̃(x)
from (2), based on observations at points from DH of a
stationary Gaussian process f(x) with spectral density
F (ω), is equal to

σ2
H(f̃ , F ) =

∫
Rd
F (ω)

[(
1− K̂(ω)

)2

+

+
∑

x∈DH−1\{0}

K̂2 (ω + x)

 dω ,
where K̂(ω) is the Fourier transform of K(ω). Fur-
thermore, the optimal K̂(ω), minimizing the interpo-
lation error, has the form

K̂(ω) =
F (ω)∑

x∈DH−1
F (ω + x)

.

Remark 1. The function f̃(x) that minimizes the
squared error E(f̃(x)−f(x))2 has the form (2), where
K(·) is a symmetric kernel. This motivates us to use
f̃(x) from (2) for interpolation.

Remark 2. It is easy to see that for f̃(x) from (2) it
holds that

σ2
H(f̃ , F ) = σ2

SH(f̃ , F ) ,

where S = diag(s1, . . . , sd), with si ∈ Z+, i = 1, . . . , d.

Using Theorem 1 one can estimate interpolation errors
for various covariance functions. For example,

Corollary 1. For a Gaussian process on R with expo-
nential spectral density Fθ(ω) = θ

θ2+ω2 the interpola-
tion error (1) for the best interpolation has the form:

σ2
h(f̃ , Fθ) ≈

2

3
π2θh+O((θh)2), θh→ 0 .

Corollary 2. For a Gaussian process on R
with squared exponential spectral density Fθ(ω) =
1√
θ

exp
(
−ω

2

2θ

)
the interpolation error (1) for the best

interpolation is bounded by:

4

3
h
√
θ exp

(
− 1

8h2θ

)
≤ σ2

h(f̃ , Fθ) ≤

≤ 7h
√
θ exp

(
− 1

8h2θ

)
, θh2 → 0 .

2.2 Minimax Interpolation Error

For many covariance functions direct evaluation of the
interpolation error can be technically cumbersome, es-
pecially for d > 1. Furthermore, in many cases the true
covariance function is not known exactly, and calculat-
ing the interpolation error in such misspecified cases
is even a harder task.

Instead we consider a minimax interpolation error that
provides an answer in the worst case scenario. We
define a set F(L,λ) of spectral densities F (ω) for a
given λ = (λ1, . . . , λd) ∈ Rd and L > 0 as

F(L,λ)
def
=

{
F : E

d∑
i=1

λ2
i

(
∂fF (x)

∂xi

)2

≤ L ,x ∈ Rd
}
,

(3)
where f(x) = fF (x) is a realization of a Gaussian
process with the spectral density F (ω) at the point
x ∈ Rd. Sample realizations of Gaussian processes for
different L in the case of d = 1 and the Matérn co-
variance function [Rasmussen and Williams, 2006] are
shown in Figure 2.

The minimax interpolation error that describes how
large the interpolation error is for the worst case sce-
nario is defined as follows:

RH(L,λ)
def
= inf

f̃
sup

F∈F(L,λ)

σ2
H(f̃ , F ) .

Then

Theorem 2. For a Gaussian process f(x), defined on
Rd and evaluated on the design DH , with the spectral
density from the set F(L,λ), the minimax interpola-
tion error has the form

RH(L,λ) =
L

2π2
max

i∈{1,...,d}

(
hi
λi

)2

.

Moreover, the minimax optimal interpolation f̃(x) has
the form

f̃(x) = µ(ΩH)
∑

x′∈DH

K(x− x′)f(x′) ,
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(a) F(10, 1) (b) F(100, 1) (c) F(1000, 1)

Figure 2: Realizations of Gaussian processes with the Matérn covariance function R(x) = (1 +√
3θ|x|) exp(−

√
3θ|x|) (ν = 3

2 ) for different values of L in F(L, 1) and d = 1.

where K(x) is a symmetric kernel with the Fourier
transform K̂(ω) defined as

K̂(ω) =

{
1−

√∑d
i=1 ω

2
i · h2

i if
∑d
i=1 ω

2
i · h2

i ≤ 1 ,

0, otherwise .

While there is no explicit dependence of the minimax
interpolation error on the input dimension d, growth
of d leads to an exponential growth of the number of
points in an unit hypercube. Thus, there is an expo-
nential dependence of the minimax interpolation error
on d if the density of observations is constant.

Note, that we can minimize the minimax interpola-
tion error w.r.t. the diagonal matrix H in such a way
as to keep fixed the average number of points belong-
ing to a unit hypercube:

∏d
i=1

1
hi

= n. The diago-
nal elements h∗i of the corresponding optimal matrix

H∗ = diag(h∗1, . . . , h
∗
d) have the form h∗i = d

√
nλdi∏d
j=1 λj

.

The minimal minimax interpolation error is then equal
to RH

∗
(L,λ) = L

2π2 d/2

√
n∏d
i=1 λi

.

3 MINIMAX INTERPOLATION
ERROR FOR A VARIABLE
FIDELITY MODEL

3.1 Variable Fidelity Data Model

Suppose that the true function is modelled as

u(x) = ρf(x) + g(x) , (4)

where ρ is a fixed constant, and f(x) and g(x)
are stationary independent Gaussian processes, de-
fined on Rd. This is the state-of-the-art cok-
riging approach used to model a variable fidelity
data [Kennedy and O’Hagan, 2000].

We refer to a realization of u(x) as a high fidelity
function, and to a realization of f(x) as a low fidelity

function. Therefore g(x) is a correction of f(x) that
appears due to a low fidelity nature of f(x). The pa-
rameter ρ provides information on a strength of the
relation between f(x) and u(x).

We observe values of u(x) and f(x) and we want to
construct an interpolation ũ(x) of the high fidelity
function u(x) on the basis of these variable fidelity
observations.

3.2 Interpolation Error

It is natural to assume that we observe the cheap low
fidelity function f(x) on denser grid than the expensive
high fidelity function u(x). We observe u(x) at points
from Du = DH , and f(x) at points from Df = DH

m

with a grid size ratio m ∈ Z+.

Using these observations we attempt to interpolate
u(x) within the hypercube ΩH using a function ũ(x)
in order to minimize the interpolation error:

σ2
H,m(ũ, F,G, ρ)

def
=

1

µ(ΩH)

∫
ΩH

E [ũ(x)− u(x)]
2
dx .

(5)

Theorem 3. The minimum of interpolation error (5)
of the variable fidelity data model u(x) from (4), based
on observations of u(x) at points from DH and obser-
vations of f(x) at points from DH

m
, has the form:

σ2
H,m(ũ, F,G, ρ) = σ2

H(g̃, G) + ρ2σ2
H
m

(f̃ , F ) , (6)

where g̃(x) and f̃(x) minimize σ2
H(g̃, G) and σ2

H
m

(f̃ , F )

respectively.

The explicit formula for optimal ũ(x) is similar to the
formula for f̃(x) in Theorem 1, while as it is more
cumbersome, we provide it in supplementary materials
in the proof of the above theorem.
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3.3 Minimax Interpolation Error

We obtain the minimax interpolation error for the vari-
able fidelity case in the manner similar to the sin-
gle fidelity case. Let us assume that the true spec-
tral densities of the processes f(·) and g(·) are un-
known, but sufficiently smooth, i.e. they belong to
classes F(Lf ) = F(Lf ,1) and F(Lg) = F(Lg,1) re-
spectively. Here for clarity of the presentation we limit
ourselves to the case λ = 1 ∈ Rd and H = hI for some
h > 0, where I is an identity matrix. In fact, results
below hold in a more general setting, described in sec-
tion 2 and defined by general values of λ ∈ Rd and H.
However, this additional sophistication blurs the main
conclusions and provides little additional insight.

The goal is to obtain the minimax interpolation error
for u(x). In particular we want to get the minimax
interpolation error for the variable fidelity data

Rh,m(Lf , Lg)
def
= inf

ũ
sup

F∈F(Lf ),
G∈F(Lg)

σ2
hI,m(ũ, F,G, ρ) . (7)

Theorem 4. Minimax interpolation error (7) of
model (4), based on observations of u(x) at points from
DH and observations of f(x) at points from DH

m
, has

the form

Rh,m(Lf , Lg) = ρ2Lf
2

(
h

mπ

)2

+
Lg
2

(
h

π

)2

. (8)

4 OPTIMAL RATIO OF SIZES OF
VARIABLE FIDELITY DATA
SAMPLES

Obtained results allow us to get the optimal ratio m
of sizes of variable fidelity data samples. We consider
the following setting: one evaluation of u(x) costs c,
whereas one evaluation of f(x) is 1; the total evalu-
ation cost is equal to the number of points in a unit
hypercube 1

hd
multiplied by the evaluation price; and

the computational budget is set to B.

For such setup the total budget is equal to c 1
hd

+ δ 1
hd

,

where δ = md is the ratio of sizes of variable fidelity
data samples.

Using Theorem 4 we prove

Theorem 5. The minimum of the minimax interpo-
lation error (8) given the computational budget B has
the form

min
h,δ:

B= c+δ

hd

Rh,m(Lf , Lg) = ρ2Lf
2

(
c+ δ∗

πBδ∗

) 2
d

+
Lg
2

(
c+ δ∗

πB

) 2
d

,

and the optimal ratio is δ∗ =
(
Lf
Lg
cρ2
) d
d+2

.

Figure 3: Dependence of the ratio R2

R1
of the minimax

interpolation errors on the correlation coefficient r for
Lf = 3, Lg = 1, c = 5, d = 1.

The optimal ratio δ∗ depends on the relative cost c
of the high fidelity function evaluation, the coefficient
ρ and the smoothnesses Lf and Lg of f(x) and g(x)
respectively and input dimension d.

If we evaluate exclusively u(x), then we get the follow-
ing minimax interpolation error given the budget B:

min
h:Bhd=c

Rh(Lf , Lg) = ρ2Lf
2

( c

πB

) 2
d

+
Lg
2

( c

πB

) 2
d

.

Note, that we can get similar results for a specific co-
variance function using Theorem 3 and Corollaries 1
and 2.

4.1 Comparison of Minimax Interpolation
Errors Under Different Scenarios

Let us now investigate under what conditions and to
what extent the usage of the variable fidelity data can
decrease the interpolation error compared to using sin-
gle fidelity data within the same computational bud-
get. We denote by R2 = Rh,δ

∗
(Lf , Lg, ρ) the minimax

interpolation error, obtained when using the variable
fidelity data, and by R1 = Rh(Lf , Lg, ρ) the minimax
interpolation error, obtained when using only the high
fidelity data. The ratio R2

R1
characterizes benefits of the

variable fidelity data over single fidelity data: R2

R1
≥ 1

means there is no advantage to using the variable fi-
delity data, while R2

R1
< 1 implies that the variable

fidelity data improves the accuracy of the interpola-
tion.

The ratio R2

R1
has the form:

R2

R1
=

(
1 +

(
Ldfρ

2d

Ldgc
2

) 1
d+2

) d+2
d

1 + ρ2 Lf
Lg

.

If we put Vf = Ef2(x) and Vg = Eg2(x), then the
correlation coefficient r between u(x) and f(x) is r =
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Figure 4: Curves R2 = kR1 for Lf = 2, Lg = 1, d = 1.

1√
1+

Vg
Vf

1
ρ2

. Thus for r → 0 or r → 1 it holds that

r → 0 :
R2

R1
≈ 1 +

d+ 2

d

(
LfVf
LgVg

) d
d+2 r

2d
d+2

c
2
d+2

,

r → 1 :
R2

R1
≈ 1

c
2
d

+
2 + d

d

(
LgVf
LfVg

) d
d+2 (1− r2)

d
d+2

c
4

d(d+2)

.

If r → 0 then the variable fidelity data is unable to
improve the accuracy of the interpolation, while when
r → 1 the ratio R2

R1
approaches 1

c
2
d

, where usually c�
1.

In Figure 3 we show how the ratio R2

R1
depends on r =

r(ρ) in case of d = 1. For small r it holds that R2 > R1

no matter how large c is, while for high enough r the
value of R2

R1
tends to 1

c2 , c� 1.

Figure 4 depicts the smallest values of r in the case of
d = 1, which for the fixed c > 1 provides R2 ≤ R1.

For d > 1 and c � 1 the minimal value of r that
provides R2 ≤ R1 is of the order 1√

c
:

r ≈ 1√
c

(
Vf
Vg

) 1
2
(
Lg
Lf

) 1
2

.

4.2 Optimal Ratio of Sample Sizes for
Variable Fidelity Data

If we know the true covariance function it is easy to
estimate the parameters Lf and Lg with the second

derivatives of the covariance function ∂2R(x)
∂xi∂xj

at the

point x = 0. However, in the small sample case it is
difficult to estimate the parameters of the covariance
function [Zaytsev et al., 2014] or the sum of partial
derivatives [Kucherenko et al., 2009] accurately. Also,
in many practical cases it is often the case that Lf and
Lg are close enough.

Therefore, assuming Lf = Lg and using Theorem 4,
we propose Technique 1, that can be used to esti-

mate the optimal ratio of sample sizes δ∗ and produce
a design of experiments for the case of variable fidelity
data. The advantage of the proposed technique is that
it can be used even for a variable fidelity modeling
approach different from the Gaussian process regres-
sion framework; and it requires little prior knowledge
about the dependence structure between the high and
the low fidelity functions, in particular, we only have
to estimate the correlation coefficient r.

Technique 1 Generation of designs of experiments
Df and Du for evaluations of the low fidelity function
and the high fidelity function respectively.

Input: Correlation r between the variable fidelity ob-
servations, budget B, cost c of one high fidelity
function evaluation (the cost of evaluating the low
fidelity function is fixed at 1)

1: ρ2 ← 1/( 1
r2 − 1)

2: δ∗ ← (cρ2)
d
d+2

3: nf ← Bδ∗

c+δ∗ , nu ← B
c+δ∗

4: Generate random nested designs of experiments
Df , Du, Du ⊆ Df , with |Df | = nf , |Du| = nu.

5: return Df , Du

5 EXPERIMENTS

We evaluate the performance of the proposed algo-
rithm for estimation of the optimal ratio of sample
sizes for variable fidelity data in two steps: we start
with synthetic data generated as realizations of Gaus-
sian processes, and then consider real data problems
that mostly originate from engineering applications.

We use the Matérn covariance function Rθ(x−x′) with
ν = 3

2 that provides differentiable realizations of Gaus-
sian processes [Rasmussen and Williams, 2006]:

Rθ(x−x′) = (1 +
√

3dθ(x−x′)) exp(−
√

3dθ(x−x′)) ,

where dθ(x − x′) =
√∑d

i=1 θi(xi − x′i)2. To con-

struct a Gaussian process regression model we use
Bayesian estimates of the covariance function param-
eters [Burnaev et al., 2016] obtained in a way similar
to [Burnaev and Zaytsev, 2015], as open source soft-
ware alternatives require manual tuning for each par-
ticular problem [Le Gratiet and Garnier, 2014].

To assess model accuracy we use the Relative Root
Mean Squared Error (RRMS) estimated using a ded-
icated test sample in case of a synthetic data and
the cross-validation procedure in case of a real data.
For a model ũ(x) and a test sample S∗ = {x∗i , u∗i =
u(x∗i )}

nt
i=1 the RRMS error is given by RRMS =√∑nt

i=1(u∗i−ũ(x∗i ))2∑nt
i=1(u∗i−u)2

, where u = 1
nt

∑nt
i=1 u

∗
i .
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Figure 5: Synthetic data. Dependence of the RRMS error on the share of the budget, allocated for the low
fidelity function evaluations. We consider the case of d = 3, different correlations r between the high and low
fidelity functions and different cost of evaluating the high fidelity function c. Yellow points correspond to the
case when we use either exclusively high or exclusively low fidelity data. The results are averaged across 20 runs.

Data and scripts, used to run the experiments, are at
gitlab.com/JohnDoe1989/VariableFidelityData.

5.1 Synthetic Data Experiments

In this section we generate synthetic data as a realiza-
tion of a Gaussian process with a specified covariance
function. We follow the model u(x) = ρf(x) + g(x),
with nested designs, i.e. Du ⊆ Df , and design points
picked uniformly at random from [0, 1]d. The total
computational budget is 300, and the cost of evaluat-
ing u(x) is either 5 or 10. Since the exact values of ρ
and r are known, we use them in our experiments to
get δ∗.

Figures 5 depict the dependence of the RRMS error
on the proportion of the computational budget allo-
cated for the low fidelity function evaluations. It can
be seen that our estimate of the optimal ratio δ∗ is
close to the true optimal ratio despite the fact that
estimates of the unknown parameters of the Gaussian
Process regression model were used, and the design of
experiments was not a grid.

5.2 Baseline Techniques

We compare our technique for estimation of the op-
timal ratio of sample sizes, which we call MinMini-
max, to four baseline heuristics:

• High — only the high fidelity data is used,

Baseline technique nu nf

High B/c 0
EqualSize B/(c+ 1) B/(c+ 1)

EqualBudget B/(2c) B/2
Low 0 B

MinMinimax B/(c+ δ∗) δ∗B/(c+ δ∗)

Table 1: Sizes of the high fidelity sample nu and the
low fidelity sample nf in case of the budget B.

• Low — we use only the low fidelity data,

• EqualSize — the sizes of low and high fidelity
data samples are equal,

• EqualBudget — the budget is devoted equally
to low and high fidelity function evaluations.

Relative sizes of samples for these techniques are given
in Table 1.

5.3 Real Data Experiments

We consider the following real data problems. The first
three of them (Euler, Airfoil [Bernstein et al., 2011],
MachAngle) are concerned with calculation of lift
and drag coefficients of an airfoil depending on
flight conditions and airfoil geometry. To evalu-
ate these outputs we use different solvers for the
high and the low fidelity data sources. The next
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Problem High EqualSize EqualBudget MinMinimax Low
Euler-1 0.767± 0.550 0.892± 0.552 0.846± 0.177 0.742± 0.227 0.913± 0.0226
Euler-2 0.066± 0.022 0.077± 0.029 0.269± 0.189 0.380± 0.184 0.397± 0.102
Airfoil-1 0.546± 0.040 0.594± 0.085 0.539± 0.072 0.522± 0.050 0.485± 0.022
Airfoil-2 0.120± 0.009 0.142± 0.030 0.130± 0.031 0.138± 0.040 0.296± 0.020

MachAngle-1 0.088± 0.017 0.106± 0.025 0.195± 0.063 0.195± 0.063 0.405± 0.007
MachAngle-2 0.093± 0.005 0.114± 0.005 0.171± 0.009 0.179± 0.008 0.365± 0.004

Press12-1 0.559± 0.071 0.601± 0.072 0.3580± 0.022 0.2779± 0.016 0.2843± 0.013
Press12-2 0.443± 0.075 0.491± 0.079 0.2715± 0.037 0.1768± 0.016 0.1768± 0.016
Press13-1 0.559± 0.027 0.575± 0.025 0.386± 0.046 0.348± 0.046 0.5435± 0.011
Press13-2 0.449± 0.073 0.485± 0.066 0.278± 0.024 0.1798± 0.017 0.1798± 0.017

Disk-1 0.299± 0.066 0.3400± 0.079 0.192± 0.030 0.193± 0.029 0.1638± 0.010
Disk-2 0.446± 0.136 0.457± 0.125 0.299± 0.038 0.299± 0.038 0.2723± 0.032
SVM-1 0.148± 0.022 0.149± 0.026 0.184± 0.061 0.1642± 0.072 0.6081± 0.015

Supernova-1 0.0367± 0.0132 0.0439± 0.0145 0.0153± 0.0051 0.0574± 0.0003 0.0574± 0.0003

Table 2: RRMS errors averaged over 20 runs of the cross-validation procedure for the real data problems.
Numbers after hyphen denote output number in a problem.

two problems (Press [Burnaev and Zaytsev, 2015],
Disk [Zaytsev, 2016]) investigate dependence of max-
imum stress and maximum displacement on geometry
of the equipment considered. Although three data fi-
delities are available in the Press problem, in each
experiment we use only two. The last two problems
([Kandasamy et al., 2016], SVM, Supernova) are re-
lated to modeling dependence of the goodness-of-fit on
model parameters. Input dimensions for these prob-
lems vary from two to eleven. More details on the
problems are in the supplementary materials.

The budget B is equal to 300 for all problems except
Euler, as in this problem the sample size is small. For
consistency of the comparison the cost ratio c is 5 for
all given problems. If the MinMinimax technique re-
turns the sample size nu < 1, then only the low fidelity
data is used. For the MinMinimax technique we use
the correlation coefficient r estimated using the whole
available data sample. In addition, to keep the com-
parison meaningful we normalize all the data before
constructing regression models to get variables with
zero mean and unit variance.

We provide errors in Table 2, which show that the best
results are typically obtained using the proposed Min-
Minimax approach. However, there are two draw-
backs: sometimes it is impossible to improve the model
accuracy using variable fidelity data; or too small sam-
ple size is selected making it impossible to construct a
reliable regression model. For example, for the Super-
nova dataset the MinMinimax method works poorly
because it suggests to use the high fidelity sample size
equal to four, which is insufficient for the cokriging to
work efficiently. Thus, we suggest to impose a lower
bound for the size of the high fidelity data sample.

6 CONCLUSIONS

We prove the minimax interpolation error for the
Gaussian process regression in the multivariate case.
The obtained results are used to estimate the interpo-
lation error for the regression modeling with the vari-
able fidelity data. This allows us to identify settings
in which the accuracy of the regression model can be
improved with the variable fidelity data.

Moreover, we estimate the optimal ratio of sizes of the
variable fidelity data samples. Using both synthetic
and real problems, we demonstrate that this ratio can
be used when producing a design of experiments.

However, there is still room for improvement of the
proposed approach: it requires an accurate estimate of
the correlation coefficient, and it doesn’t take into ac-
count inaccuracies of estimates of the regression model
parameters. Furthermore, in this paper we consider
the case of two fidelity levels only, whereas in practice
multiple fidelity levels can be accessible.
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mann, R. (2013). Improving variable-fidelity sur-
rogate modeling via gradient-enhanced kriging and

a generalized hybrid bridge function. Aerospace Sci-
ence and Technology, 25(1):177–189.

[Ibragimov and Rozanov, 2012] Ibragimov, I. and
Rozanov, Y. (2012). Gaussian random processes,
volume 9. Springer Science & Business Media.

[Kandasamy et al., 2016] Kandasamy, K., Dasarathy,
G., Oliva, J., Schneider, J., and Póczos, B. (2016).
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