Supplementary Materials

A Technical lemmas for Theorem 1

In this appendix, we prove technical lemmas that appear in the proof of Theorem 1.

A.1 Proof of Lemma 1

The following inequality always holds:

$$\sup_{f \in \mathcal{F}} |G(f) - \ell(f)| \le \max \Big\{ \sup_{f \in \mathcal{F}} \{G(f) - \ell(f)\}, \sup_{f' \in \mathcal{F}} \{\ell(f') - G(f')\} \Big\}.$$

Since $\mathcal F$ contains the constant zero function, both $\sup_{f\in\mathcal F}\{G(f)-\ell(f)\}$ and $\sup_{f'\in\mathcal F}\{\ell(f')-G(f')\}$ are nonnegative, which implies

$$\sup_{f \in \mathcal{F}} |G(f) - \ell(f)| \le \sup_{f \in \mathcal{F}} \{G(f) - \ell(f)\} + \sup_{f' \in \mathcal{F}} \{\ell(f') - G(f')\}.$$

To establish Lemma 1, it suffices to prove:

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\{G(f)-\ell(f)\}\Big] \leq 2LR_k(\mathcal{F}) \quad \text{and} \quad \mathbb{E}\Big[\sup_{f'\in\mathcal{F}}\{\ell(f')-G(f')\}\Big] \leq 2LR_k(\mathcal{F})$$

For the rest of the proof, we will establish the first upper bound. The second bound can be established through an identical series of steps.

The inequality $\mathbb{E}[\sup_{f \in \mathcal{F}} \{G(f) - \ell(f)\}] \leq 2LR_k(\mathcal{F})$ follows as a consequence of classical symmetrization techniques [e.g. Bartlett and Mendelson, 2003] and the Talagrand-Ledoux concentration [e.g. Ledoux and Talagrand, 2013, Corollary 3.17]. However, so as to keep the paper self-contained, we provide a detailed proof here. By the definitions of $\ell(f)$ and G(f), we have

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{G(f)-\ell(f)\Big\}\Big] = \mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{\frac{1}{k}\sum_{j=1}^k h(-y_j'f(x_j')) - \mathbb{E}\Big[\frac{1}{k}\sum_{j=1}^k h(-y_j''f(x_j''))\Big]\Big\}\Big],$$

where (x''_j, y''_j) is an i.i.d. copy of (x'_j, y'_j) . Applying Jensen's inequality yields

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{G(f)-\ell(f)\Big\}\Big] \leq \mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{\frac{1}{k}\sum_{j=1}^{k}h(-y_j'f(x_j'))-h(-y_j''f(x_j''))\Big\}\Big] \\
= \mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{\frac{1}{k}\sum_{j=1}^{k}\varepsilon_j(h(-y_j'f(x_j'))-h(-y_j''f(x_j'')))\Big\}\Big] \\
\leq \mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{\frac{1}{k}\sum_{j=1}^{k}\varepsilon_jh(-y_j'f(x_j'))+\sup_{f\in\mathcal{F}}\frac{1}{k}\sum_{j=1}^{k}\varepsilon_jh(-y_j''f(x_j''))\Big\}\Big] \\
= 2\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big\{\frac{1}{k}\sum_{j=1}^{k}\varepsilon_jh(-y_j'f(x_j'))\Big\}\Big]. \tag{13}$$

We need to bound the right-hand side using the Rademacher complexity of the function class \mathcal{F} , and we use an argument following the lecture notes of Kakade and Tewari [2008]. Introducing the shorthand notation $\varphi_j(x) := h(-y_j'x)$, the L-Lipschitz continuity of φ_j implies that

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\sum_{j=1}^{k}\varepsilon_{j}\varphi_{j}(f(x'_{j}))\Big] = \mathbb{E}\Big[\sup_{f,f'\in\mathcal{F}}\Big\{\frac{\varphi_{1}(f(x'_{1})) - \varphi_{1}(f'(x'_{1}))}{2} + \sum_{j=2}^{k}\varepsilon_{j}\frac{\varphi_{j}(f(x'_{j})) + \varphi_{j}(f'(x'_{j}))}{2}\Big\}\Big]$$

$$\leq \mathbb{E}\Big[\sup_{f,f'\in\mathcal{F}}\Big\{\frac{L|f(x'_{1}) - f'(x'_{1})|}{2} + \sum_{j=2}^{k}\varepsilon_{j}\frac{\varphi_{j}(f(x'_{j})) + \varphi_{j}(f'(x'_{j}))}{2}\Big\}\Big]$$

$$= \mathbb{E}\Big[\sup_{f,f'\in\mathcal{F}}\Big\{\frac{Lf(x'_{1}) - Lf'(x'_{1})}{2} + \sum_{j=2}^{k}\varepsilon_{j}\frac{\varphi_{j}(f(x'_{j})) + \varphi_{j}(f'(x'_{j}))}{2}\Big\}\Big].$$

Applying Jensen's inequality implies that the right-hand side is bounded by

RHS
$$\leq \frac{1}{2} \mathbb{E} \Big[\sup_{f \in \mathcal{F}} \Big\{ Lf(x_1') + \sum_{j=2}^k \varepsilon_j \varphi_j(f(x_j')) \Big\} + \sup_{f' \in \mathcal{F}} \Big\{ - Lf(x_1') + \sum_{j=2}^k \varepsilon_j \varphi_j(f'(x_j')) \Big\} \Big]$$

$$= \mathbb{E} \Big[\sup_{f \in \mathcal{F}} \Big\{ \varepsilon_1 Lf(x_1') + \sum_{j=2}^k \varepsilon_j \varphi_j(f(x_j')) \Big\} \Big].$$

By repeating this argument for j = 2, 3, ..., k, we obtain

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\sum_{i=1}^{k}\varepsilon_{j}\varphi_{j}(f(x'_{j}))\Big] \leq L\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\sum_{i=1}^{k}\varepsilon_{j}f(x'_{j})\Big]. \tag{14}$$

Combining inequalities (13) and (14), we have the desired bound.

A.2 Proof of Lemma 2

We prove the claim by induction on the number of layers m. It is known [Kakade et al., 2009] that $R_k(\mathcal{N}_1) \leq \sqrt{\frac{q}{k}} B$. Thus, the claim holds for the base case m=1. Now consider some m>1, and assume that the claim holds for m-1. We then have

$$R_k(\mathcal{N}_1) = \mathbb{E}\left[\sup_{f \in \mathcal{N}_m} \frac{1}{k} \sum_{i=1}^k \varepsilon_i f(x_i')\right],$$

where $\varepsilon_1, \dots, \varepsilon_n$ are Rademacher variables. By the definition of \mathcal{N}_m , we may write the expression as

$$R_{k}(\mathcal{N}_{1}) = \mathbb{E}\left[\sup_{f_{1},\dots,f_{d}\in\mathcal{N}_{m-1}} \frac{1}{k} \sum_{i=1}^{n} \varepsilon_{i} \sum_{j=1}^{d} w_{j} \sigma(f_{j}(x_{i}'))\right] = \mathbb{E}\left[\sup_{f_{1},\dots,f_{d}\in\mathcal{N}_{m-1}} \frac{1}{k} \sum_{j=1}^{d} w_{j} \sum_{i=1}^{k} \varepsilon_{i} \sigma(f_{j}(x_{i}'))\right]$$

$$\leq B\mathbb{E}\left[\sup_{f\in\mathcal{N}_{m-1}} \frac{1}{k} \sum_{i=1}^{k} \varepsilon_{i} \sigma(f(x_{i}'))\right]$$

$$= BR_{k}(\sigma \circ \mathcal{N}_{m-1}),$$

where the inequality follows since $||w||_1 \le B$. Since the function σ is 1-Lipschitz continuous, following the proof of inequality (14), we have

$$R_k(\sigma \circ \mathcal{N}_{m-1}) \le R_k(\mathcal{N}_{m-1}) \le \sqrt{\frac{q}{n}} B^m,$$

which completes the proof.

A.3 Proof of Lemma 3

We prove the claim by induction on the number of layers m. If m=1, then f^* is a linear function and $\varphi(f^*) \in [-B_1, B_1]^n$. Since $\varphi(g)$ minimizes the ℓ_2 -distance to vector u, we have

$$\|\varphi(g) - \varphi(f^*)\|_2 \le \|\varphi(g) - u\|_2 + \|\varphi(f^*) - u\|_2 \le 2\|\varphi(f^*) - u\|_2. \tag{15}$$

Since u is drawn uniformly from $[-B,B]^k$, with probability at least $(\frac{\epsilon}{4})^k$ we have $\|\varphi(f^*)-u\|_{\infty} \leq \frac{\epsilon B}{2}$, and consequently

$$\|\varphi(g) - \varphi(f^*)\|_2 \le \sqrt{k} \|\varphi(g) - \varphi(f^*)\|_{\infty} \le \epsilon \sqrt{k} B_1$$

which establishes the claim.

For m > 1, assume that the claim holds for m - 1. Our proof uses the following lemma:

Lemma 4 (Maurey-Barron-Jones lemma) Consider any subset G of any Hilbert space H such that $||g||_H \le b$ for all $g \in G$. Then for any point v is in the convex hull of G, there is a point v_s in the convex hull of S points of S such that $||v - v_s||_H^2 \le b^2/s$.

See the paper by Pisier [1980] for a proof.

Recall that f^*/B is in the convex hull of $\sigma \circ \mathcal{N}_{m-1}$ and every function $f \in \sigma \circ \mathcal{N}_{m-1}$ satisfies $\|\varphi(f)\|_2 \leq \sqrt{k}$. By Lemma 4, there exist s functions in \mathcal{N}_{m-1} , say $\widetilde{f}_1, \ldots, \widetilde{f}_s$, and a vector $w \in \mathbb{R}^s$ satisfying $\|w\|_1 \leq B$ such that

$$\left\| \sum_{j=1}^{s} w_j \sigma(\varphi(\widetilde{f}_j)) - \varphi(f^*) \right\|_2 \le B \sqrt{\frac{k}{s}}.$$

Let $\varphi(\widetilde{f}) := \sum_{j=1}^s w_j \sigma(\varphi(\widetilde{f_j}))$. If we chose $s = \left\lceil \frac{1}{\epsilon^2} \right\rceil$, then we have

$$\|\varphi(\widetilde{f}) - \varphi(f^*)\|_2 \le \epsilon \sqrt{k}B. \tag{16}$$

Recall that the function g satisfies $g = \sum_{j=1}^{s} v_j \sigma \circ g_j$ for $g_1, \dots, g_s \in \mathcal{N}_{m-1}$. Using the inductive hypothesis, we know that the following bound holds with probability at least p_{m-1}^s :

$$\|\sigma(\varphi(g_j)) - \sigma(\varphi(\widetilde{f_j}))\|_2 \leq \|\varphi(g_j) - \varphi(\widetilde{f_j})\|_2 \leq (2m-3)\epsilon \sqrt{k}B^{m-1} \quad \text{ for any } j \in [s].$$

As a consequence, we have

$$\left\| \sum_{j=1}^{s} w_{j} \sigma(\varphi(g_{j})) - \sum_{j=1}^{s} w_{j} \sigma(\varphi(\widetilde{f}_{j})) \right\|_{2} \leq \sum_{j=1}^{s} |w_{j}| \cdot \|\sigma(\varphi(g_{j})) - \sigma(\varphi(\widetilde{f}_{j}))\|_{2}$$

$$\leq \|w\|_{1} \cdot \max_{j \in [s]} \{\|\sigma(\varphi(g_{j})) - \sigma(\varphi(\widetilde{f}_{j}))\|_{2}\} \leq (2m - 3)\sqrt{k}\epsilon B^{m}. \tag{17}$$

Finally, we bound the distance between $\sum_{j=1}^{s} w_j \sigma(\varphi(g_j))$ and $\varphi(g)$. Following the proof of inequality (15), we obtain

$$\left\|\varphi(g) - \sum_{j=1}^s w_j \sigma(\varphi(g_j))\right\|_2 \le 2 \left\|u - \sum_{j=1}^s w_j \sigma(\varphi(g_j))\right\|_2.$$

Note that $\sum_{j=1}^s w_j \sigma(\varphi(g_j)) \in [-B,B]^k$ and u is uniformly drawn from $[-B,B]^k$. Thus, with probability at least $(\frac{\epsilon}{4})^k$, we have

$$\left\| \varphi(g) - \sum_{j=1}^{s} w_j \sigma(\varphi(g_j)) \right\|_2 \le \epsilon \sqrt{k} B. \tag{18}$$

Combining inequalities (16), (17) and (18) and using the fact that $B \ge 1$, we have

$$\left\| \varphi(g) - \varphi(f^*) \right\|_{\infty} \le (2m-1)\epsilon \sqrt{k}B^m,$$

with probability at least

$$p_{m-1}^s \cdot \left(\frac{\epsilon}{4}\right)^k = \left(\frac{\epsilon}{4}\right)^k \left(\frac{s(s^{m-1}-1)}{s-1} + 1\right) = \left(\frac{\epsilon}{4}\right)^{k(s^m-1)/(s-1)} = p_m,$$

which completes the induction.

B Proof of Theorem 2

Proof of Part (a)

We first prove $\hat{f} \in \mathcal{N}_m$. Indeed, the definition of b_T implies

$$\sum_{t=1}^{T} \frac{B}{2b_T} \left| \log\left(\frac{1-\mu_t}{1+\mu_t}\right) \right| \le B,\tag{19}$$

Notice that $\widehat{f} = \sum_{t=1}^{T} \frac{B}{2b_T} \log(\frac{1-\mu_t}{1+\mu_t}) \widehat{g}_t$, where $\widehat{g}_t \in \mathcal{N}_{m-1}$. Thus, combining inequality (19) with the definition of \mathcal{N}_m implies $\widehat{f} \in \mathcal{N}_m$. The time complexity bound is obtained by plugging in the bound from Theorem 1.

It remains to establish the correctness of \widehat{f} . We may write any function $f \in \mathcal{N}_m$ as

$$f(x) = \sum_{j=1}^{d} w_j \sigma(f_j(x))$$
 where $w_j \ge 0$ for all $j \in [d]$.

The constraints $w_j \geq 0$ are always satisfiable, otherwise since σ is an odd function we may write $w_j \sigma(f_j(x))$ as $(-w_j)\sigma(-f_j(x))$ so that it satisfies the constraint. The function f_j or $-f_j$ belongs to the class \mathcal{N}_{m-1} . We use the following result by Shalev-Shwartz and Singer [2010]: Assume that there exists $f^* \in \mathcal{N}_m$ which separate the data with margin γ . Then for any set of non-negative importance weights $\{\alpha_i\}_{i=1}^n$, there is a function $f \in \mathcal{N}_{m-1}$ such that $\sum_{i=1}^n \alpha_i \sigma(-y_i f(x_i)) \leq -\frac{\gamma}{B}$. This implies that, for every $t \in [T]$, there is $f \in \mathcal{N}_{m-1}$ such that

$$G_t(f) = \sum_{i=1}^n \alpha_{t,i} \sigma(-y_i f(x_i)) \le -\frac{\gamma}{B}.$$

Hence, with probability at least $1 - \delta$, the sequence μ_1, \dots, μ_T satisfies the relation

$$\mu_t = G_t(\widehat{g}_t) \le -\frac{\gamma}{2B}$$
 for every $t \in [T]$. (20)

Algorithm 2 is based on running AdaBoost for T iterations. The analysis of AdaBoost Schapire and Singer [1999] guarantees that for any $\beta > 0$, we have

$$\frac{1}{n} \sum_{i=1}^{n} e^{-\beta} \mathbb{I}[-y_i f_T(x_i) \ge -\beta] \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f_T(x_i)}$$

$$\le \exp\left(-\frac{\sum_{t=1}^{T} \mu_t^2}{2}\right).$$

Thus, the fraction of data that cannot be separated by f_T with margin β is bounded by $\exp(\beta - \frac{\sum_{t=1}^T \mu_t^2}{8B^2})$. If we choose

$$\beta := \frac{\sum_{t=1}^{T} \mu_t^2}{2} - \log(n+1),$$

then this fraction is bounded by $\frac{1}{n+1}$, meaning that all points are separated with margin β . Recall that \widehat{f} is a scaled version of f_T . As a consequence, all points are separated by \widehat{f} with margin

$$\frac{B\beta}{b_T} = \frac{\sum_{t=1}^{T} \mu_t^2 - 2\log(n+1)}{\frac{1}{B} \sum_{t=1}^{T} \log(\frac{1-\mu_t}{1+\mu_t})}.$$

Since $\mu_t \ge -1/2$, it is easy to verify that $\log(\frac{1-\mu_t}{1+\mu_t}) \le 4|\mu_t|$. Using this fact and Jensen's inequality, we have

$$\frac{B\beta}{b_T} \ge \frac{(\sum_{t=1}^T |\mu_t|)^2 / T - 2\log(n+1)}{\frac{4}{B} \sum_{t=1}^T |\mu_t|}.$$

The right-hand side is a monotonically increasing function of $\sum_{t=1}^{T} |\mu_t|$. Plugging in the bound in (20), we find that

$$\frac{B\beta}{b_T} \ge \frac{\gamma^2 T/(4B^2) - 2\log(n+1)}{2\gamma T/B^2}.$$

Plugging in $T = \frac{16B^2 \log(n+1)}{\gamma^2}$, some algebra shows that the right-hand side is equal to $\gamma/16$ which completes the proof.

Proof of Part (b)

Consider the empirical loss function

$$\ell(f) := \frac{1}{n} \sum_{i=1}^{n} h(-y_i f(x_i)),$$

where $h(t) := \max\{0, 1 + 16t/\gamma\}$. Part (a) implies that $\ell(\widehat{f}) = 0$ with probability at least $1 - \delta$. Note that h is $(16/\gamma)$ -Lipschitz continuous; the Rademacher complexity of \mathcal{N}_m with respect to n i.i.d. samples is bounded by $\sqrt{q/n}B^m$ (see Lemma 2). By the classical Rademacher generalization bound [Bartlett and Mendelson, 2003, Theorem 8 and Theorem 12], if (x,y) is randomly sampled form \mathbb{P} , then with probability at least $1-\delta$ we have

$$\mathbb{E}[h(-y\widehat{f}(x))] \leq \ell(\widehat{f}) + \frac{32B^m}{\gamma} \cdot \sqrt{\frac{q}{n}} + \sqrt{\frac{8\log(2/\delta)}{n}}.$$

Thus, in order to bound the generalization loss by ϵ with probability $1-2\delta$, it suffices to choose $n = \text{poly}(1/\epsilon, \log(1/\delta))$. Since h(t) is an upper bound on the zero-one loss $\mathbb{I}[t > 0]$, we obtain the claimed bound.

C Proof of Corollary 1

The first step is to use the improper learning algorithm [Zhang et al., 2015, Algorithm 1] to learn a predictor \hat{g} that minimizes the following risk function:

$$\ell(g) := \mathbb{E}[\phi(-\widetilde{y}g(x))] \quad \text{where} \quad \phi(t) := \left\{ \begin{array}{ll} -\frac{2\eta}{1-2\eta} + \frac{\eta(t+\gamma)}{(1-\eta)(1-2\eta)\gamma} & \text{if } t \leq -\gamma, \\ -\frac{2\eta}{1-2\eta} + \frac{t+\gamma}{(1-2\eta)\gamma} & \text{if } t > -\gamma. \end{array} \right.$$

Since $\eta < 1/2$, the function ϕ is convex and Lipschitz continuous. The activation function $\operatorname{erf}(x)$ satisfies the condition of [Zhang et al., 2015, Theorem 1]. Thus, with sample complexity $\operatorname{poly}(1/\tau, \log(1/\delta))$ and time complexity $\operatorname{poly}(d, 1/\tau, \log(1/\delta))$, the resulting predictor \widehat{g} satisfies

$$\ell(\widehat{g}) \le \ell(f^*) + \tau$$
 with probability at least $1 - \delta/3$.

By the definition of \widetilde{y} and ϕ , it is straightforward to verify that

$$\ell(g) = \mathbb{E}[(1-\eta)\phi(-yg(x)) + \eta\phi(yg(x))] = \mathbb{E}[\psi(-yg(x))]$$
(21)

where

$$\psi(t) := \begin{cases} 0 & \text{if } t < -\gamma, \\ 1 + t/\gamma & \text{if } -\gamma \le t \le \gamma, \\ 2 + \frac{2\eta^2 - 2\eta + 1}{(1-\eta)(1-2\eta)\gamma}(t-\gamma) & \text{if } t > \gamma. \end{cases}$$

Recall that $yf^*(x) \geq \gamma$ almost surely. From the definition of ψ , we have $\ell(f^*) = 0$, so that $\ell(\widehat{g}) \leq \ell(f^*) + \tau$ implies $\ell(\widehat{g}) \leq \tau$. Also note that $\psi(t)$ upper bounds the indicator $\mathbb{I}[t \geq 0]$, so that the right-hand side of equation (21) provides an upper bound on the probability $\mathbb{P}(\mathrm{sign}(g(x)) \neq y)$. Consequently, defining the classifier $\widehat{h}(x) := \mathrm{sign}(g(x))$, then we have

$$\mathbb{P}(\widehat{h}(x) \neq y) \leq \ell(\widehat{g}) \leq \tau$$
 with probability at least $1 - \delta/3$.

Given the classifier \widehat{h} , we draw another random dataset of n points taking the form $\{(x_i,y_i)\}_{i=1}^n$. If $\tau=\frac{\delta}{3n}$, then this dataset is equal to $\{(x_i,\widehat{h}(x_i))\}_{i=1}^n$ with probability at least $1-2\delta/3$. Let the BoostNet algorithm take $\{(x_i,\widehat{h}(x_i))\}_{i=1}^n$ as its input. With sample size $n=\operatorname{poly}(1/\epsilon,\log(1/\delta))$, Theorem 2 implies that the algorithm learns a neural network \widehat{f} such that $\mathbb{P}(\operatorname{sign}(\widehat{f}(x))\neq y)\leq \epsilon$ with probability at least $1-\delta$. Plugging in the assignments of n and τ , the overall sample complexity is $\operatorname{poly}(1/\epsilon,1/\delta)$ and the overall computation complexity is $\operatorname{poly}(d,1/\epsilon,1/\delta)$.

D Proof of Proposition 1

The following MAX-2-SAT problem is known to be NP-hard [Papadimitriou and Yannakakis, 1991].

Definition 1 (MAX-2-SAT) Given n literals $\{z_1, \ldots, z_n\}$ and d clauses $\{c_1, \ldots, c_d\}$. Each clause is the conjunction of two arguments that may either be a literal or the negation of a literal *. The goal is to determine the maximum number of clauses that can be simultaneously satisfied by an assignment.

We consider the loss function:

$$\ell(w) := -\frac{1}{n} \sum_{i=1}^{n} \max\{0, \langle w, x_i \rangle\} = \frac{1}{n} \sum_{i=1}^{n} \min\{0, \langle w, -x_i \rangle\}.$$
 (22)

It suffices to prove that: it is NP-hard to compute a vector $\widehat{w} \in \mathbb{R}^d$ such that $\|\widehat{w}\|_2 \leq 1$ and

$$\ell(\widehat{w}) \le \ell(w^*) + \frac{1}{(2n+2)d},\tag{23}$$

To prove this claim, we reduce MAX-2-SAT to the minimization problem. Given a MAX-2-SAT instance, we construct a loss function ℓ so that if any algorithm computes a vector \widehat{w} satisfying inequality (23), then the vector \widehat{w} solves MAX-2-SAT.

First, we construct n+1 vectors in \mathbb{R}^d . Define the vector $x_0 := \frac{1}{\sqrt{d}} \mathbf{1}_d$, and for $i=1,\ldots,n$, the vectors $x_i := \frac{1}{\sqrt{d}} x_i'$, where $x_i' \in \mathbb{R}^d$ is given by

$$x'_{ij} = \begin{cases} 1 & \text{if } z_i \text{ appears in } c_j, \\ -1 & \text{if } \neg z_i \text{ appears in } c_j, \\ 0 & \text{otherwise.} \end{cases}$$

^{*}In the standard MAX-2-SAT setup, each clause is the disjunction of two literals. However, any disjunction clause can be reduced to three conjunction clauses. In particular, a clause $z_1 \lor z_2$ is satisfied if and only if one of the following is satisfied: $z_1 \land z_2, \neg z_1 \land z_2, z_1 \land \neg z_2$.

It is straightforward to verify that that $||x_i||_2 \le 1$ for any $i \in \{0, 1, ..., n\}$. We consider the following minimization problem which is special case of the formulation (22):

$$\ell(w) = \frac{1}{2n+2} \sum_{i=0}^{n} \left(\min\{0, \langle w, x_i \rangle\} + \min\{0, \langle w, -x_i \rangle\} \right).$$

The goal is to find a vector $w^* \in \mathbb{R}^d$ such that $||w^*||_2 \le 1$ and it minimizes the function $\ell(w)$.

Notice that for every index i, at most one of $\min\{0, \langle w, x_i \rangle\}$ and $\min\{0, \langle w, -x_i \rangle\}$ is non-zero. Thus, we may write the minimization problem as

$$\min_{\|w\|_{2} \le 1} (2n+2)\ell(w) = \min_{\|w\|_{2} \le 1} \sum_{i=0}^{n} \left(\min_{\alpha_{i} \in \{-1,1\}} \langle w, \alpha_{i} x_{i} \rangle \right) = \min_{\alpha \in \{-1,1\}^{n+1}} \min_{\|w\|_{2} \le 1} \sum_{i=0}^{n} \langle w, \alpha_{i} x_{i} \rangle$$

$$= \min_{\alpha \in \{-1,1\}^{n+1}} - \left\| \sum_{i=0}^{n} \alpha_{i} x_{i} \right\|_{2}$$

$$= -\left(\max_{\alpha \in \{-1,1\}^{n+1}} \sum_{j=1}^{d} \left(\sum_{i=0}^{n} \alpha_{i} x_{ij} \right)^{2} \right)^{1/2}. \tag{24}$$

We claim that maximizing $\sum_{j=1}^d (\sum_{i=0}^n \alpha_i x_{ij})^2$ with respect to α is equivalent to maximizing the number of satisfiable clauses. In order to prove this claim, we consider an arbitrary assignment to α to construct a solution to the MAX-2-SAT problem. For $i=1,2,\ldots,n$, let $z_i=$ true if $\alpha_i=\alpha_0$, and let $z_i=$ false if $\alpha_i=-\alpha_0$. With this assignment, it is straightforward to verify the following: if the clause c_j is satisfied, then the value of $\sum_{i=0}^n \alpha_i x_{ij}$ is either $3/\sqrt{d}$ or $-3/\sqrt{d}$. If the clause is not satisfied, then the value of the expression is either $1/\sqrt{d}$ or $-1/\sqrt{d}$. To summarize, we have

$$\sum_{j=1}^{d} \left(\sum_{i=0}^{n} \alpha_i x_{ij} \right)^2 = 1 + \frac{8 \times (\text{# of satisfied clauses})}{d}.$$
 (25)

Thus, solving problem (24) determines the maximum number of satisfiable clauses:

$$(\max \# \text{ of satisfied clauses}) = \frac{d}{8} \Big(\big(\min_{\|w\|_2 \le 1} (2n+2)\ell(w) \big)^2 - 1 \Big).$$

By examining equation (24) and (25), we find that the value of $(2n+2)\ell(w)$ ranges in [-3,0]. Thus, the MAX-2-SAT number is exactly determined if $(2n+2)\ell(\widehat{w})$ is at most 1/d larger than the optimal value. This optimality gap is guaranteed by inequality (23), which completes the reduction.

E Proof of Proposition 2

We reduce the PAC learning of intersection of T halfspaces to the problem of learning a neural network. Assume that $T = \Theta(d^{\rho})$ for some $\rho > 0$. We claim that for any number of pairs taking the form $(x, h^*(x))$, there is a neural network $f^* \in \mathcal{N}_2$ that separates all pairs with margin γ , and moreover that the margin is bounded as $\gamma = 1/\text{poly}(d)$.

To prove the claim, recall that $h^*(x) = 1$ if and only if $h_1(x) = \cdots = h_T(x) = 1$ for some $h_1, \ldots, h_T \in H$. For any h_t , the definition of H implies that there is a (w_t, b_t) pair such that if $h_t(x) = 1$ then $w_t^T x - b_t - 1/2 \ge 1/2$, otherwise $w_t^T x - b_t - 1/2 \le -1/2$. We consider the two possible choices of the activation function:

• Piecewise linear function: If $\sigma(x) := \min\{1, \max\{-1, x\}\}\$, then let

$$q_t(x) := \sigma(c(w_t^T x - b_t - 1/2) + 1),$$

for some quantity c>0. The term inside the activation function can be written as $\langle \widetilde{w}, x' \rangle$ where

$$\widetilde{w} = (c\sqrt{2d+2}w_t, -c\sqrt{2d+2}(b_t+1/2), \sqrt{2}) \quad \text{and} \quad x' = (\frac{x}{\sqrt{2d+2}}, \frac{1}{\sqrt{2d+2}}, \frac{1}{\sqrt{2}}).$$

Note that $\|x'\|_2 \leq 1$, and with a sufficiently small constant c=1/poly(d) we have $\|\widetilde{w}\|_2 \leq 2$. Thus, $g_t(x)$ is the output of a one-layer neural network. If $h_t(x)=1$, then $g_t(x)=1$, otherwise $g_t(x)\leq 1-c/2$. Now consider the two-layer neural network $f(x):=c/4-T+\sum_{t=1}^T g_t(x)$. If $h^*(x)=1$, then we have $g_t(x)=1$ for every $t\in [T]$ which implies f(x)=c/4. If $h^*(x)=-1$, then we have $g_t(x)\leq 1-c/2$ for at least one $t\in [T]$ which implies $f(x)\leq -c/4$. Thus, the neural network f separates the data with margin c/4. We normalize the edge weights on the second layer to make f belong to \mathcal{N}_2 . After normalization, the network still has margin 1/poly(d).

• **ReLU function:** if $\sigma(x) := \max\{0, x\}$, then let $g_t(x) := \sigma(-c(w_t^Tx - b_t - 1/2))$ for some quantity c > 0. We may write the term inside the activation function as $\langle \widetilde{w}, x' \rangle$ where $\widetilde{w} = (-c\sqrt{d+1}w_t, c\sqrt{d+1}(b_t+1/2))$ and $x' = (x, 1)/\sqrt{d+1}$. It is straightforward to verify that $\|x'\|_2 \le 1$, and with a sufficiently small c = 1/poly(d) we have $\|\widetilde{w}\|_2 \le 2$. Thus, $g_t(x)$ is the output of a one-layer neural network. If $h_t(x) = 1$, then $g_t(x) = 0$, otherwise $g_t(x) \ge c/2$. Let $f(x) := c/4 - \sum_{t=1}^T g_t(x)$, then this two-layer neural network separates the data with margin c/4. After normalization the network belongs to \mathcal{N}_2 and it still separates the data with margin 1/poly(d).

To learn the intersection of T halfspaces, we learn a neural network based on n i.i.d. points taking the form $(x,h^*(x))$. Assume that the neural network is efficiently learnable. Since there exists $f^* \in \mathcal{N}_m$ which separates the data with margin $\gamma = 1/\text{poly}(d)$, we can learn a network \widehat{f} in $\text{poly}(d,1/\epsilon,1/\delta)$ sample complexity and time complexity, and satisfies $\mathbb{P}(\text{sign}(\widehat{f}(x)) \neq h^*(x)) \leq \epsilon$ with probability $1-\delta$. It contradicts with the assumption that the intersection of T halfspaces is not efficiently learnable.

References

- P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *The Journal of Machine Learning Research*, 3:463–482, 2003.
- S. Kakade and A. Tewari. Lecture note: Rademacher composition and linear prediction. 2008.
- S. M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In *Advances in Neural Information Processing Systems*, volume 21, pages 793–800, 2009.
- M. Ledoux and M. Talagrand. *Probability in Banach Spaces: isoperimetry and processes*, volume 23. Springer Science & Business Media, 2013.
- C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. *Journal of computer and system sciences*, 43(3):425–440, 1991.
- G. Pisier. Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse Fonctionnelle, pages 1–12, 1980.
- R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. *Machine Learning*, 37(3):297–336, 1999.
- S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms. *Machine Learning*, 80(2-3):141–163, 2010.
- Y. Zhang, J. D. Lee, and M. I. Jordan. ℓ_1 -regularized neural networks are improperly learnable in polynomial time. arXiv:1510.03528, 2015.