
Supplementary Materials

A Technical lemmas for Theorem 1
In this appendix, we prove technical lemmas that appear in the proof of Theorem 1.

A.1 Proof of Lemma 1
The following inequality always holds:

sup
f∈F
|G(f)− `(f)| ≤ max

{
sup
f∈F
{G(f)− `(f)}, sup

f ′∈F
{`(f ′)−G(f ′)}

}
.

Since F contains the constant zero function, both supf∈F{G(f) − `(f)} and supf ′∈F{`(f ′) − G(f ′)} are non-
negative, which implies

sup
f∈F
|G(f)− `(f)| ≤ sup

f∈F
{G(f)− `(f)}+ sup

f ′∈F
{`(f ′)−G(f ′)}.

To establish Lemma 1, it suffices to prove:

E
[

sup
f∈F
{G(f)− `(f)}

]
≤ 2LRk(F) and E

[
sup
f ′∈F
{`(f ′)−G(f ′)}

]
≤ 2LRk(F)

For the rest of the proof, we will establish the first upper bound. The second bound can be established through an
identical series of steps.

The inequality E[supf∈F{G(f) − `(f)}] ≤ 2LRk(F) follows as a consequence of classical symmetrization
techniques [e.g. Bartlett and Mendelson, 2003] and the Talagrand-Ledoux concentration [e.g. Ledoux and Talagrand,
2013, Corollary 3.17]. However, so as to keep the paper self-contained, we provide a detailed proof here. By the
definitions of `(f) and G(f), we have

E
[

sup
f∈F

{
G(f)− `(f)

}]
= E

[
sup
f∈F

{1

k

k∑
j=1

h(−y′jf(x′j))− E
[1

k

k∑
j=1

h(−y′′j f(x′′j))
]}]

,

where (x′′j , y
′′
j) is an i.i.d. copy of (x′j , y

′
j). Applying Jensen’s inequality yields

E
[

sup
f∈F

{
G(f)− `(f)

}]
≤ E

[
sup
f∈F

{1

k

k∑
j=1

h(−y′jf(x′j))− h(−y′′j f(x′′j))
}]

= E
[

sup
f∈F

{1

k

k∑
j=1

εj(h(−y′jf(x′j))− h(−y′′j f(x′′j)))
}]

≤ E
[

sup
f∈F

{1

k

k∑
j=1

εjh(−y′jf(x′j)) + sup
f∈F

1

k

k∑
j=1

εjh(−y′′j f(x′′j))
}]

= 2E
[

sup
f∈F

{1

k

k∑
j=1

εjh(−y′jf(x′j))
}]
. (13)

1

We need to bound the right-hand side using the Rademacher complexity of the function class F , and we use an
argument following the lecture notes of Kakade and Tewari [2008]. Introducing the shorthand notation ϕj(x) :=
h(−y′jx), the L-Lipschitz continuity of ϕj implies that

E
[

sup
f∈F

k∑
j=1

εjϕj(f(x′j))
]

= E
[

sup
f,f ′∈F

{ϕ1(f(x′1))− ϕ1(f ′(x′1))

2
+

k∑
j=2

εj
ϕj(f(x′j)) + ϕj(f

′(x′j))

2

}]

≤ E
[

sup
f,f ′∈F

{L|f(x′1)− f ′(x′1)|
2

+

k∑
j=2

εj
ϕj(f(x′j)) + ϕj(f

′(x′j))

2

}]

= E
[

sup
f,f ′∈F

{Lf(x′1)− Lf ′(x′1)

2
+

k∑
j=2

εj
ϕj(f(x′j)) + ϕj(f

′(x′j))

2

}]
.

Applying Jensen’s inequality implies that the right-hand side is bounded by

RHS ≤ 1

2
E
[

sup
f∈F

{
Lf(x′1) +

k∑
j=2

εjϕj(f(x′j))
}

+ sup
f ′∈F

{
− Lf(x′1) +

k∑
j=2

εjϕj(f
′(x′j))

}]

= E
[

sup
f∈F

{
ε1Lf(x′1) +

k∑
j=2

εjϕj(f(x′j))
}]
.

By repeating this argument for j = 2, 3, . . . , k, we obtain

E
[

sup
f∈F

k∑
j=1

εjϕj(f(x′j))
]
≤ LE

[
sup
f∈F

k∑
j=1

εjf(x′j)
]
. (14)

Combining inequalities (13) and (14), we have the desired bound.

A.2 Proof of Lemma 2
We prove the claim by induction on the number of layers m. It is known [Kakade et al., 2009] that Rk(N1) ≤

√
q
k B.

Thus, the claim holds for the base casem = 1. Now consider somem > 1, and assume that the claim holds form−1.
We then have

Rk(N1) = E

[
sup
f∈Nm

1

k

k∑
i=1

εif(x′i)

]
,

where ε1, . . . , εn are Rademacher variables. By the definition of Nm, we may write the expression as

Rk(N1) = E

 sup
f1,...,fd∈Nm−1

1

k

n∑
i=1

εi

d∑
j=1

wjσ(fj(x
′
i))

 = E

 sup
f1,...,fd∈Nm−1

1

k

d∑
j=1

wj

k∑
i=1

εiσ(fj(x
′
i))


≤ BE

[
sup

f∈Nm−1

1

k

k∑
i=1

εiσ(f(x′i))

]
= BRk(σ ◦ Nm−1),

where the inequality follows since ‖w‖1 ≤ B. Since the function σ is 1-Lipschitz continuous, following the proof of
inequality (14), we have

Rk(σ ◦ Nm−1) ≤ Rk(Nm−1) ≤
√
q

n
Bm,

which completes the proof.

2

A.3 Proof of Lemma 3
We prove the claim by induction on the number of layers m. If m = 1, then f∗ is a linear function and ϕ(f∗) ∈
[−B1, B1]n. Since ϕ(g) minimizes the `2-distance to vector u, we have

‖ϕ(g)− ϕ(f∗)‖2 ≤ ‖ϕ(g)− u‖2 + ‖ϕ(f∗)− u‖2 ≤ 2‖ϕ(f∗)− u‖2. (15)

Since u is drawn uniformly from [−B,B]k, with probability at least (ε4)k we have ‖ϕ(f∗)− u‖∞ ≤ εB
2 , and conse-

quently

‖ϕ(g)− ϕ(f∗)‖2 ≤
√
k‖ϕ(g)− ϕ(f∗)‖∞ ≤ ε

√
kB,

which establishes the claim.

For m > 1, assume that the claim holds for m− 1. Our proof uses the following lemma:

Lemma 4 (Maurey-Barron-Jones lemma) Consider any subset G of any Hilbert space H such that ‖g‖H ≤ b for
all g ∈ G. Then for any point v is in the convex hull of G, there is a point vs in the convex hull of s points of G such
that ‖v − vs‖2H ≤ b2/s.

See the paper by Pisier [1980] for a proof.
Recall that f∗/B is in the convex hull of σ ◦ Nm−1 and every function f ∈ σ ◦ Nm−1 satisfies ‖ϕ(f)‖2 ≤

√
k.

By Lemma 4, there exist s functions in Nm−1, say f̃1, . . . , f̃s, and a vector w ∈ Rs satisfying ‖w‖1 ≤ B such that∥∥∥ s∑
j=1

wjσ(ϕ(f̃j))− ϕ(f∗)
∥∥∥
2
≤ B

√
k

s
.

Let ϕ(f̃) :=
∑s
j=1 wjσ(ϕ(f̃j)). If we chose s =

⌈
1
ε2

⌉
, then we have

‖ϕ(f̃)− ϕ(f∗)‖2 ≤ ε
√
kB. (16)

Recall that the function g satisfies g =
∑s
j=1 vjσ ◦ gj for g1, . . . , gs ∈ Nm−1. Using the inductive hypothesis, we

know that the following bound holds with probability at least psm−1:

‖σ(ϕ(gj))− σ(ϕ(f̃j))‖2 ≤ ‖ϕ(gj)− ϕ(f̃j)‖2 ≤ (2m− 3)ε
√
kBm−1 for any j ∈ [s].

As a consequence, we have∥∥∥ s∑
j=1

wjσ(ϕ(gj))−
s∑
j=1

wjσ(ϕ(f̃j))
∥∥∥
2
≤

s∑
j=1

|wj | · ‖σ(ϕ(gj))− σ(ϕ(f̃j))‖2

≤ ‖w‖1 ·max
j∈[s]
{‖σ(ϕ(gj))− σ(ϕ(f̃j))‖2} ≤ (2m− 3)

√
kεBm. (17)

Finally, we bound the distance between
∑s
j=1 wjσ(ϕ(gj)) and ϕ(g). Following the proof of inequality (15), we obtain

∥∥∥ϕ(g)−
s∑
j=1

wjσ(ϕ(gj))
∥∥∥
2
≤ 2
∥∥∥u− s∑

j=1

wjσ(ϕ(gj))
∥∥∥
2
.

Note that
∑s
j=1 wjσ(ϕ(gj)) ∈ [−B,B]k and u is uniformly drawn from [−B,B]k. Thus, with probability at least

(ε4)k, we have ∥∥∥ϕ(g)−
s∑
j=1

wjσ(ϕ(gj))
∥∥∥
2
≤ ε
√
kB. (18)

3

Combining inequalities (16), (17) and (18) and using the fact that B ≥ 1, we have∥∥∥ϕ(g)− ϕ(f∗)
∥∥∥
∞
≤ (2m− 1)ε

√
kBm,

with probability at least

psm−1 ·
(ε

4

)k
=
(ε

4

)k(s(sm−1−1)
s−1 +1

)
=
(ε

4

)k(sm−1)/(s−1)
= pm,

which completes the induction.

B Proof of Theorem 2

Proof of Part (a)
We first prove f̂ ∈ Nm. Indeed, the definition of bT implies

T∑
t=1

B

2bT

∣∣∣∣log(
1− µt
1 + µt

)

∣∣∣∣ ≤ B, (19)

Notice that f̂ =
∑T
t=1

B
2bT

log(1−µt

1+µt
)ĝt, where ĝt ∈ Nm−1. Thus, combining inequality (19) with the definition of

Nm implies f̂ ∈ Nm. The time complexity bound is obtained by plugging in the bound from Theorem 1.
It remains to establish the correctness of f̂ . We may write any function f ∈ Nm as

f(x) =

d∑
j=1

wjσ(fj(x)) where wj ≥ 0 for all j ∈ [d].

The constraints wj ≥ 0 are always satisfiable, otherwise since σ is an odd function we may write wjσ(fj(x)) as
(−wj)σ(−fj(x)) so that it satisfies the constraint. The function fj or −fj belongs to the class Nm−1. We use the
following result by Shalev-Shwartz and Singer [2010]: Assume that there exists f∗ ∈ Nm which separate the data
with margin γ. Then for any set of non-negative importance weights {αi}ni=1, there is a function f ∈ Nm−1 such that∑n
i=1 αiσ(−yif(xi)) ≤ − γ

B . This implies that, for every t ∈ [T], there is f ∈ Nm−1 such that

Gt(f) =

n∑
i=1

αt,iσ(−yif(xi)) ≤ −
γ

B
.

Hence, with probability at least 1− δ, the sequence µ1, . . . , µT satisfies the relation

µt = Gt(ĝt) ≤ −
γ

2B
for every t ∈ [T]. (20)

Algorithm 2 is based on running AdaBoost for T iterations. The analysis of AdaBoost Schapire and Singer [1999]
guarantees that for any β > 0, we have

1

n

n∑
i=1

e−βI[−yifT (xi) ≥ −β] ≤ 1

n

n∑
i=1

e−yifT (xi)

≤ exp
(
−
∑T
t=1 µ

2
t

2

)
.

Thus, the fraction of data that cannot be separated by fT with margin β is bounded by exp(β−
∑T

t=1 µ
2
t

8B2). If we choose

β :=

∑T
t=1 µ

2
t

2
− log(n+ 1),

4

then this fraction is bounded by 1
n+1 , meaning that all points are separated with margin β. Recall that f̂ is a scaled

version of fT . As a consequence, all points are separated by f̂ with margin

Bβ

bT
=

∑T
t=1 µ

2
t − 2 log(n+ 1)

1
B

∑T
t=1 log(1−µt

1+µt
)

.

Since µt ≥ −1/2, it is easy to verify that log(1−µt

1+µt
) ≤ 4|µt|. Using this fact and Jensen’s inequality, we have

Bβ

bT
≥

(
∑T
t=1 |µt|)2/T − 2 log(n+ 1)

4
B

∑T
t=1 |µt|

.

The right-hand side is a monotonically increasing function of
∑T
t=1 |µt|. Plugging in the bound in (20), we find that

Bβ

bT
≥ γ2T/(4B2)− 2 log(n+ 1)

2γT/B2
.

Plugging in T = 16B2 log(n+1)
γ2 , some algebra shows that the right-hand side is equal to γ/16 which completes the

proof.

Proof of Part (b)
Consider the empirical loss function

`(f) :=
1

n

n∑
i=1

h(−yif(xi)),

where h(t) := max{0, 1+16t/γ}. Part (a) implies that `(f̂) = 0 with probability at least 1−δ. Note that h is (16/γ)-
Lipschitz continuous; the Rademacher complexity of Nm with respect to n i.i.d. samples is bounded by

√
q/nBm

(see Lemma 2). By the classical Rademacher generalization bound [Bartlett and Mendelson, 2003, Theorem 8 and
Theorem 12], if (x, y) is randomly sampled form P, then with probability at least 1− δ we have

E[h(−yf̂(x))] ≤ `(f̂) +
32Bm

γ
·
√
q

n
+

√
8 log(2/δ)

n
.

Thus, in order to bound the generalization loss by εwith probability 1−2δ, it suffices to choose n = poly(1/ε, log(1/δ)).
Since h(t) is an upper bound on the zero-one loss I[t ≥ 0], we obtain the claimed bound. �

C Proof of Corollary 1
The first step is to use the improper learning algorithm [Zhang et al., 2015, Algorithm 1] to learn a predictor ĝ that
minimizes the following risk function:

`(g) := E[φ(−ỹg(x))] where φ(t) :=

{
− 2η

1−2η + η(t+γ)
(1−η)(1−2η)γ if t ≤ −γ,

− 2η
1−2η + t+γ

(1−2η)γ if t > −γ.

Since η < 1/2, the function φ is convex and Lipschitz continuous. The activation function erf(x) satisfies the
condition of [Zhang et al., 2015, Theorem 1]. Thus, with sample complexity poly(1/τ, log(1/δ)) and time complexity
poly(d, 1/τ, log(1/δ)), the resulting predictor ĝ satisfies

`(ĝ) ≤ `(f∗) + τ with probability at least 1− δ/3.

5

By the definition of ỹ and φ, it is straightforward to verify that

`(g) = E[(1− η)φ(−yg(x)) + ηφ(yg(x))] = E[ψ(−yg(x))] (21)

where

ψ(t) :=


0 if t < −γ,
1 + t/γ if −γ ≤ t ≤ γ,
2 + 2η2−2η+1

(1−η)(1−2η)γ (t− γ) if t > γ.

Recall that yf∗(x) ≥ γ almost surely. From the definition of ψ, we have `(f∗) = 0, so that `(ĝ) ≤ `(f∗) + τ implies
`(ĝ) ≤ τ . Also note that ψ(t) upper bounds the indicator I[t ≥ 0], so that the right-hand side of equation (21) provides
an upper bound on the probability P(sign(g(x)) 6= y). Consequently, defining the classifier ĥ(x) := sign(g(x)), then
we have

P(ĥ(x) 6= y) ≤ `(ĝ) ≤ τ with probability at least 1− δ/3.

Given the classifier ĥ, we draw another random dataset of n points taking the form {(xi, yi)}ni=1. If τ = δ
3n ,

then this dataset is equal to {(xi, ĥ(xi))}ni=1 with probability at least 1 − 2δ/3. Let the BoostNet algorithm take
{(xi, ĥ(xi))}ni=1 as its input. With sample size n = poly(1/ε, log(1/δ)), Theorem 2 implies that the algorithm learns
a neural network f̂ such that P(sign(f̂(x)) 6= y) ≤ ε with probability at least 1− δ. Plugging in the assignments of n
and τ , the overall sample complexity is poly(1/ε, 1/δ) and the overall computation complexity is poly(d, 1/ε, 1/δ).

D Proof of Proposition 1
The following MAX-2-SAT problem is known to be NP-hard [Papadimitriou and Yannakakis, 1991].

Definition 1 (MAX-2-SAT) Given n literals {z1, . . . , zn} and d clauses {c1, . . . , cd}. Each clause is the conjunction
of two arguments that may either be a literal or the negation of a literal ∗. The goal is to determine the maximum
number of clauses that can be simultaneously satisfied by an assignment.

We consider the loss function:

`(w) := − 1

n

n∑
i=1

max{0, 〈w, xi〉)} =
1

n

n∑
i=1

min{0, 〈w,−xi〉)}. (22)

It suffices to prove that: it is NP-hard to compute a vector ŵ ∈ Rd such that ‖ŵ‖2 ≤ 1 and

`(ŵ) ≤ `(w∗) +
1

(2n+ 2)d
, (23)

To prove this claim, we reduce MAX-2-SAT to the minimization problem. Given a MAX-2-SAT instance, we construct
a loss function ` so that if any algorithm computes a vector ŵ satisfying inequality (23), then the vector ŵ solves MAX-
2-SAT.

First, we construct n + 1 vectors in Rd. Define the vector x0 := 1√
d
1d, and for i = 1, . . . , n, the vectors

xi := 1√
d
x′i, where x′i ∈ Rd is given by

x′ij =


1 if zi appears in cj ,
−1 if ¬zi appears in cj ,
0 otherwise.

∗In the standard MAX-2-SAT setup, each clause is the disjunction of two literals. However, any disjunction clause can be reduced to three
conjunction clauses. In particular, a clause z1 ∨ z2 is satisfied if and only if one of the following is satisfied: z1 ∧ z2, ¬z1 ∧ z2, z1 ∧ ¬z2.

6

It is straightforward to verify that that ‖xi‖2 ≤ 1 for any i ∈ {0, 1, . . . , n}. We consider the following minimization
problem which is special case of the formulation (22):

`(w) =
1

2n+ 2

n∑
i=0

(
min{0, 〈w, xi〉}+ min{0, 〈w,−xi〉}

)
.

The goal is to find a vector w∗ ∈ Rd such that ‖w∗‖2 ≤ 1 and it minimizes the function `(w).
Notice that for every index i, at most one of min{0, 〈w, xi〉} and min{0, 〈w,−xi〉} is non-zero. Thus, we may

write the minimization problem as

min
‖w‖2≤1

(2n+ 2)`(w) = min
‖w‖2≤1

n∑
i=0

(
min

αi∈{−1,1}
〈w,αixi〉

)
= min
α∈{−1,1}n+1

min
‖w‖2≤1

n∑
i=0

〈w,αixi〉

= min
α∈{−1,1}n+1

−
∥∥∥ n∑
i=0

αixi

∥∥∥
2

= −

 max
α∈{−1,1}n+1

d∑
j=1

(n∑
i=0

αixij

)21/2

. (24)

We claim that maximizing
∑d
j=1(

∑n
i=0 αixij)

2 with respect to α is equivalent to maximizing the number of satisfiable
clauses. In order to prove this claim, we consider an arbitrary assignment to α to construct a solution to the MAX-2-
SAT problem. For i = 1, 2, . . . , n, let zi = true if αi = α0, and let zi = false if αi = −α0. With this assignment,
it is straightforward to verify the following: if the clause cj is satisfied, then the value of

∑n
i=0 αixij is either 3/

√
d

or −3/
√
d. If the clause is not satisfied, then the value of the expression is either 1/

√
d or −1/

√
d. To summarize, we

have

d∑
j=1

(n∑
i=0

αixij

)2
= 1 +

8× (# of satisfied clauses)
d

. (25)

Thus, solving problem (24) determines the maximum number of satisfiable clauses:

(max # of satisfied clauses) =
d

8

((
min
‖w‖2≤1

(2n+ 2)`(w)
)2 − 1

)
.

By examining equation (24) and (25), we find that the value of (2n+ 2)`(w) ranges in [−3, 0]. Thus, the MAX-2-SAT
number is exactly determined if (2n + 2)`(ŵ) is at most 1/d larger than the optimal value. This optimality gap is
guaranteed by inequality (23), which completes the reduction.

E Proof of Proposition 2
We reduce the PAC learning of intersection of T halfspaces to the problem of learning a neural network. Assume that
T = Θ(dρ) for some ρ > 0. We claim that for any number of pairs taking the form (x, h∗(x)), there is a neural
network f∗ ∈ N2 that separates all pairs with margin γ, and moreover that the margin is bounded as γ = 1/poly(d).

To prove the claim, recall that h∗(x) = 1 if and only if h1(x) = · · · = hT (x) = 1 for some h1, . . . , hT ∈ H . For
any ht, the definition of H implies that there is a (wt, bt) pair such that if ht(x) = 1 then wTt x − bt − 1/2 ≥ 1/2,
otherwise wTt x− bt − 1/2 ≤ −1/2. We consider the two possible choices of the activation function:

• Piecewise linear function: If σ(x) := min{1,max{−1, x}}, then let

gt(x) := σ(c(wTt x− bt − 1/2) + 1),

7

for some quantity c > 0. The term inside the activation function can be written as 〈w̃, x′〉 where

w̃ = (c
√

2d+ 2wt,−c
√

2d+ 2(bt + 1/2),
√

2) and x′ = (
x√

2d+ 2
,

1√
2d+ 2

,
1√
2

).

Note that ‖x′‖2 ≤ 1, and with a sufficiently small constant c = 1/poly(d) we have ‖w̃‖2 ≤ 2. Thus, gt(x) is the
output of a one-layer neural network. If ht(x) = 1, then gt(x) = 1, otherwise gt(x) ≤ 1− c/2. Now consider
the two-layer neural network f(x) := c/4− T +

∑T
t=1 gt(x). If h∗(x) = 1, then we have gt(x) = 1 for every

t ∈ [T] which implies f(x) = c/4. If h∗(x) = −1, then we have gt(x) ≤ 1 − c/2 for at least one t ∈ [T]
which implies f(x) ≤ −c/4. Thus, the neural network f separates the data with margin c/4. We normalize the
edge weights on the second layer to make f belong to N2. After normalization, the network still has margin
1/poly(d).

• ReLU function: if σ(x) := max{0, x}, then let gt(x) := σ(−c(wTt x− bt−1/2)) for some quantity c > 0. We
may write the term inside the activation function as 〈w̃, x′〉 where w̃ = (−c

√
d+ 1wt, c

√
d+ 1(bt + 1/2)) and

x′ = (x, 1)/
√
d+ 1. It is straightforward to verify that ‖x′‖2 ≤ 1, and with a sufficiently small c = 1/poly(d)

we have ‖w̃‖2 ≤ 2. Thus, gt(x) is the output of a one-layer neural network. If ht(x) = 1, then gt(x) = 0,
otherwise gt(x) ≥ c/2. Let f(x) := c/4 −

∑T
t=1 gt(x), then this two-layer neural network separates the data

with margin c/4. After normalization the network belongs to N2 and it still separates the data with margin
1/poly(d).

To learn the intersection of T halfspaces, we learn a neural network based on n i.i.d. points taking the form
(x, h∗(x)). Assume that the neural network is efficiently learnable. Since there exists f∗ ∈ Nm which separates
the data with margin γ = 1/poly(d), we can learn a network f̂ in poly(d, 1/ε, 1/δ) sample complexity and time
complexity, and satisfies P(sign(f̂(x)) 6= h∗(x)) ≤ ε with probability 1 − δ. It contradicts with the assumption that
the intersection of T halfspaces is not efficiently learnable.

References
P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. The

Journal of Machine Learning Research, 3:463–482, 2003.

S. Kakade and A. Tewari. Lecture note: Rademacher composition and linear prediction. 2008.

S. M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and
regularization. In Advances in Neural Information Processing Systems, volume 21, pages 793–800, 2009.

M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and processes, volume 23. Springer
Science & Business Media, 2013.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal of computer
and system sciences, 43(3):425–440, 1991.

G. Pisier. Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse Fonctionnelle, pages 1–12, 1980.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning,
37(3):297–336, 1999.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: New relaxations and
efficient boosting algorithms. Machine Learning, 80(2-3):141–163, 2010.

Y. Zhang, J. D. Lee, and M. I. Jordan. `1-regularized neural networks are improperly learnable in polynomial time.
arXiv:1510.03528, 2015.

8

