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Abstract

We develop a unified and systematic frame-
work for performing online nonnegative ma-
trix factorization under a wide variety of
important divergences. The online nature
of our algorithms makes them particularly
amenable to large-scale data. We prove that
the sequence of learned dictionaries converges
almost surely to the set of critical points
of the expected loss function. Experimental
results demonstrate the computational effi-
ciency and outstanding performances of our
algorithms on several real-life applications,
including topic modeling, document cluster-
ing and foreground-background separation.

1 Introduction

Nonnegative Matrix Factorization (NMF) has been a
popular data analysis technique over recent years, due
to its non-subtractive and parts-based interpretation
on the learned basis [Lee and Seung, 1999]. Given
a nonnegative matrix V with dimension F ×N , one
seeks a nonnegative basis matrix W and a nonnegative
coefficient matrix H such that V ≈WH, by solving

min
W≥0,H≥0

[
D(V‖WH) ,

N∑
n=1

d(vn‖Whn)

]
(1)

where vn (resp. hn) denotes the n-th column of V
(resp. H) and d(·‖·) denotes a divergence between two
vectors. In the NMF literature, in addition to the
squared-`2 loss, i.e., d(x‖y) = 1

2 ‖x− y‖22, many other
divergences have been proposed for two main purposes.
First, given the observation noise of a particular dis-
tribution, there exists a divergence such that solving
(1) correspond to the maximum-likelihood (ML) esti-
mation of ground-truth data matrix under observation
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V.1 It has been shown empirically that if the diver-
gence used in (1) does not match the distribution of
the noise, the results will be inferior [Févotte et al.,
2009]; thus it is imperative to use the correct diver-
gence. Second, many robust divergences (or loss func-
tions) have been proposed in order to overcome the
well-known sensitivity of the squared-`2 loss to out-
liers in the data matrix V.

Despite the successes of NMF algorithms with the
aforementioned divergences, the batch data processing
mode intrinsic to the algorithms prohibits them from
being applied to large-scale data, i.e., data collections
with a large number of data samples or even stream-
ing data. The reasons are twofold: (i) the storage
space might be insufficient to store the entire set of
samples, and (ii) the high computational complexity
incurred in each iteration slows down the algorithms
significantly. On the other hand, although many on-
line NMF (and other matrix factorization) algorithms
have been proposed, most of them are developed for
the squared-`2 loss. Thus, their applications are lim-
ited, especially when the noise is not Gaussian. Only a
few works consider divergence other than the squared-
`2 loss. For example, the Itakura-Saito (IS) divergence
and Huber loss have been considered in Lefèvre et al.
[2011] and Chen et al. [2015], Wang et al. [2013] re-
spectively. Although these works have shown promis-
ing performances on some specific divergences, the ap-
proaches therein cannot be easily generalized to other
divergences in a straightforward manner. Also, con-
vergence guarantees (of the sequence of basis matrices)
are largely lacking in these works.2

1.1 Challenges and Main Contributions

In this paper, we develop a framework termed on-
line NMF with general divergences that learns the dic-
tionary W in (1) in an online manner under a va-

1For example, if the distribution of the observation noise
belongs to the exponential family, then the correspond-
ing divergence belongs to the class of Bregman divergences
[Banerjee et al., 2005].

2See Section S-1 for a comprehensive literature review.
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riety of divergences.3 Many prior works on online
NMF with the squared-`2 loss leverage the stochas-
tic Majorization-Minimization (MM) [Mairal, 2013]
framework. However, this method cannot be applied
to most of the general divergences we consider, since
crucially, sufficient statistics in the method cannot be
formed. Therefore, we leverage the stochastic approx-
imation (SA) framework [Borkar, 2008] and projected
dynamical system [Dupuis and Nagurney, 1993, Teschl,
2012] to develop an algorithm that does not need to
compute the sufficient statistics, so it can effectively
handle general divergences while being amenable to
convergence analyses. Our analysis shows that the se-
quence of learned dictionaries converges almost surely
to the set of critical points of the expected loss func-
tion (3). This serves as a substantial generalization of
the results in previous works (e.g., Shen et al. [2014]).
The analysis techniques in our work are vastly dif-
ferent from those in prior works, so they open new
avenues for analyzing similar problems. In addition,
by using robust loss functions, we indeed propose a
novel way to perform online robust NMF. This com-
plements a previous approach based on the `1 regular-
ization on outliers [Zhao and Tan, 2017]. Additionally,
we have conducted extensive numerical experiments on
both synthetic and real datasets. The results demon-
strate the computational efficiency and promising per-
formances of our algorithms on several real-life appli-
cations, including topic modeling, document clustering
and foreground-background separation.

1.2 Notations

We use boldface capital letters, boldface lowercase let-
ters and plain lowercase letters to denote matrices,
column vectors and scalars respectively. Given a ma-
trix X, we denote its i-th row as Xi:, j-th column as
X:j and (i, j)-th entry as xij . For a column vector x,
its i-th entry is denoted by xi. We denote the (Eu-
clidean) projection operator onto a set S as ΠS . We
denote the set of nonnegative and positive real num-
bers and the set of natural numbers (excluding zero)
as R+, R++ and N respectively. For N ∈ N, define
[N ] , {1, 2, . . . , N}. In this work, we use v, W and
h to denote the (nonnegative) data vector, basis ma-
trix and coefficient vector respectively. The ambient
and latent data dimensions are denoted as F and K
respectively, which are independent of time.4

All the sections,figures and tables with indices contain-
ing an ‘S’ will appear in the supplemental material.

3See Section 2.1 for the divergences covered in this work.
4In this work, we do not simultaneously consider the

data with high ambient dimensions. An attempt on this
problem in the context of dictionary learning with the
squared-`2 loss has been made in Mensch et al. [2016].

2 Problem Formulation

2.1 General Divergences

In general, a (vector) divergence is a bivariate function
d(·‖·) : RF++ × RF++ → R+.5 In this work, we consider

a wide range of divergences D , D1 ∪ D2, where

D1,{d(·‖·) | ∀x ∈ RF++,∀ compact Y ⊆ RF++, d(x‖·) is

differentiable on RF++ and ∇d(x‖·) is Lipschitz on Y},
D2 , {d(·‖·) | ∀x ∈ RF++, d(x‖·) is convex on RF++}.

Remark 1. In particular, D1 consists of the families
of α, β, α-β, γ divergences, and D2 consists of the α-
divergences, β-divergences with β ∈ [1, 2] and several
robust metrics, including the `1-distance, `2-distance
and Huber loss. All of these divergences have been
employed in various NMF applications [Chen et al.,
2015, Cichocki and Amari, 2010, Cichocki et al., 2008,
2011, Févotte and Idier, 2011, Kong et al., 2011].

2.2 Optimization Problem

We focus solely on learning the basis matrix W since
the coefficient vectors {ht}t∈N (i) cannot be stored
due to limitations on the storage space and (ii) each
ht can be easily computed (by regression) given vt
and the learned W. We assume that the data vectors
{vt}t∈N ⊆ RF++ are independently generated from a
distribution P.6 Define the loss function of W given a
data sample v ∼ P as

`(v,W) , min
h∈H

d(v‖Wh), (2)

where d(·‖·) ∈ D and H , {h ∈ RK+ | ε′ ≤ hi ≤
U ′,∀ i ∈ [K]} for some 0 < ε′ < U ′. We aim to mini-
mize the expected loss [Bottou and Bousquet, 2008]

min
W∈C

[
f(W) , Ev∼P[`(v,W)]

]
, (3)

where C , {W ∈ RF×K+ | ‖Wi:‖1 ≥ ε, ‖W:j‖∞ ≤
U,∀ (i, j) ∈ [F ] × [K]} for some 0 < ε < U . Note
that both constraint sets C and H are convex.

Remark 2. First we notice in general, d(·‖·) is usually
asymmetric about its arguments. In this work, we
only consider minimizing d(v‖Wh) in h (and W) since
this corresponds to an ML estimation of the ground-
truth data from the noisy data sample v under various

5For some specific divergences, e.g., the squared-`2 loss,
the domain of d(·‖·) can be relaxed to RF

+ × RF
+.

6Although most real data do not strictly satisfy the in-
dependence assumption, we make the i.i.d. assumption here
for convenience of analysis. For a finite dataset, P is the
empirical distribution of the data samples in this dataset.
For streaming data, P is the population distribution.
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statistical models. Next, the upper and lower bounds
(ε, ε′, U and U ′) in C and H preserve the numerical
stability of our algorithm, and are set to ε = ε′ =
1×10−8 and U = U ′ = 1×108. Also, the constructions
of C and H enable efficient projections onto both sets.
(See Section S-2-A for details.) This ensures that our
algorithms (see Algorithm 1 and 2) are efficient.

3 Algorithms

The outline of our algorithm is shown in Algorithm 1.
At each time t, the subroutine for learning the coeffi-
cient vector ht is shown in Algorithm 2.

3.1 Definitions

In the sequel, we let X be a finite-dimensional real
Banach space (with norm ‖·‖). For example, X can
be RF or RF×N . Consider a function f : X → R.

Definition 1 ([Kruger, 2003, Section 1.1]). The

Fréchet subdifferential at x ∈ X , ∂̂f(x) is defined as

∂̂f(x),

{
g ∈ X ∗

∣∣∣ lim inf
y→x,y∈X

f(y)− f(x)− g(y − x)

‖y − x‖
≥0

}
,

where X ∗ is the topological dual space of X .

Remark 3. If f is differentiable at x ∈ X , then
∂̂f(x) = {∇f(x)}. The Fréchet subdifferential serves
as a generalization of the subdifferential in convex
analysis, i.e., if f is convex on X , then for any x ∈ X ,
∂̂f(x) = ∂f(x), where ∂f(x) , {g ∈ X ∗|f(x) + g(y −
x) ≤ f(y),∀ y ∈ X}.
Definition 2 ([Shapiro, 1990]). The (Gâteaux) direc-
tional derivative of f at x ∈ X along direction d ∈ X ,
f ′(x; d) is defined as f ′(x; d) , limδ↓0[f(x + δd) −
f(x)]/δ. Furthermore, f is called directionally differ-
entiable if f ′(x; d) exists for any x ∈ X and any d ∈ X .

Definition 3 ([Razaviyayn et al., 2013]). Assume f
to be directionally differentiable on X . Let K ⊆ X
be a convex set. A point x∗ ∈ K is a critical point of
the constrained optimization problem minx∈K f(x) if
f ′(x∗;x− x∗) ≥ 0, ∀x ∈ K.

In addition, for any t ∈ N, we define two impor-
tant functions d̃t : RF×K++ → R and dt : RK++ → R
as d̃t(W) , d(vt‖Wht) and dt(h) , d(vt‖Wt−1h),
where {vt,Wt,ht}t∈N are generated per Algorithm 1.

3.2 Choice of Step Sizes

In algorithm 1, the step sizes {ηt}t∈N are chosen to
satisfy

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞. The spe-

cific forms of {ηt}t∈N will be given in Section 6.2. De-
pending on the divergences, the step sizes {βkt }k∈N in
Algorithm 2 can be chosen using Armijo’s rule, the

Algorithm 1 Online NMF with General Divergences

Input: Initial basis matrix7 W0 ∈ C, number of
iterations T , sequence of step sizes {ηt}t∈N
for t = 1 to T do

1) Draw a data sample vt from P.
2) Learn the coefficient vector ht per Algorithm 2

such that ht is a critical point of

min
h∈H

[
dt(h) , d(vt‖Wt−1h)

]
. (4)

3) Update the basis matrix from Wt−1 to Wt

Wt := ΠC

{
Wt−1 − ηtGt

}
, (5)

where Gt is any element in ∂̂d̃t(Wt−1).
end for
Output: Final basis matrix WT

constant step size policy [Parikh and Boyd, 2014] or
the modified Polyak’s step size policy [Nedić, 2008].
See Section S-2-B for detailed discussions.

3.3 Discussions

In some previous works on online matrix factorization
(with squared `2 loss) [Feng et al., 2013, Mairal et al.,
2010, Shen et al., 2014], a different approach has been
employed to update the basis matrix. Namely, at each
time t, Wt is the minimizer of minW∈C ft(W). Here

ft : C → R is an upper-bound function of f̂t : C → R,
defined as f̂t(W) , 1

t

∑t
i=1 `(vi,W). At a high level,

this approach belongs to the class of stochastic MM
algorithms [Mairal, 2013, Razaviyayn et al., 2016]. As
noted in Mairal [2013], direct minimization of ft is
possible only when ft can be parameterized by vari-
ables of small and constant size (known as sufficient
statistics in Mairal et al. [2010]) for each t ∈ N. Un-
fortunately this condition does not hold for most diver-
gences beyond the squared `2 loss, including those in
class D. However, if we assume for each v, `(v, ·) has
Lipschitz gradient on C and choose ft as a quadratic
upper-bound function of f̂t, then the recursive update
form of Wt via the stochastic MM approach can be
regarded as a special case of our method. See Raza-
viyayn et al. [2016] for details.

4 Main Convergence Theorem

Our main convergence theorem concerns the diver-
gences in class D1 ∩ D2 (see Remark 1), i.e., the di-

7W0 can be chosen as any element in C, and same for
h0 in Algorithm 2.

8gk
t can be chosen as any element in ∂̂dt(h

k−1
t ).
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Algorithm 2 Learning ht

Input: initial coefficient vector h0
t ∈H, basis matrix

Wt−1, data sample vt, step sizes {βkt }k∈N, maxi-
mum number of iterations Υ
For k = 1, 2, . . . ,Υ

hkt := ΠH

{
hk−1
t − βkt gkt

}
,where8 gkt ∈ ∂̂dt(hk−1

t )

Output: Final coefficient vector ht , hΥ
t

vergences d(·‖·) that are convex and smooth in the
second argument.9

Assumptions.

1. The support set V ⊆ RF++ for the distribution P is
compact.

2. For all (v,W)∈V×C and d(·‖·)∈D2, d(v‖Wh) is
m-strongly convex in h for some constant m > 0.

Remark 4. The abovementioned two assumptions are
reasonable in the following sense. Assumption 1 natu-
rally holds for real data, which are uniformly bounded
entrywise. Assumption 2 is a classical assumption in
literature [Mairal et al., 2010, Shen et al., 2014]. It en-
sures the minimizer of (4) is unique. This assumption
can be satisfied by simply adding a Tikhonov regu-
larizer m

2 ‖h‖
2
2 to d(v‖Wh). Adding such regularizers

can be regarded as a way to promote smoothness and
avoid over-fitting on h. Also, including the regulariz-
ers will not alter our analysis significantly, so we omit
them in the objective function.

We now state our main theorem.

Theorem 1. As t→∞, the sequence of dictionaries
{Wt}t∈N converges almost surely to the set of critical
points of (3) formulated with any divergence in D1 ∩
D2.

Remark 5. We notice that the same convergence guar-
antees have been proved in previous works in which the
divergence term in the NMF objective function is the
squared-`2 loss [Mairal et al., 2010, Shen et al., 2014].
Therefore, our result here can be considered as a sub-
stantial generalization of the previous results, since the
class D2 includes many more important divergences, as
discussed in Remark 1. At a higher level, our problem
falls within the scope of stochastic multi-block noncon-
vex optimization. Without additional assumptions on
the regularity of the problem, convergence guarantees
to the global optima are in general out-of-reach. In-
deed, the state-of-the-art convergence guarantees on

9The efficiency and efficacy of our algorithm for the di-
vergences in D1∆D2 will be empirically verified in Sec-
tion 6. See Section S-3-F for the technical difficulties (and
possible approaches) for proving such convergence results
for the divergences in D1∆D2.

such problems [Ghadimi and Lan, 2013, 2016, Reddi
et al., 2016] are typically stated in terms of the critical
points. For the matrix factorization problems, the crit-
ical points are often empirically appealing, e.g., Mairal
et al. [2010], Shen et al. [2014].

5 Convergence analysis

5.1 Notations and Definitions

We denote the underlying probability space for the
whole stochastic process {vt,Wt,ht}t∈N generated by
Algorithm 1 as (Ω,B, µ).10 In the sequel, we use t ∈
N and s ∈ R+ as time indices for discrete-time and
continuous-time stochastic processes respectively. For
any ω ∈ Ω, we use Xt(ω) and X(ω, s) to denote the
values of Xt and X(s) evaluated at ω respectively.

Definition 4 (Equicontinuity and asymptotic
equicontinuity [Kushner and Yin, 2003]). Let
Y be a real finite-dimensional Banach space
(with norm ‖·‖Y). A sequence of functions
{fn : X → Y}n∈N is equicontinuous (e.c.) at x ∈ X
if for any ε > 0, there exists δ > 0 such that
supn∈N supx′∈X :‖x−x′‖<δ ‖fn(x)− fn(x′)‖Y < ε and
asymptotically equicontinuous (a.e.c.) at x ∈ X if
lim supn→∞ supx′∈X :‖x−x′‖<δ ‖fn(x)− fn(x′)‖Y < ε.
If {fn}n≥1 is e.c. (resp. a.e.c.) at each x ∈ X , then
{fn}n≥1 is e.c. (resp. a.e.c.) on X .

Definition 5 (Projected dynamical system, limit set
and stationary points [Teschl, 2012]). Given a closed
and convex set K in X , and a continuous function g :
K → X , the projected dynamical system (PDS) (on an
interval I ⊆ R+) associated with K and g with initial
value x0 ∈ K is defined as

d

ds
x(s) = πK

[
x(s), g(x(s))

]
, x(0) = x0, s ∈ I, (6)

where πK[x, v] , limδ↓0 (ΠK(x+ δv)− x) /δ, ∀x ∈ K,
∀ v ∈ X . Denote P(g,K, x0) as the solution set of
(6). The limit set of (6), L(g,K, x0) is defined as
L(g,K, x0) ,

⋃
x(·)∈P(g,K,x0){y ∈ K | ∃ {sn}n∈N ⊆

R+, sn ↑ ∞, x(sn)→ y}. Moreover, the set of station-
ary points associated with g and K, S(g,K) is defined
as S(g,K) , {x ∈ K |πK[x, g(x)] = 0}.

5.2 Preliminary Lemmas

Lemma 1 and 2 below state the regularity properties
of the loss function ` and its expectation f in (3).11

10Since {vt}t∈N are drawn i.i.d. from P, {Wt,ht}t∈N are
also random variables.

11For the divergences d(·‖·) in D1 ∩ D2, ∂̂d̃t(Wt−1) =
{∇Wd(vt‖Wt−1ht)}.
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Lemma 1. `(·, ·) is differentiable on RF++ × RF×K++

and (v,W) 7→ ∇W`(v,W) is continuous on V × C.
Moreover, let h∗(v,W) , minh∈H d(v‖Wh),12 then
∇W`(v,W)=∇Wd(v‖Wh∗(v,W)).

Lemma 2. The expected loss (objective) function f
is continuously differentiable on C and ∇f(W) =
Ev∼P [∇W`(v,W)] for each W ∈ C.

Corollary 1. Evt∼P[∇Wd(vt‖Wt−1ht)]=∇f(Wt−1),
for any t ∈ N. In other words, the stochastic (noisy)
gradient ∇Wd(vt‖Wt−1ht) in Algorithm 1 acts as an
unbiased estimator of the “true” gradient ∇f(Wt−1).

Now, define the “noise” part in the stochas-
tic gradient13 ∇Wd(vt‖Wt−1ht) in (5), Nt ,
∇W`(vt,Wt−1)−∇f(Wt−1). Also, define a filtration
{Ft}t≥0 such that Ft , σ{vi,Wi,hi}ti=1 for all t ≥ 1
and F0 = {∅,Ω}. From Lemma 1 and Corollary 1,
we can show that {Nt}t∈N is a martingale difference
sequence with uniformly bounded second moment.

5.3 Continuous-time Interpolations

Observe that (5), which lies at the core of our analysis,
is a discrete-time PDS. We find it more convenient to
analyze a continuous-time analogue of it, so we per-
form (continuous-time) constant interpolation on (5).
Specifically, we first explicitly model the projection ΠC
in (5) as an additive noise term Zt:

Wt , Wt−1 − ηt∇f(Wt−1)− ηtNt + ηtZt, (7)

where Zt , 1
ηt

ΠC{Wt−1 − ηt∇W
˜̀(vt,Wt−1)} −

1
ηt
{Wt−1 − ηt∇W

˜̀(vt,Wt−1)}. Then we define three

sequences of functions {F t}t∈N, {N t}t∈N and {Zt}t∈N
with common domain R+ as

F t(s) , −
m(st+s)−1∑

i=t

ηi+1∇f(Wi),

N t(s) , −
m(st+s)∑
i=t+1

ηiNi, Zt(s) ,
m(st+s)∑
i=t+1

ηiZi,

for s > 0 and F t(0) = N t(0) = Zt(0) , 0, where

st ,

{
0, t = 0∑t
i=1 ηi, t ≥ 1

, m(s) ,

{
0, s = 0
t, s ∈ (st−1, st]

.

Define W t(s) , Wm(st+s)−1. By (7), for any t ∈ N
and s ∈ R+, with probability one,

W t(s) = W t(0) + F t−1(s) +N t−1(s) + Zt−1(s). (8)

12The uniqueness of minimizer is ensured by Assump-
tion 2.

13Nt is a function of both vt and Wt−1, but we omit
such dependence to make notations uncluttered.

5.4 Key Lemmas

Our main theorem is an immediate consequence of
Lemmas 4 and 5. We first present Lemma 3 since
it lays the foundations for proving Lemma 4.

Lemma 3 (Almost sure asymptotic equicontinuity of
important functions). For any t ∈ N, define

Gt(s) , −
∫ s

0

∇f(W t(τ)) dτ, s ≥ 0, (9)

Y t(s) ,
∫ s

0

Zt(τ) dτ, s ≥ 0. (10)

Then we have14 (1) N t u−→ 0 on R+ a.s. (2) ∆t
1 ,

F t − Gt u−→ 0 on R+ a.s. (3) {Gt}t∈N is e.c. on R+

a.s. (4) ∆t
2 , Zt − Y t u−→ 0 and {Y t}t∈N is e.c. on

R+ a.s. Consequently, {N t}t∈N, {F t}t∈N, {Zt}t∈N and
{W t}t∈N are a.e.c. on R+ almost surely.

Lemma 4 (Almost sure convergence to the limit set).
The stochastic process {Wt}t∈N generated in Algo-
rithm 1 converges almost surely to L(−∇f, C,W0), the
limit set of the following projected dynamical system15

d

ds
W (s) = πC

[
W (s),−∇f(W (s))

]
,

W (0) = W0, s ≥ 0. (11)

Lemma 5 (Characterization of the limit set). In (11),
we have L(−∇f, C,W0) ⊆ S(−∇f, C), i.e., every limit
point of (11) is a stationary point associated with −∇f
and C. Moreover, each W ∈ S(−∇f, C) satisfies the
following variational inequality

〈∇f(W),W′ −W〉 ≥ 0, ∀W′ ∈ C. (12)

This implies each stationary point in S(−∇f, C) is a
critical point of (3).

Remark 6. Lemma 4 and 5 together imply a two-step
approach to prove Theorem 1. Specifically, Lemma 4
shows {Wt}t∈N converges almost surely to the limit
set L(−∇f, C,W0) and Lemma 5 characterizes every
element L(−∇f, C,W0) as a critical point of (3).

6 Applications and Experiments

6.1 Experimental Setup

Our experiments consist of three parts. First, we
tested our online algorithms on synthetic data. Next
we considered three real applications of our algorithms,
including topic modeling, document clustering and
foreground-background separation. All the experi-
ments were run in 64-bit Matlabr (R2015b) on a ma-
chine with 3.6 GHz CPU and 8 GB RAM.

14Given a sequence of functions {fn}n∈N and a function

f , fn
u−→ f denotes the uniform convergence of fn to f .

15Given a finite-dimensional Banach space X , a se-
quence (xn) in X is said to converge to a set A ⊆ X if
limn→∞ infa∈A ‖xn − a‖ = 0.
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6.2 Heuristics and Parameter Settings

In our experiments we mainly used two popular
heuristics—namely, mini-batch input and multi-pass
extension. Specifically, mini-batch input refers input-
ing τ ∈ N data samples at each time, and multi-pass
extension refers to running online algorithms multiple
times on the datasets. See Mairal et al. [2010], Wang
et al. [2011] for motivations of the heuristics.

The important parameters in our experiments include
the mini-batch size τ , the latent dimension K and the
step sizes {ηt}t∈N. We set τ = 20. The latent di-
mension K was determined from the domain knowl-
edge in Section 6.4 and fixed to 40 in the other sec-
tions. The step size ηt had the form a/(b+ τt), where
a = b = 1 × 104. The setting of (τ,K, a, b) will be
hereafter referred as the canonical parameter setting.
Some discussions on the choices of these parameters
are provided in Section S-4-A. We will show that our
algorithms are insensitive to the values of these pa-
rameters in Section S-4-C.

6.3 Synthetic Experiments

In this section we conducted experiments of our al-
gorithms with six important divergence in D1 ∪ D2,
including the IS, Kullback-Leibler (KL), squared-`2,
Huber, `1 and `2 divergences/losses.16 In particu-
lar, the batch NMF algorithms with these divergences
have found numerous applications [Kong et al., 2011,
Lee and Seung, 1999]. To generate the synthetic
data matrix V, we first generated the ground-truth
data matrix Vo , WoHo ∈ RF×N+ , where (F,N) =
(2×103, 1×105) and Wo and Ho have common di-
mension Ko = 40.17 The entries of Wo and Ho were
generated independently from the shifted half-normal
distribution. Next, we imposed random noise to Vo in
two ways. For the IS, KL and squared-`2 divergences,
the noises had multiplicative Gamma, Poisson and ad-
ditive Gaussian distributions respectively, so that the
ML estimation of Vo from V is equivalent to solving
the (batch) NMF problem (1). Since the `1, `2 and
Huber losses are all robust losses, we added synthetic
outliers to Vo. The detailed data generation proce-
dures are deferred to Section S-4-B.

To demonstrate the computational efficiency of our on-
line algorithms, we compared them with their batch
counterparts. All of the batch algorithms had been
derived based on the multiplicative updates in the lit-
erature [Févotte and Idier, 2011, Kong et al., 2011,
Wang et al., 2013]. The set of online and batch al-
gorithms were denoted as OL-Div and B-Div respec-

16Among them, the IS divergence belongs to D1\D2, and
the other divergences belong to D2. The KL divergence in
this work is defined as in Lee and Seung [2000].

17See Figure S-2 for the results when K 6= Ko.

tively, where ‘Div’ denotes the abbreviation of each di-
vergence name. In addition, for the IS, squared-`2 and
Huber divergences, we also compared our algorithms
with the existing online algorithms, including OL-Lef
[Lefèvre et al., 2011], OL-Guan [Guan et al., 2012] and
OL-Wang [Wang et al., 2013].

Figure 1 shows the plots of objective values versus
time for all the six divergences.18 We observe that for
each divergence, our online algorithm converges signif-
icantly faster than its batch counterpart. Moreover, it
also converges faster than (for the IS and squared-`2
losses) or as fast as (for the Huber loss) the existing
online algorithms. This is because the existing on-
line algorithms typically require to solve an optimiza-
tion problem in updating the basis matrix Wt at each
time instant, in contrast, our algorithm only involves
a one-step projected gradient descent to update Wt.
We also examined the sensitivity of our algorithms to
the values of (τ,K, a) using this dataset. We varied
each parameter over a wide range of values and kept
the other two fixed as in the canonical setting. The
results (shown in Section S-4-C) indicate that our al-
gorithms are insensitive to the parameter values.

6.4 Topic Modeling and Document Clustering

In this section we applied our online algorithm with the
KL divergence, OL-KL to the tasks of topic modeling
and document clustering on two datasets, Guardian

and Wikipedia [Greene et al., 2014]. The Guardian

dataset consists of 5413 documents sampled from five
topics, with a vocabulary size 10801. Thus the data
matrix has size 10801 × 5413. For the Wikipedia

dataset, the data matrix has size 17311 × 5738 (with
six topics). For both data matrices, we transformed
the raw term frequency to the term frequency–inverse
document frequency (TF-IDF) statistics and set all the
zero entries to 1× 10−3. We compared our algorithm
with two other algorithms, B-KL and OL-Wang2. The
OL-Wang2 algorithm [Wang et al., 2011] is an online
NMF algorithm with the squared-`2 loss that is tai-
lored to efficient document clustering.

We now briefly introduce the methodology of using
NMF-based algorithms to learn topics and cluster doc-
uments. The latent dimension K is set to the number
of topics (denoted as σ) in the dataset.19 By factor-
izing the TF-IDF matrix V into W and H, each col-
umn of W can be regarded as representing a topic
so that each document (represented as a column of

18The results were obtained using one initialization of
W0. We observed that the results were similar when using
different initializations of W0.

19For most datasets, σ is known. Some works have stud-
ied the strategies to estimate σ, e.g., Greene et al. [2014].
However, for simplicity, we use the known value of σ.
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Figure 1: Plots of objective values vs time (in seconds)
for all the six divergences on the synthetic dataset.

V) can be seen as a conic combination of all the
topics in the dataset. To cluster documents, in this
work we assign the j-th document to the k-th topic if
k ∈ arg maxk′∈[K] hk′j .

20 In this work, we adopted the
Rand index [Rand, 1971] as the quantitative measure
of clustering accuracy.21

We ran all the algorithms using 20 randomly initial-
izations of W0. Table 1 shows the topics learned by
the three algorithms on the Guardian dataset using
one initialization.22 For each topic, we presented five
most representative words, i.e., the words whose cor-
responding entries have the highest magnitudes in one
column of W.23 Table 1 shows that for each topic,
the representative words learned by all the three algo-
rithms are similar and represent that topic very well.
Table 2 shows the average clustering accuracies and

20If k is not unique, we chose the smallest one. We tried
other more complex classifiers (e.g., k-means) on the set of
coefficient vectors {hj}j∈[N ], and obtained similar results.

21The Rand index has been widely used in the informa-
tion retrieval literature to measure the clustering accuracy.
See Manning et al. [2008, Chapter 8] for details.

22We observed that different initializations yielded sim-
ilar results. This observation also holds for Section 6.5.

23The augmented results, with ten most representative
words for each topic, are shown in Table S-2.

Table 1: Topics learned from the Guardian dataset by
three algorithms: OL-KL, B-KL and OL-Wang2.

Business Politics Music Fashion Football
company labour music fashion league

sales ultimately album wonder club
market party band weaves universally
shares government songs week welsh

business unions vogue war team

(a) OL-KL

Business Politics Music Fashion Football
bank labour music fashion league

company party album wonder club
ultimately cameron band weaves universally

growth ultimately vogue week team
market unions songs look welsh

(b) B-KL

Business Politics Music Fashion Football
bank labour music fashion league

growth party album week club
shares unions band wonder welsh

company miliband vogue weaves season
market voluntary songs war universally

(c) OL-Wang2

Table 2: Average document clustering accuracies and
running times of OL-KL, B-KL and OL-Wang2 on the
Guardian dataset.

Algorithms Accuracy Time (s)
OL-KL 0.697 ± 0.01 29.25 ± 0.58
B-KL 0.701 ± 0.01 183.32 ± 2.09

OL-Wang2 0.643 ± 0.03 32.46 ± 0.68

running times (with standard deviations) of the three
algorithms. In terms of running times, the online al-
gorithms (OL-KL and OL-Wang2) are equally fast and
are significantly faster than the batch algorithm B-KL.
In terms of clustering accuracy, our online algorithm
performs almost as good as its batch counterpart. In
addition, both of them perform better than OL-Wang2.
This suggests KL-divergence-based NMF algorithms
may have superior performances on document cluster-
ing over those based on the squared-`2 loss on certain
text corpora. Similar results were also obtained on the
Wikipedia dataset. See Section S-4-D for details.

6.5 Foreground-Background Separation

Next we applied our online algorithm with the Huber
loss, OL-Huber to foreground-background separation,
an important task in video surveillance. We used two
datasets, Hall and Escalator [Li et al., 2004]. The Hall
dataset consists of 1250 8-bit gray-scale video frames
with resolution 144 × 176, so the data matrix V has
dimension 25344× 1250. Similarly, the data matrix V
of the Escalator dataset has dimension 20800 × 2000.
We compared OL-Huber with three other NMF algo-



Online Nonnegative Matrix Factorization with General Divergences

|←−−−−−−− (a) −−−−−−−→|←−−−−−−− (b) −−−−−−−→|←−−−−−−− (c) −−−−−−−→|←−−−−−−− (d) −−−−−−−→|
Figure 2: Foreground-background separation results on the Hall dataset with four algorithms: (a) OL-Huber, (b)
OL-Wang, (c) B-Huber and (d) OL-Guan. The leftmost column shows the original video frames. The differences
between the foreground images produced by OL-Huber and OL-Wang are highlighted in yellow boxes.25

rithms, namely OL-Wang, B-Huber and OL-Guan.

For (surveillance) video sequences, the background
usually changes slowly over time so it can be modeled
as a low-rank matrix. The foreground objects, which
change rapidly, usually only occupy small areas, thus
they can be modeled as sparse outliers. This naturally
motivates us to learn the low-rank background (given
as the product of basis and coefficient matrices) using
NMF algorithms with robust loss functions, e.g., the
Huber loss. After that, the foreground can be recov-
ered by subtracting the learned background from the
original video frames. For the online algorithms, we
estimate the background in the t-th frame as Wht,
where W is the output basis matrix by Algorithm 1.

We ran all the algorithms using 20 randomly initial-
izations of W0. All the online algorithms were run on
each dataset for two passes. We set the threshold pa-
rameter of the Huber loss function to 10, for all Huber-
loss-based algorithms. Figure 2 shows the foreground-
background separation results for some randomly sam-
pled video frames.26 We observe that all the Huber-
loss-based algorithms succeed in separating the fore-
ground objects from the background. Among them,
the foreground images separated by B-KL have the best
visual qualities, since they have almost no artifacts in
the background. Although both OL-Huber and OL-
Wang produce artifacts in the foreground images, the
artifacts are less severe for OL-Huber. In contrast, OL-
Guan, which is based on the squared-`2 loss, completely
fails on this task. This is because the squared-`2 loss
is very sensitive to outliers, thus a proper background
model cannot be estimated. In terms of the average
running times (shown in Table 3), we observe that
both OL-Huber and OL-Wang are significantly faster
than B-Huber. They are also faster than OL-Guan,

25Zoom in to better observe the differences.
26For all the online algorithms, the results are all from

the second pass. See Figure S-4 for additional results.

Table 3: Average running times of OL-Huber, OL-
Wang, B-Huber and OL-Guan on the Hall dataset.
Algorithms Time (s) Algorithms Time (s)
OL-Huber 38.79 ± 0.45 OL-Wang 45.36 ± 0.59
B-Huber 276.66 ± 1.93 OL-Guan 95.85 ± 0.82

since the perturbations from outliers make the latter
slow to converge. Similar results were obtained from
the Escalator dataset. See Section S-4-E for details.
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