Supplementary Materials

A Technical lemmas for Theorem 1

In this appendix, we prove technical lemmas that appear in the proof of Theorem 1.

A.1 Proof of Lemma 1

The following inequality always holds:

sup [G(f) — £(7)] < maxx { sup{G() — €0} sup {2() — G}

feFr ferx frer

Since F contains the constant zero function, both sup s ~{G(f) — ¢(f)} and sup; . ={¢(f") — G(f')} are non-
negative, which implies

sup |G(f) = £(f)] < sup{G(f) = £(f)} + sup {&(f") = G(f)}-
fer fer frer

To establish Lemma 1, it suffices to prove:

E[sup{G(f) ~ €(/)}] < 2LRe(F) and E[ sup {£(f) ~ G()}] < 2LRu(F)
feFr frer
For the rest of the proof, we will establish the first upper bound. The second bound can be established through an
identical series of steps.
The inequality E[sup ;. z{G(f) — £(f)}] < 2LRy(F) follows as a consequence of classical symmetrization
techniques [e.g. Bartlett and Mendelson, 2003] and the Talagrand-Ledoux concentration [e.g. Ledoux and Talagrand,

2013, Corollary 3.17]. However, so as to keep the paper self-contained, we provide a detailed proof here. By the
definitions of £(f) and G(f), we have
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where (2, y//) is an i.i.d. copy of («/}, y}). Applying Jensen’s inequality yields .
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We need to bound the right-hand side using the Rademacher complexity of the function class F, and we use an
argument following the lecture notes of Kakade and Tewari [2008]. Introducing the shorthand notation ¢;(z) =
h(—yj), the L-Lipschitz continuity of ¢; implies that
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hr'er

{Llf(x’l) — @)l ¢ o P (5) + 95 (F(25)) }]
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Applying Jensen’s inequality implies that the right-hand side is bounded by
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RHS < QIE[sup {Lf ) +Zsjtp] ))} + sup { — Lf(z) +igj@j(f/($;‘)>”

= E[f}g? {€1Lf($l1) + ij%(f(x;))”

By repeating this argument for j = 2,3, ..., k, we obtain

{sup Zejgoj ] <LE[SupZ<€jf } (14)

Combining inequalities (13) and (14), we have the desired bound.

A.2 Proof of Lemma 2

We prove the claim by induction on the number of layers m. It is known [Kakade et al., 2009] that Ry (N7) f B.
Thus, the claim holds for the base case m = 1. Now consider some m > 1, and assume that the claim holds for m—1.
‘We then have

Rp(M1) = LSUP *Z& ] ;
E m

where €1, . .., £, are Rademacher variables. By the definition of NV,,,, we may write the expression as
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where the inequality follows since ||w||; < B. Since the function o is 1-Lipschitz continuous, following the proof of
inequality (14), we have

Re(0 0 N 1) < Re(No_1) < \/g B™,

which completes the proof.



A.3 Proof of Lemma 3

We prove the claim by induction on the number of layers m. If m = 1, then f* is a linear function and ¢(f*) €
[—B1, By]"™. Since ¢(g) minimizes the ¢5-distance to vector u, we have

le(g) = ()2 < llp(g) — ulla + le(f*) = ulla < 2[p(f*) = ulla. (15)

Since w is drawn uniformly from [— B, B]*, with probability at least (£)* we have [[o(f*) — ulls < 2, and conse-
quently

le(g) = o(f)l2 < VEle(g) — o(f) oo < eVEB,

which establishes the claim.

For m > 1, assume that the claim holds for m — 1. Our proof uses the following lemma:

Lemma 4 (Maurey-Barron-Jones lemma) Consider any subset G of any Hilbert space H such that ||g||g < b for
all g € G. Then for any point v is in the convex hull of G, there is a point v in the convex hull of s points of G such
that ||v — vs||% < b?/s.

See the paper by Pisier [1980] for a proof.
Recall that f*/B is in the convex hull of & o A;,_; and every function f € o o N,,_; satisfies ||¢(f)|]2 < Vk.

By Lemma 4, there exist s functions in NV, _1, say ﬁ, ..., [s,and a vector w € R satisfying ||w||; < B such that
S . . k
| S wirten - e, < By
j=1
Let cp(f) = ijl wjo(go(]?j)). If we chose s = {6%1 , then we have
le(f) = @(F)ll2 < eVEB. (16)

Recall that the function g satisfies g = ijl vjo o g; for g1,...,9s € Ny—1. Using the inductive hypothesis, we
know that the following bound holds with probability at least p;, _;:

lo(2(95)) = o(p(fi)ll2 < lllg;) = ¢(fi)ll2 < (2m = 3)eVEB™ ' forany j € [s].

As a consequence, we have

S wioteten) ~ S wso ], < 3ol o elo) ~ oo Tl

< [lwlly -g,rg[lﬁ{ﬂff(@(gj)) —o(p(f))llz} < (2m — 3)VkeB™. (17)

Finally, we bound the distance between ijl w;o(p(g;)) and ¢(g). Following the proof of inequality (15), we obtain

eto) - iwm@@»)\\Q < 2f|u- iwjo«o(gj))HZ-

Note that 37, w;o(v(g;)) € [-B, B)* and w is uniformly drawn from [—B, B]¥. Thus, with probability at least
(£)*, we have

et - Zi:wjo(so(gj))Hz < eVkB. as)



Combining inequalities (16), (17) and (18) and using the fact that B > 1, we have

loto) o) < 2m—1)evEB™,

‘ o0

with probability at least

s(sm—1

o (E)k _ <€)k<1_1)+1) _ (E)k(s’"q)/(sq) .
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which completes the induction.

B Proof of Theorem 2

Proof of Part (a)
We first prove f € N Indeed, the definition of by implies

T

> i [l
P 2br

Notice that f Zt 1 2bT log(3= e £)9;, where gy € N,,,—1. Thus, combining inequality (19) with the definition of

L —qu
< B, 19
(1+Mt) B (19)

N, implies f € N,,. The time complexity bound is obtained by plugging in the bound from Theorem 1.
It remains to establish the correctness of f. We may write any function f € N,,, as

d
flx)= ija(fj(x)) where w; > 0 forall j € [d].
j=1

The constraints w; > 0 are always satisfiable, otherwise since o is an odd function we may write w;o(f;(z)) as
(—w;)o(—f;(z)) so that it satisfies the constraint. The function f; or — f; belongs to the class AV,,,_1. We use the
following result by Shalev-Shwartz and Singer [2010]: Assume that there exists f* € N, which separate the data
with margin . Then for any set of non-negative importance weights {«; }?_,, there is a function f € N, such that
S oio(—yif(x;)) < —%. This implies that, for every ¢ € [T, there is f € Np,_1 such that

- Y
)= Zat,iﬂ(*yz‘f(%:)) < -5

Hence, with probability at least 1 — &, the sequence 1, . . ., ur satisfies the relation
e = Gi(gr) < —% for every t € [T]. (20)

Algorithm 2 is based on running AdaBoost for 7" iterations. The analysis of AdaBoost Schapire and Singer [1999]
guarantees that for any 5 > 0, we have

*Zeiﬁﬂ ysz(xz > 5 Ze vifr(@:)
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Thus, the fraction of data that cannot be separated by f7 with margin /3 is bounded by exp( If we choose

T
D=1 MtQ
2

B = —log(n +1),



then this fraction is bounded by meaning that all points are separated with margin 5. Recall that fis a scaled

1

n+1’

version of fr. As a consequence, all points are separated by f with margin
T 2

Bp _ Doi1 Mg —2log(n+1)

T —Kt
br B 21 log( hzt)

Since iy > —1/2, it is easy to verify that log( ﬁZZ) < 4|p¢|. Using this fact and Jensen’s inequality, we have

BB _ (i lmD)?/T —2log(n + 1)
br % Z?:l |t

The right-hand side is a monotonically increasing function of ZtT:l |pe¢|. Plugging in the bound in (20), we find that

BB v*T/(4B?) — 2log(n + 1)

br — 2~T/ B2
Plugging in T" = %, some algebra shows that the right-hand side is equal to /16 which completes the
proof.
Proof of Part (b)

Consider the empirical loss function
n

() = > My @),

~

where h(t) := max{0, 1+ 16t/~}. Part (a) implies that £( f) = 0 with probability at least 1 —§. Note that k is (16/~)-
Lipschitz continuous; the Rademacher complexity of A/, with respect to n i.i.d. samples is bounded by /q/nB™
(see Lemma 2). By the classical Rademacher generalization bound [Bartlett and Mendelson, 2003, Theorem 8 and
Theorem 12], if (z, y) is randomly sampled form P, then with probability at least 1 — 0 we have

T 7y 328" fq | [8log(2/0)
Elh(~yf(=))] < () + = Lyl

Thus, in order to bound the generalization loss by € with probability 1—20, it suffices to choose n = poly(1/e,log(1/0)).
Since h(t) is an upper bound on the zero-one loss I[¢ > 0], we obtain the claimed bound. W

C Proof of Corollary 1

The first step is to use the improper learning algorithm [Zhang et al., 2015, Algorithm 1] to learn a predictor g that
minimizes the following risk function:

2n n(t+v) ;
B — + ft < —v,
Ug) = Elp(~fg(x))] where o(t):=q T Tpr=n =T
. + =2y ift > —v.
Since n < 1/2, the function ¢ is convex and Lipschitz continuous. The activation function erf(z) satisfies the
condition of [Zhang et al., 2015, Theorem 1]. Thus, with sample complexity poly(1/7,log(1/d)) and time complexity
poly(d, 1/7,1og(1/6)), the resulting predictor g satisfies

£(g) < L(f*)+ 7 with probability at least 1 — /3.



By the definition of 3 and ¢, it is straightforward to verify that

t(g) = E[(1 — n)¢(—yg(x)) + nd(yg(z))] = E[v(—yg(x))] 21
where
0 it < —,
v =g if—y<t<n,
2_,_%@_7) ift > .

Recall that y f*(2) > ~ almost surely. From the definition of v, we have £(f*) = 0, so that £(g) < £(f*) + 7 implies
£(9) < 7. Also note that ¢ (¢) upper bounds the indicator I[¢ > 0], so that the right-hand side of equation (21) provides
an upper bound on the probability P(sign(g(z)) # y). Consequently, defining the classifier h(x) := sign(g(x)), then
we have

P(h(z) #y) < £(G) < 7 with probability at least 1 — §/3.

5
3’
then this dataset is equal to {(x;, h(z;))}" , with probability at least 1 — 25/3. Let the BoostNet algorithm take
{(x;, h(z;))}; as its input. With sample size n = poly(1/¢,log(1/4)), Theorem 2 implies that the algorithm learns
a neural network f such that P(sign(f(z)) # y) < e with probability at least 1 — ¢. Plugging in the assignments of n

and 7, the overall sample complexity is poly(1/e, 1/0) and the overall computation complexity is poly(d, 1/¢,1/4).

Given the classifier h, we draw another random dataset of n points taking the form {(z;,y;)}",. If 7 =

D Proof of Proposition 1

The following MAX-2-SAT problem is known to be NP-hard [Papadimitriou and Yannakakis, 1991].

Definition 1 (MAX-2-SAT) Given n literals {z1, ..., z, } and d clauses {c1, . .., cq}. Each clause is the conjunction
of two arguments that may either be a literal or the negation of a literal *. The goal is to determine the maximum
number of clauses that can be simultaneously satisfied by an assignment.

‘We consider the loss function:

1 n 1 n
/ = _— 0, s Ly = — i 0, s — X4 . 22
(w) = = o max{0. )} = 3, 3 mino. v, i)} @2)
It suffices to prove that: it is NP-hard to compute a vector @ € R? such that ||@||> < 1 and
1
Uw) < (W) + ———— 23
(@) < t0") + Gy e3)

To prove this claim, we reduce MAX-2-SAT to the minimization problem. Given a MAX-2-SAT instance, we construct
aloss function £ so that if any algorithm computes a vector w satisfying inequality (23), then the vector w solves MAX-
2-SAT.

First, we construct n + 1 vectors in R?. Define the vector Ty = ﬁld, and for ¢+ = 1,...,n, the vectors
X = %x; where 2} € R? is given by
1 if z; appears in ¢;,
xj; = ¢ —1 if =z; appears in ¢;,

0 otherwise.

*In the standard MAX-2-SAT setup, each clause is the disjunction of two literals. However, any disjunction clause can be reduced to three
conjunction clauses. In particular, a clause z1 V z2 is satisfied if and only if one of the following is satisfied: z1 A z2, —21 A 22, 21 A "22.



It is straightforward to verify that that ||z;||2 < 1 forany i € {0,1,...,n}. We consider the following minimization
problem which is special case of the formulation (22):

i (mln{O w, z;)} + min{0, (w, Z>}>

2n +2 =

The goal is to find a vector w* € R? such that ||w* ||z < 1 and it minimizes the function ¢(w).
Notice that for every index i, at most one of min{0, (w, x;)} and min{0, (w, —x;)} is non-zero. Thus, we may
write the minimization problem as

n n

i o410 = g (i i) o, S

lwll2<1 lw]2<1 a;e{-1,1} <14
=0 =0

n
= min _HE ;T
ac{-1,1}m+1 Il 2
=

1/2
n

d
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We claim that maximizing Z(f:l (>, aimj)? with respect to « is equivalent to maximizing the number of satisfiable
clauses. In order to prove this claim, we consider an arbitrary assignment to « to construct a solution to the MAX-2-
SAT problem. For: = 1,2,...,n, let z; = true if o; = o, and let z; = false if a; = —ay. With this assignment,
it is straightforward to verify the following: if the clause ¢; is satisfied, then the value of > a;x;; is either 3/ Vd
or —3/+/d. If the clause is not satisfied, then the value of the expression is either 1/v/d or —1/+/d. To summarize, we
have

¢ 2 8 X (# of satisfied clauses)
S (Yaiwy) =1+ ; - (25)

Thus, solving problem (24) determines the maximum number of satisfiable clauses:

. d . 2
(max # of satisfied clauses) = 3 (( Hf\llir%l@n + 2)l(w))” — 1).

By examining equation (24) and (25), we find that the value of (2n 4 2)¢(w) ranges in [—3, 0]. Thus, the MAX-2-SAT

number is exactly determined if (2n + 2)¢(@) is at most 1/d larger than the optimal value. This optimality gap is
guaranteed by inequality (23), which completes the reduction.

E Proof of Proposition 2

We reduce the PAC learning of intersection of 7" halfspaces to the problem of learning a neural network. Assume that
T = ©O(dP) for some p > 0. We claim that for any number of pairs taking the form (x, h*(z)), there is a neural
network f* € N> that separates all pairs with margin -y, and moreover that the margin is bounded as v = 1/poly(d).

To prove the claim, recall that h*(x) = 1 if and only if hy(x) = --- = hp(z) = 1 for some hy, ..., hr € H. For
any hy, the definition of H implies that there is a (w;, b;) pair such that if h;(z) = 1 then wlz — b, — 1/2 > 1/2,
otherwise wl'x — by — 1/2 < —1/2. We consider the two possible choices of the activation function:

e Piecewise linear function: If o(z) := min{1, max{—1, x}}, then let

gi(x) := o(c(wlz — by —1/2) + 1),



for some quantity ¢ > 0. The term inside the activation function can be written as (w, =) where

x 1 1
V2d+2 V2d+2 V2

Note that ||z’||2 < 1, and with a sufficiently small constant ¢ = 1/poly(d) we have ||w||2 < 2. Thus, g;(x) is the
output of a one-layer neural network. If h;(z) = 1, then g;(z) = 1, otherwise g;(z) < 1 — ¢/2. Now consider
the two-layer neural network f(z) :=c¢/4 — T + 23:1 gi(x). If h*(x) = 1, then we have g;(z) = 1 for every
t € [T] which implies f(z) = ¢/4. If h*(x) = —1, then we have g;(z) < 1 — ¢/2 for at least one t € [T]
which implies f(z) < —c/4. Thus, the neural network f separates the data with margin ¢/4. We normalize the
edge weights on the second layer to make f belong to N5. After normalization, the network still has margin

1/poly(d).

e ReLU function: if o(x) := max{0, x}, then let g;(x) := o(—c(w] z —b; — 1/2)) for some quantity ¢ > 0. We
may write the term inside the activation function as (w, ') where w = (—cv/d + 1wy, ev/d + 1(by +1/2)) and
a2’ = (x,1)/+/d + 1. It is straightforward to verify that ||2’||2 < 1, and with a sufficiently small ¢ = 1/poly(d)
we have ||w|2 < 2. Thus, g;(z) is the output of a one-layer neural network. If h,(z) = 1, then g;(z) = 0,
otherwise g;(x) > ¢/2. Let f(x) := ¢/4 — Zthl g:(x), then this two-layer neural network separates the data
with margin ¢/4. After normalization the network belongs to N> and it still separates the data with margin

1/poly(d).

To learn the intersection of 7" halfspaces, we learn a neural network based on n i.i.d. points taking the form
(z,h*(x)). Assume that the neural network is efficiently learnable. Since there exists f* € A, which separates

the data with margin v = 1/poly(d), we can learn a network fin poly(d,1/e,1/6) sample complexity and time

~

complexity, and satisfies P(sign(f(z)) # h*(z)) < e with probability 1 — 4. It contradicts with the assumption that
the intersection of 7" halfspaces is not efficiently learnable.

W = (eV2d + 2wy, —eV/2d + 2(by +1/2),v/2) and 2’ = ( ).
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