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Appendix

A Proofs

We introduce some lemmata here, whose proofs can be
found in the following sections.

Lemma 6 (Approximation error between sign and tanh).
Under Assumption 1, w.p. 1 — Cqirf

|fW*,B* () — fw=,B*(x)| < 8re~ 270

By taking 0 = §/(C1r), we have w.p., 1 —§

| < {re—276/(C1r)

|fwe, B+ (x) = fw= - (x)
Lemma 7 (Lemma 2 in [12]). If W € R™*? is a random
matriz, whose entries are sampled from N(0,1) i.i.d. and

—2e2r

Izl = |='|| = 1, then w.p. 1 —2e ,

|~ pra(sign (W) ,sign (W) — pla,a)| < (18)

where p(-,+) is the Euclidean distance.

Lemma 8 (Covering Spheres with Spheres. Corollary 1.2

in [5]). For any 0 < ¢ < arccos(m), a sphere 81 can
be covered by
3/2
% In(d)
sin 10}

spherical balls of radius ¢, where Ca is a global constant.

A.1 Proof of Proposition 1

Proof. We use Lemma 7 to prove this lemma. There are
mN data pairs {z;,¢y,p} for i € [N], y € Y and p € [m,].
Then, w.p. 1 — 2mNe_2€2r, Eq. (18) holds for all the pairs.
Set 2mNe 2" < §. Then if r > w, for all 7 € [N],
y€Yandp € [my], w.p. 1 -9,

1 . .
|;PH (sign (Wa;) ,sign (Weyp)) — p(@i, ey p)| <. (19)

Setting € = /4 and applying the second assumption com-
pletes the proof. O

A.2 Proof of Theorem 1

First, by setting o = v = 32N~ 16 and &= O(N_Bﬁ) for
large enough N such that £ < 1/2, Lemma 3 requires r >
%Nﬁ and v > 16. Setting 6 = N
requires y > Cl(d)Nﬁ for some constant C1(d) depending

_1
32d | Lemma 1

on d. For Lemma 4, we set t = N3, Finally, by setting

&= Cg(d)N*ﬁ for some constant C2(d) depending d and
B, Eq. (13) in Lemma 2 and Eq. (15) in Lemma 3 will hold
for e = N~ 324, By now we have shown that when N goes
to oo, the probabilities of Lemma 2 and Lemma 4 will go to
1 and the errors in the lemmata from Lemma 1 to Lemma 5
will go to zero. So we complete the proof.

A.3 Proof of Lemma 1

Proof.

[E[Llyfw+. 5= () < 0]] — E[Llyfw+ 5+ () < 0]]

~ (20)
=E[l[yfw= B () < 0] — Ly fw=, 5+ (z) < 0]

Note that fw=« p+(x) can only take values in {{—2r —
v,=2r+1—v,--- ,—1—v,—v,1—v,- -+, 2r—v}}. Soif we can
show |fw« g+ () — fu~ g+ (x)| < %, then fw~ p+(x) and
fw+ B () will have the same sign, and 1[yfw+ p=(z) <
0] — L[y fw~ 5+ (x) < 0] = 0.

G

According to Lemma 6 with v > log( 32T), we have

|fw=. B+ (z) — fw= B~ (x) < %, w.p. at least 1 — 4.

Therefore, we obtain

E[1[yfw- 5+ (z) <0]]| <& (21)
O

|E[1[y fw=,5(®) < 0] —

A.4 Proof of Lemma 2

Proof. We use the Rademacher complexity to bound this
quantity. First, let’s apply Theorem 3.1 in [20], given € > 0,

P[sup [E[®(y fw,s(2))] — E[®(yfw,z())]
W,B
’ (22)
—Ne2/Cs
>Ryn(PoFw,p)+e <e )
where Fw,p is the collection of functions formed by fW7 B
and Ry is the conditional Rademacher average. Since

P is a—g—Llpschltz and fWB is 2rv-Lipschitz, by Lemma

5.2, Lemma 5.4 in [9] (fw,s can be scaled such that the
condition of Lemma 5.4 is satisfied) and the Talagrand’s
contraction lemma [17], we have

1
RN((I’ o ]'-W,B) S ;ERN(IW,B)

1 2(%27)2d log(8/¢)
< = 2N e 7 TTONYE
—ad :gg €t \/ N
(2d+3)/(2d+2) 2d/(2d+2)
<2 i) Tog(8/r).
aEN1/2d+2
(23)

21/(2d+2) (397.4)2d/ (2d+2)
atN1/(2d+2)

have /log(8/k) < 1/+/k. Therefore, Ry (®oFw,5) < Qf.
We finish the proof by setting 2¢/k < e.

where k = . Aslong as Kk < i, we

A.5 Proof of Lemma 3

Proof. We decompose

E[®(yfw- 5+ (@))] — Es[®(y ()] (24a)
=E[®(yfw+ 5+ (@))] — E[®(yfy 5(®))] (24b)
+ B[yl )]~ Es[®(yfw 5)] (24¢)
+Bal@(yfyy 5)] — Bsl®(y/5a ()] (24d)

where W, B will be defined later.
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Eq. (24b) is less than zero because of the definition of
W*, B*.

Eq. (24c) can be further decomposed into

E®(yfw )] — Es[®fw 5)] (25a)
=E[®(yfy 5)] — [‘P(y}v )] (25b)
E[®(yfw )] — Es[®wfw 5)] (25¢)

Since Lemma 2 holds for any W, B, if Eq. (13) holds, w.p.

1— 67N62/037
[E[@(yfw 5)] — El®Wfw.5)]l < 2

For the second term, we need to slightly modify this bound

as we have SN data points rather than N. It can be
presented as, if € satisfies
Ql+1/(4d+4) (g9, \d/(2d+2)
(32r7) <e<1, (26)
VaE(BN)1/ ()
we have w.p. 1 — e~ PN /Cs
E[®(yfw (@) — Es[@(yfiw, 5(@)]| < 26, (27)

where Cj3 is a constant. So now we can bound Eq. (24c) by

4e w.p. 1 — 2e=AN</Cs given that Eq. (15) holds for e.

Next we show that given the conditions in the lemma,
Eq. (24d) will be less than zero. Define S C Qg,

S = {@i € Qslyifsa(@i) > a(l - )}

Then
B a0 (y fin ()] fﬁ S (g fia (@)
zeﬂg
1 *
Zm Zg;ﬂ ]l[yifza(wl) < a(l - ‘S)]
— S (- Ly fa(@) > a1 - &)
26| =
5]
>1- BN

(28)
By the definition of ®, we also have

Es[@(yfyw 5(x))] <Es[llyfw s(®) <of]  (29)

So in the following we will show that under the condition

given in the lemma, there exists a pair of W and B such
that

Ballluf 5(@) <all <1- 1 (30)
Define
ti={z; € Slyi = 1, faa(z:) > (1 — &)}
and

S™={mi € Slyi = -1, faa(xi) < —a(1 — &)}

Therefore, S=5tus.
z; € S7, fin € F2 implies

Now given any x; € St and

i — il = | foa(®i) — foa(x;)]/2 = a1 = §).

For some small 7 > 0, set r = Cad®?log(d)/7% " . Ac-
cording to Lemma 8, the sphere S?! can be covered
by 7 spherical balls with radius arcsin7. Let {ws}rey
be the centers of these spherical balls. Then for any
x; € S%7!) there exists a wy, such that |Jwy — x| < 27.

Set W = ['LUI,'LUQ, L wg]T

Let B = sign (W§)7 i.e., B = {sign (Ww) |z € S} and
the labels of B follows the corresponding x. Note that the
size of B is less than SN, but is in order of O(8N), so for
simplicity, we set m = SN. Let BT = sign (W,§'+) and

B~ =sign (WS_)

[ 1lyfw 5(®) < a]]
B| > yifw (@) < o]
i€QQ (31)
5 1 ;
< _57N+B7N$E§]l[y w,s(@i) < a

We are now going to show yif‘;v’g(mi) > « holds for all

x; € S. We now just consider the case when y; = 1 and

the case for y; = —1 is similar. For x; € ST.
fv 5 (i)
= max (tanh(’mel) bj)—m@x (tanh(’yW@vi)Tbj) —v
jeB+ jeB—

> tanh(yWe;)" sign (W:cl) — tanh(yWa;) " sign (Wa:ji) —v

> tanh(nywi)T (sign (Wa:z) — sign (iji)) —v
(32)
where j* = argmax;.z- (tanh(’yW:ci)Tbj). For any k €

[r], we have

tanh(yw} ;) (sign (wfa:l) — sign (wgwji)) >0

Let
* . Li — Tj*
k™ =argmin { [lwp — 7| ¢
Kelr] i — ;- ||
Then
T, — T+ T, — T+
Wiz, =] (Wi A )+ x) ’ ’
@i — ;- || @i — ;- ||
1 —
> Lai 2y | 2> 2028 o
And
T — T T — x>
B e L P
< Hzicap | 42r <2028 1y
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By setting 7 =

@, we see that

tanh(ywi-z;) (sign (wg* ccz) — sign (wf a’ji)) > w

Therefore, as long as 7y > i(;'lf'g, we have 1[y; ~W, s(xi) <
a] =0 for all @; € S, and Eq. (30) holds.

Finally by combining Eq. (28), Eq. (29) and Eq. (30), we
have Eq. (24d) < 0. This completes the proof. O

A.6 Proof of Lemma 4

Proof. Since fs,, is independent of x; and 0 < ® < 1, by

Hoeffding bound, w.p. 1 — 92BNt

E[®(yf30(®))] — E[®(yfsa(@))]] < t (33)

A.7 Proof of Lemma 6

Proof.

|fw=.B=(x) — fw= B+ ()]

< max (| tanh(yW* )b} — sign (W*z)" b;|)

jeB—

+ max (\ tanh(vW*x) b} — sign (W* )" b;|)

jeBT
<2 max (| tanh(yW*z)" b} — sign wrz)" b;|)
J

<4r in&ﬁ | tanh(yw}” ) — sign (wZTa:> |
€lr

Given Assumption 1, we have w.p. at least 1 — ¢170,
|lwiTx| > 0 for all k € [r] and

| tanh (yw;” ) — sign (wZT:L') | <22



