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Appendix

A Proofs

We introduce some lemmata here, whose proofs can be
found in the following sections.
Lemma 6 (Approximation error between sign and tanh).
Under Assumption 1, w.p. 1� C

1

r✓

| ˜fW⇤,B⇤
(x)� fW⇤,B⇤

(x)|  8re�2�✓

By taking ✓ = �/(C
1

r), we have w.p., 1� �

| ˜fW⇤,B⇤
(x)� fW⇤,B⇤

(x)|  8re�2��/(C1r)

Lemma 7 (Lemma 2 in [12]). If W 2 Rr⇥d is a random
matrix, whose entries are sampled from N (0, 1) i.i.d. and
kxk = kx0k = 1, then w.p. 1� 2e�2✏2r,

|1
r
⇢H(sign (Wx) , sign

�
Wx

0�
)� ⇢(x,x0

)|  ✏ (18)

where ⇢(·, ·) is the Euclidean distance.

Lemma 8 (Covering Spheres with Spheres. Corollary 1.2
in [5]). For any 0 < �  arccos(

1p
d+1

), a sphere Sd�1 can
be covered by

C
2

d3/2

sin

d�1 �
ln(d)

spherical balls of radius �, where C
2

is a global constant.

A.1 Proof of Proposition 1

Proof. We use Lemma 7 to prove this lemma. There are
mN data pairs {xi, cy,p} for i 2 [N ], y 2 Y and p 2 [my].
Then, w.p. 1� 2mNe�2✏2r, Eq. (18) holds for all the pairs.
Set 2mNe�2✏2r  �. Then if r � log(2mN/�)

2✏2
, for all i 2 [N ],

y 2 Y and p 2 [my], w.p. 1� �,

|1
r
⇢H(sign (Wxi) , sign (Wcy,p))� ⇢(xi, cy,p)|  ✏. (19)

Setting ✏ = µ/4 and applying the second assumption com-
pletes the proof.

A.2 Proof of Theorem 1

First, by setting ↵ = ⌫ = 32N
� 1

16d2 and ⇠ = O(N� 1
32d

) for
large enough N such that ⇠  1/2, Lemma 3 requires r �
Cd3/2 log d

2

d N
1

16d and � � 16. Setting � = N� 1
32d , Lemma 1

requires � � C
1

(d)N
3

32d for some constant C
1

(d) depending
on d. For Lemma 4, we set t = N� 1

32d . Finally, by setting
⇠ = C

2

(d)N� 1
32d for some constant C

2

(d) depending d and
�, Eq. (13) in Lemma 2 and Eq. (15) in Lemma 3 will hold
for ✏ = N� 1

32d . By now we have shown that when N goes
to 1, the probabilities of Lemma 2 and Lemma 4 will go to
1 and the errors in the lemmata from Lemma 1 to Lemma 5
will go to zero. So we complete the proof.

A.3 Proof of Lemma 1

Proof.

|E[ [yfW⇤,B⇤
(x) < 0]]� E[ [y ˜fW⇤,B⇤

(x) < 0]]|
=|E[ [yfW⇤,B⇤

(x) < 0]� [y ˜fW⇤,B⇤
(x) < 0]]|

(20)

Note that fW⇤,B⇤
(x) can only take values in {{�2r �

⌫,�2r+1�⌫, · · · ,�1�⌫,�⌫, 1�⌫, · · · , 2r�⌫}}. So if we can
show |fW⇤,B⇤

(x) � ˜fW⇤,B⇤
(x)|  ⌫

4

, then fW⇤,B⇤
(x) and

˜fW⇤,B⇤
(x) will have the same sign, and [yfW⇤,B⇤

(x) <

0]� [y ˜fW⇤,B⇤
(x) < 0] = 0.

According to Lemma 6 with � � C1r
2�

log(

32r
⌫
), we have

|fW⇤,B⇤
(x)� ˜fW⇤,B⇤

(x)|  ⌫
4

, w.p. at least 1� �.

Therefore, we obtain

|E[ [yfW⇤,B⇤
(x) < 0]]� E[ [y ˜fW⇤,B⇤

(x) < 0]]|  � (21)

A.4 Proof of Lemma 2

Proof. We use the Rademacher complexity to bound this
quantity. First, let’s apply Theorem 3.1 in [20], given ✏ > 0,

P[sup
W,B

|E[�(y ˜fW,B(x))]� ˆE[�(y ˜fW,B(x))]|

>RN (� � FW,B) + ✏]  e�N✏2/C3 ,

(22)

where FW,B is the collection of functions formed by ˜fW,B

and RN is the conditional Rademacher average. Since
� is 1

↵⇠
-Lipschitz and ˜fW,B is 2r�-Lipschitz, by Lemma

5.2, Lemma 5.4 in [9] ( ˜fW,B can be scaled such that the
condition of Lemma 5.4 is satisfied) and the Talagrand’s
contraction lemma [17], we have

RN (� � FW,B) 
1

↵⇠
RN (FW,B)

 1

↵⇠
inf

✏>0

0

@✏+

s
2(

32r�
✏

)

2d
log(8/✏)

N

1

A

 2

(2d+3)/(2d+2)

(32r�)2d/(2d+2)

↵⇠N1/2d+2

p
log(8/),

(23)
where  =

2

1/(2d+2)
(32r�)2d/(2d+2)

↵⇠N1/(2d+2) . As long as  < 1

4

, we
have

p
log(8/)  1/

p
. Therefore, RN (��FW,B)  2

p
.

We finish the proof by setting 2

p
  ✏.

A.5 Proof of Lemma 3

Proof. We decompose

ˆE[�(y ˜fW⇤,B⇤
(x))]� ˆE� [�(yf

⇤
2↵(x))] (24a)

=

ˆE[�(y ˜fW⇤,B⇤
(x))]� ˆE[�(y ˜f

˜W, ˜B(x))] (24b)

+

ˆE[�(y ˜f
˜W, ˜B)]� ˆE� [�(y ˜f

˜W, ˜B)] (24c)

+

ˆE� [�(y ˜f
˜W, ˜B)]� ˆE� [�(yf

⇤
2↵(x))] (24d)

where ˜W, ˜B will be defined later.
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Eq. (24b) is less than zero because of the definition of
W ⇤, B⇤.

Eq. (24c) can be further decomposed into

ˆE[�(y ˜f
˜W, ˜B)]� ˆE� [�(y ˜f

˜W, ˜B)] (25a)

=

ˆE[�(y ˜f
˜W, ˜B)]� E[�(y ˜f

˜W, ˜B)] (25b)

+ E[�(y ˜f
˜W, ˜B)]� ˆE� [�(y ˜f

˜W, ˜B)] (25c)

Since Lemma 2 holds for any W,B, if Eq. (13) holds, w.p.
1� e�N✏2/C3 ,

|ˆE[�(y ˜f
˜W, ˜B)]� E[�(y ˜f

˜W, ˜B)]|  2✏,

For the second term, we need to slightly modify this bound
as we have �N data points rather than N . It can be
presented as, if ✏ satisfies

2

1+1/(4d+4)

(32r�)d/(2d+2)

p
↵⇠(�N)

1/(4d+4)

< ✏ < 1, (26)

we have w.p. 1� e��N✏2/C3

|E[�(y ˜f
˜W, ˜B(x))]� ˆE� [�(y ˆf

˜W, ˜B(x))]|  2✏, (27)

where C
3

is a constant. So now we can bound Eq. (24c) by
4✏ w.p. 1� 2e��N✏2/C3 given that Eq. (15) holds for ✏.

Next we show that given the conditions in the lemma,
Eq. (24d) will be less than zero. Define ˜S ⇢ ⌦� ,

˜S := {xi 2 ⌦� |yif⇤
2↵(xi) � ↵(1� ⇠)}.

Then

ˆE� [�(yf
⇤
2↵(x))] =

1

|⌦� |
X

i2⌦�

�(yif
⇤
2↵(xi))

� 1

|⌦� |
X

i2⌦�

[yif
⇤
2↵(xi) < ↵(1� ⇠)]

=

1

|⌦� |
X

i2⌦�

(1� [yif
⇤
2↵(xi) � ↵(1� ⇠)])

�1� | ˜S|
�N

(28)
By the definition of �, we also have

ˆE� [�(y ˜f
˜W, ˜B(x))]  ˆE� [ [y ˜f

˜W, ˜B(x) < ↵]] (29)

So in the following we will show that under the condition
given in the lemma, there exists a pair of ˜W and ˜B such
that

ˆE� [ [y ˆf
˜W, ˜B(x) < ↵]]  1� | ˜S|

�N
(30)

Define

˜S+

:= {xi 2 ˜S|yi = 1, f
2↵(xi) � ↵(1� ⇠)}

and

˜S�
:= {xi 2 ˜S|yi = �1, f

2↵(xi)  �↵(1� ⇠)}.

Therefore, ˜S =

˜S+ [ ˜S�. Now given any xi 2 ˜S+ and
xj 2 ˜S�, f⇤

2↵ 2 F
2

implies

kxi � xjk � |f
2↵(xi)� f

2↵(xj)|/2 � ↵(1� ⇠).

For some small ⌧ > 0, set r = C
2

d3/2 log(d)/⌧d�1. Ac-
cording to Lemma 8, the sphere Sd�1 can be covered
by r spherical balls with radius arcsin ⌧ . Let {wk}k2[r]

be the centers of these spherical balls. Then for any
xi 2 Sd�1, there exists a wk, such that kwk � xik  2⌧ .
Set ˜W = [w

1

,w
2

, · · · ,wK ]

T

Let ˜B = sign
⇣
˜W ˜S

⌘
, i.e., ˜B = {sign

⇣
˜Wx

⌘
|x 2 ˜S} and

the labels of ˜B follows the corresponding x. Note that the
size of ˜B is less than �N , but is in order of O(�N), so for
simplicity, we set m = �N . Let ˜B+

= sign
⇣
˜W ˜S+

⌘
and

˜B�
= sign

⇣
˜W ˜S�

⌘
.

ˆE� [ [y ˆf
˜W, ˜B(x) < ↵]]

=

1

|⌦� |
X

i2⌦�

[yi ˜f ˜W, ˜B(xi) < ↵]

1� | ˜S|
�N

+

1

�N

X

xi2 ˜S

[yi ˜f ˜W, ˜B(xi) < ↵]

(31)

We are now going to show yi ˜f ˜W, ˜B(xi) � ↵ holds for all
xi 2 ˜S. We now just consider the case when yi = 1 and
the case for yi = �1 is similar. For xi 2 ˜S+.

˜f
˜W, ˜B(xi)

= max

j2 ˜B+

⇣
tanh(� ˜Wxi)

T
bj

⌘
�max

j2 ˜B�

⇣
tanh(� ˜Wxi)

T
bj

⌘
� ⌫

� tanh(� ˜Wxi)
T sign

⇣
˜Wxi

⌘
� tanh(� ˜Wxi)

T sign
⇣
˜Wxj⇤�

⌘
� ⌫

� tanh(� ˜Wxi)
T
⇣
sign

⇣
˜Wxi

⌘
� sign

⇣
˜Wxj⇤�

⌘⌘
� ⌫

(32)
where j⇤� = argmaxj2 ˜B�

⇣
tanh(� ˜Wxi)

T
bj

⌘
. For any k 2

[r], we have

tanh(�wT
k xi)

⇣
sign

⇣
w

T
k xi

⌘
� sign

⇣
w

T
k xj⇤�

⌘⌘
� 0

Let

k⇤
= argmin

k2[r]

(
kwk �

xi � xj⇤�

kxi � xj⇤�
kk

)
.

Then

w

T
k⇤
xi =x

T
i (wk⇤ �

xi � xj⇤�

kxi � xj⇤�
k ) + x

T
i

xi � xj⇤�

kxi � xj⇤�
k

� 1

2

kxi � xj⇤�
k � 2⌧ � ↵(1� ⇠)

2

� 2⌧.

And

w

T
k⇤
xj⇤�

=x

T
j⇤�

(wk⇤ �
xi � xj⇤�

kxi � xj⇤�
k ) + x

T
j⇤�

xi � xj⇤�

kxi � xj⇤�
k

 �1

2

kxi � xj⇤�
k+ 2⌧  �↵(1� ⇠)

2

+ 2⌧.
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By setting ⌧ =

↵(1�⇠)
8

, we see that

tanh(�wT
k⇤
xi)

⇣
sign

⇣
w

T
k⇤
xi

⌘
� sign

⇣
w

T
k⇤
xj⇤�

⌘⌘
� �↵(1� ⇠)

4

Therefore, as long as � � 4(⌫+↵)

↵(1�⇠)
, we have [yi ˜f ˜W, ˜B(xi) <

↵] = 0 for all xi 2 ˜S, and Eq. (30) holds.

Finally by combining Eq. (28), Eq. (29) and Eq. (30), we
have Eq. (24d)  0. This completes the proof.

A.6 Proof of Lemma 4

Proof. Since f⇤
2↵ is independent of xi and 0  �  1, by

Hoeffding bound, w.p. 1� 2e�2�Nt2

|ˆE[�(yf⇤
2↵(x))]� E[�(yf⇤

2↵(x))]|  t (33)

A.7 Proof of Lemma 6

Proof.

| ˜fW⇤,B⇤
(x)� fW⇤,B⇤

(x)|

 max

j2B�

⇣
| tanh(�W ⇤

x)

T
b

⇤
j � sign (W ⇤

x)

T
b

⇤
j |
⌘

+ max

j2B+

⇣
| tanh(�W ⇤

x)

T
b

⇤
j � sign (W ⇤

x)

T
b

⇤
j |
⌘

2max

j2B

⇣
| tanh(�W ⇤

x)

T
b

⇤
j � sign (W ⇤

x)

T
b

⇤
j |
⌘

4rmax

k2[r]
| tanh(�w⇤T

k x)� sign
⇣
w

⇤T
k x

⌘
|

Given Assumption 1, we have w.p. at least 1 � c
1

r✓,
|w⇤T

k x| � ✓ for all k 2 [r] and

| tanh(�w⇤T
k x)� sign

⇣
w

⇤T
k x

⌘
|  2e�2�✓


