Appendix

A Proofs

We introduce some lemmata here, whose proofs can be found in the following sections.

Lemma 6 (Approximation error between sign and tanh). Under Assumption 1, w.p. $1 - C_1 r \theta$

$$|\tilde{f}_{W^*,B^*}(\boldsymbol{x}) - f_{W^*,B^*}(\boldsymbol{x})| \le 8re^{-2\gamma\theta}$$

By taking $\theta = \delta/(C_1 r)$, we have w.p., $1 - \delta$

$$|\tilde{f}_{W^*,B^*}(\boldsymbol{x}) - f_{W^*,B^*}(\boldsymbol{x})| \le 8re^{-2\gamma\delta/(C_1r)}$$

Lemma 7 (Lemma 2 in [12]). If $W \in \mathbb{R}^{r \times d}$ is a random matrix, whose entries are sampled from $\mathcal{N}(0,1)$ i.i.d. and $\|\boldsymbol{x}\| = \|\boldsymbol{x}'\| = 1$, then w.p. $1 - 2e^{-2\epsilon^2 r}$,

$$\left|\frac{1}{r}\rho_{H}(sign\left(W\boldsymbol{x}\right),sign\left(W\boldsymbol{x}'\right))-\rho(\boldsymbol{x},\boldsymbol{x}')\right|\leq\epsilon\qquad(18)$$

where $\rho(\cdot, \cdot)$ is the Euclidean distance.

Lemma 8 (Covering Spheres with Spheres. Corollary 1.2 in [5]). For any $0 < \phi \leq \arccos(\frac{1}{\sqrt{d+1}})$, a sphere S^{d-1} can be covered by

$$\frac{C_2 d^{3/2}}{\sin^{d-1}\phi} \ln(d)$$

spherical balls of radius ϕ , where C_2 is a global constant.

A.1 Proof of Proposition 1

Proof. We use Lemma 7 to prove this lemma. There are mN data pairs $\{\boldsymbol{x}_i, \boldsymbol{c}_{y,p}\}$ for $i \in [N], y \in \mathcal{Y}$ and $p \in [m_y]$. Then, w.p. $1 - 2mNe^{-2\epsilon^2 r}$, Eq. (18) holds for all the pairs. Set $2mNe^{-2\epsilon^2 r} \leq \delta$. Then if $r \geq \frac{\log(2mN/\delta)}{2\epsilon^2}$, for all $i \in [N]$, $y \in \mathcal{Y}$ and $p \in [m_y]$, w.p. $1 - \delta$,

$$\left|\frac{1}{r}\rho_{H}(\operatorname{sign}\left(W\boldsymbol{x}_{i}\right),\operatorname{sign}\left(W\boldsymbol{c}_{y,p}\right)\right)-\rho(\boldsymbol{x}_{i},\boldsymbol{c}_{y,p})\right|\leq\epsilon.$$
 (19)

Setting $\epsilon = \mu/4$ and applying the second assumption completes the proof.

A.2 Proof of Theorem 1

First, by setting $\alpha = \nu = 32N^{-\frac{1}{16d^2}}$ and $\xi = O(N^{-\frac{1}{32d}})$ for large enough N such that $\xi \leq 1/2$, Lemma 3 requires $r \geq \frac{Cd^{3/2}\log d}{2^d}N^{\frac{1}{16d}}$ and $\gamma \geq 16$. Setting $\delta = N^{-\frac{1}{32d}}$, Lemma 1 requires $\gamma \geq C_1(d)N^{\frac{3}{32d}}$ for some constant $C_1(d)$ depending on d. For Lemma 4, we set $t = N^{-\frac{1}{32d}}$. Finally, by setting $\xi = C_2(d)N^{-\frac{1}{32d}}$ for some constant $C_2(d)$ depending d and β , Eq. (13) in Lemma 2 and Eq. (15) in Lemma 3 will hold for $\epsilon = N^{-\frac{1}{32d}}$. By now we have shown that when N goes to ∞ , the probabilities of Lemma 2 and Lemma 4 will go to 1 and the errors in the lemmata from Lemma 1 to Lemma 5 will go to zero. So we complete the proof.

A.3 Proof of Lemma 1

Proof.

$$|\mathbb{E}[\mathbb{1}[yf_{W^*,B^*}(\boldsymbol{x}) < 0]] - \mathbb{E}[\mathbb{1}[yf_{W^*,B^*}(\boldsymbol{x}) < 0]]| =|\mathbb{E}[\mathbb{1}[yf_{W^*,B^*}(\boldsymbol{x}) < 0] - \mathbb{1}[y\tilde{f}_{W^*,B^*}(\boldsymbol{x}) < 0]]|$$
(20)

Note that $f_{W^*,B^*}(\boldsymbol{x})$ can only take values in $\{\{-2r - \nu, -2r + 1 - \nu, \cdots, -1 - \nu, -\nu, 1 - \nu, \cdots, 2r - \nu\}\}$. So if we can show $|f_{W^*,B^*}(\boldsymbol{x}) - \tilde{f}_{W^*,B^*}(\boldsymbol{x})| \leq \frac{\nu}{4}$, then $f_{W^*,B^*}(\boldsymbol{x})$ and $\tilde{f}_{W^*,B^*}(\boldsymbol{x})$ will have the same sign, and $\mathbb{1}[yf_{W^*,B^*}(\boldsymbol{x}) < 0] - \mathbb{1}[y\tilde{f}_{W^*,B^*}(\boldsymbol{x}) < 0] = 0$.

According to Lemma 6 with $\gamma \geq \frac{C_{1T}}{2\delta} \log(\frac{32r}{\nu})$, we have $|f_{W^*,B^*}(\boldsymbol{x}) - \tilde{f}_{W^*,B^*}(\boldsymbol{x})| \leq \frac{\nu}{4}$, w.p. at least $1 - \delta$. Therefore, we obtain

$$|\mathbb{E}[\mathbb{1}[yf_{W^*,B^*}(\boldsymbol{x}) < 0]] - \mathbb{E}[\mathbb{1}[y\tilde{f}_{W^*,B^*}(\boldsymbol{x}) < 0]]| \le \delta \quad (21)$$

A.4 Proof of Lemma 2

Proof. We use the Rademacher complexity to bound this quantity. First, let's apply Theorem 3.1 in [20], given $\epsilon > 0$,

$$\mathbb{P}[\sup_{W,B} |\mathbb{E}[\Phi(y\tilde{f}_{W,B}(\boldsymbol{x}))] - \hat{\mathbb{E}}[\Phi(y\tilde{f}_{W,B}(\boldsymbol{x}))]|$$

$$> \mathcal{R}_{N}(\Phi \circ \mathcal{F}_{W,B}) + \epsilon] \le e^{-N\epsilon^{2}/C_{3}},$$
(22)

where $\mathcal{F}_{W,B}$ is the collection of functions formed by $f_{W,B}$ and \mathcal{R}_N is the conditional Rademacher average. Since Φ is $\frac{1}{\alpha\xi}$ -Lipschitz and $\tilde{f}_{W,B}$ is $2r\gamma$ -Lipschitz, by Lemma 5.2, Lemma 5.4 in [9] ($\tilde{f}_{W,B}$ can be scaled such that the condition of Lemma 5.4 is satisfied) and the Talagrand's contraction lemma [17], we have

$$\mathcal{R}_{N}(\Phi \circ \mathcal{F}_{W,B}) \leq \frac{1}{\alpha \xi} \mathcal{R}_{N}(\mathcal{F}_{W,B})$$

$$\leq \frac{1}{\alpha \xi} \inf_{\epsilon > 0} \left(\epsilon + \sqrt{\frac{2(\frac{32r\gamma}{\epsilon})^{2d} \log(8/\epsilon)}{N}} \right)$$

$$\leq \frac{2^{(2d+3)/(2d+2)} (32r\gamma)^{2d/(2d+2)}}{\alpha \xi N^{1/2d+2}} \sqrt{\log(8/\kappa)},$$
(23)

where $\kappa = \frac{2^{1/(2d+2)}(32r\gamma)^{2d/(2d+2)}}{\alpha\xi N^{1/(2d+2)}}$. As long as $\kappa < \frac{1}{4}$, we have $\sqrt{\log(8/\kappa)} \le 1/\sqrt{\kappa}$. Therefore, $\mathcal{R}_N(\Phi \circ \mathcal{F}_{W,B}) \le 2\sqrt{\kappa}$. We finish the proof by setting $2\sqrt{\kappa} \le \epsilon$.

A.5 Proof of Lemma 3

Proof. We decompose

$$\hat{\mathbb{E}}[\Phi(y\tilde{f}_{W^*,B^*}(\boldsymbol{x}))] - \hat{\mathbb{E}}_{\beta}[\Phi(yf_{2\alpha}^*(\boldsymbol{x}))]$$
(24a)

$$= \hat{\mathbb{E}}[\Phi(y\tilde{f}_{W^*,B^*}(\boldsymbol{x}))] - \hat{\mathbb{E}}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}))]$$
(24b)

$$+ \hat{\mathbb{E}}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})] - \hat{\mathbb{E}}_{\beta}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})]$$
(24c)

$$+ \hat{\mathbb{E}}_{\beta}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})] - \hat{\mathbb{E}}_{\beta}[\Phi(yf^*_{2\alpha}(\boldsymbol{x}))]$$
(24d)

where \tilde{W}, \tilde{B} will be defined later.

Eq. (24b) is less than zero because of the definition of $W^{\ast},B^{\ast}.$

Eq. (24c) can be further decomposed into

$$\hat{\mathbb{E}}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})] - \hat{\mathbb{E}}_{\beta}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})]$$
(25a)
$$-\hat{\mathbb{E}}[\Phi(y\tilde{f}_{\tilde{U},\tilde{L}},\tilde{z})] - \mathbb{E}[\Phi(y\tilde{f}_{\tilde{U},\tilde{L}},\tilde{z})]$$
(25b)

$$\mathbb{E}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})] - \mathbb{E}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})]$$
(25b)

$$+ \mathbb{E}[\Phi(yf_{\tilde{W},\tilde{B}})] - \mathbb{E}_{\beta}[\Phi(yf_{\tilde{W},\tilde{B}})]$$
(25c)

Since Lemma 2 holds for any W, B, if Eq. (13) holds, w.p. $1 - e^{-N\epsilon^2/C_3}$,

$$|\hat{\mathbb{E}}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})] - \mathbb{E}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}})]| \le 2\epsilon,$$

For the second term, we need to slightly modify this bound as we have βN data points rather than N. It can be presented as, if ϵ satisfies

$$\frac{2^{1+1/(4d+4)}(32r\gamma)^{d/(2d+2)}}{\sqrt{\alpha\xi}(\beta N)^{1/(4d+4)}} < \epsilon < 1,$$
(26)

we have w.p. $1 - e^{-\beta N \epsilon^2 / C_3}$

$$|\mathbb{E}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}))] - \hat{\mathbb{E}}_{\beta}[\Phi(y\hat{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}))]| \le 2\epsilon, \qquad (27)$$

where C_3 is a constant. So now we can bound Eq. (24c) by 4ϵ w.p. $1 - 2e^{-\beta N\epsilon^2/C_3}$ given that Eq. (15) holds for ϵ .

Next we show that given the conditions in the lemma, Eq. (24d) will be less than zero. Define $\tilde{S} \subset \Omega_{\beta}$,

$$\tilde{S} := \{ \boldsymbol{x}_i \in \Omega_\beta | y_i f_{2\alpha}^*(\boldsymbol{x}_i) \ge \alpha(1-\xi) \}.$$

Then

$$\hat{\mathbb{E}}_{\beta}[\Phi(yf_{2\alpha}^{*}(\boldsymbol{x}))] = \frac{1}{|\Omega_{\beta}|} \sum_{i \in \Omega_{\beta}} \Phi(y_{i}f_{2\alpha}^{*}(\boldsymbol{x}_{i}))$$

$$\geq \frac{1}{|\Omega_{\beta}|} \sum_{i \in \Omega_{\beta}} \mathbb{1}[y_{i}f_{2\alpha}^{*}(\boldsymbol{x}_{i}) < \alpha(1-\xi)]$$

$$= \frac{1}{|\Omega_{\beta}|} \sum_{i \in \Omega_{\beta}} (1 - \mathbb{1}[y_{i}f_{2\alpha}^{*}(\boldsymbol{x}_{i}) \ge \alpha(1-\xi)])$$

$$\geq 1 - \frac{|\tilde{S}|}{\beta N}$$
(28)

By the definition of Φ , we also have

$$\hat{\mathbb{E}}_{\beta}[\Phi(y\tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}))] \leq \hat{\mathbb{E}}_{\beta}[\mathbb{1}[y\tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}) < \alpha]]$$
(29)

So in the following we will show that under the condition given in the lemma, there exists a pair of \tilde{W} and \tilde{B} such that

$$\hat{\mathbb{E}}_{\beta}[\mathbb{1}[y\hat{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}) < \alpha]] \le 1 - \frac{|S|}{\beta N}$$
(30)

Define

$$\tilde{S}^+ := \{ \boldsymbol{x}_i \in \tilde{S} | y_i = 1, f_{2\alpha}(\boldsymbol{x}_i) \ge \alpha(1-\xi) \}$$

and

Ś

$$\tilde{S}^- := \{ \boldsymbol{x}_i \in \tilde{S} | y_i = -1, f_{2\alpha}(\boldsymbol{x}_i) \le -\alpha(1-\xi) \}.$$

Therefore, $\tilde{S} = \tilde{S}^+ \cup \tilde{S}^-$. Now given any $\boldsymbol{x}_i \in \tilde{S}^+$ and $\boldsymbol{x}_j \in \tilde{S}^-$, $f_{2\alpha}^* \in \mathcal{F}_2$ implies

$$\|\boldsymbol{x}_i - \boldsymbol{x}_j\| \ge |f_{2\alpha}(\boldsymbol{x}_i) - f_{2\alpha}(\boldsymbol{x}_j)|/2 \ge \alpha(1 - \xi).$$

For some small $\tau > 0$, set $r = C_2 d^{3/2} \log(d) / \tau^{d-1}$. According to Lemma 8, the sphere S^{d-1} can be covered by r spherical balls with radius $\arcsin \tau$. Let $\{\boldsymbol{w}_k\}_{k \in [r]}$ be the centers of these spherical balls. Then for any $\boldsymbol{x}_i \in S^{d-1}$, there exists a \boldsymbol{w}_k , such that $\|\boldsymbol{w}_k - \boldsymbol{x}_i\| \leq 2\tau$. Set $\tilde{W} = [\boldsymbol{w}_1, \boldsymbol{w}_2, \cdots, \boldsymbol{w}_K]^T$

Let $\tilde{B} = \operatorname{sign}\left(\tilde{W}\tilde{S}\right)$, i.e., $\tilde{B} = \{\operatorname{sign}\left(\tilde{W}\boldsymbol{x}\right) | \boldsymbol{x} \in \tilde{S}\}$ and the labels of \tilde{B} follows the corresponding \boldsymbol{x} . Note that the size of \tilde{B} is less than βN , but is in order of $O(\beta N)$, so for simplicity, we set $m = \beta N$. Let $\tilde{B}^+ = \operatorname{sign}\left(\tilde{W}\tilde{S}^+\right)$ and $\tilde{B}^- = \operatorname{sign}\left(\tilde{W}\tilde{S}^-\right)$.

$$\hat{\mathbb{E}}_{\beta}[\mathbb{1}[y\hat{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}) < \alpha]]$$

$$= \frac{1}{|\Omega_{\beta}|} \sum_{i \in \Omega_{\beta}} \mathbb{1}[y_{i}\tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}_{i}) < \alpha]$$

$$\leq 1 - \frac{|\tilde{S}|}{\beta N} + \frac{1}{\beta N} \sum_{\boldsymbol{x}_{i} \in \tilde{S}} \mathbb{1}[y_{i}\tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}_{i}) < \alpha]$$
(31)

We are now going to show $y_i f_{\tilde{W},\tilde{B}}(\boldsymbol{x}_i) \geq \alpha$ holds for all $\boldsymbol{x}_i \in \tilde{S}$. We now just consider the case when $y_i = 1$ and the case for $y_i = -1$ is similar. For $\boldsymbol{x}_i \in \tilde{S}^+$.

[r], we have

$$\tanh(\gamma \boldsymbol{w}_{k}^{T} \boldsymbol{x}_{i}) \left(\operatorname{sign} \left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}_{i} \right) - \operatorname{sign} \left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}_{j_{-}^{*}} \right) \right) \geq 0$$

Let

$$k^* = \operatorname*{arg\,min}_{k\in[r]} \left\{ \|oldsymbol{w}_k - rac{oldsymbol{x}_i - oldsymbol{x}_{j^*_-}}{\|oldsymbol{x}_i - oldsymbol{x}_{j^*_-}\|} \|
ight\}$$

Then

$$egin{aligned} m{w}_{k^*}^T m{x}_i =& m{x}_i^T (m{w}_{k^*} - rac{m{x}_i - m{x}_{j^*}}{\|m{x}_i - m{x}_{j^*}\|}) + m{x}_i^T rac{m{x}_i - m{x}_{j^*}}{\|m{x}_i - m{x}_{j^*}\|} \ &\geq rac{1}{2} \|m{x}_i - m{x}_{j^*}\| - 2 au \geq rac{lpha(1-\xi)}{2} - 2 au. \end{aligned}$$

And

$$\begin{split} \boldsymbol{w}_{k^*}^T \boldsymbol{x}_{j_{-}^*} = & \boldsymbol{x}_{j_{-}^*}^T \left(\boldsymbol{w}_{k^*} - \frac{\boldsymbol{x}_i - \boldsymbol{x}_{j_{-}^*}}{\|\boldsymbol{x}_i - \boldsymbol{x}_{j_{-}^*}\|} \right) + \boldsymbol{x}_{j_{-}^*}^T \frac{\boldsymbol{x}_i - \boldsymbol{x}_{j_{-}^*}}{\|\boldsymbol{x}_i - \boldsymbol{x}_{j_{-}^*}\|} \\ & \leq -\frac{1}{2} \|\boldsymbol{x}_i - \boldsymbol{x}_{j_{-}^*}\| + 2\tau \leq -\frac{\alpha(1 - \xi)}{2} + 2\tau. \end{split}$$

By setting $\tau = \frac{\alpha(1-\xi)}{8}$, we see that

$$\tanh(\gamma \boldsymbol{w}_{k^*}^T \boldsymbol{x}_i) \left(\operatorname{sign} \left(\boldsymbol{w}_{k^*}^T \boldsymbol{x}_i \right) - \operatorname{sign} \left(\boldsymbol{w}_{k^*}^T \boldsymbol{x}_{j_-^*} \right) \right) \geq \frac{\gamma \alpha (1-\xi)}{4}$$

Therefore, as long as $\gamma \geq \frac{4(\nu+\alpha)}{\alpha(1-\xi)}$, we have $\mathbb{1}[y_i \tilde{f}_{\tilde{W},\tilde{B}}(\boldsymbol{x}_i) < \alpha] = 0$ for all $\boldsymbol{x}_i \in \tilde{S}$, and Eq. (30) holds.

Finally by combining Eq. (28), Eq. (29) and Eq. (30), we have Eq. (24d) ≤ 0 . This completes the proof.

A.6 Proof of Lemma 4

Proof. Since $f_{2\alpha}^*$ is independent of \boldsymbol{x}_i and $0 \leq \Phi \leq 1$, by Hoeffding bound, w.p. $1 - 2e^{-2\beta Nt^2}$

$$|\hat{\mathbb{E}}[\Phi(yf_{2\alpha}^*(\boldsymbol{x}))] - \mathbb{E}[\Phi(yf_{2\alpha}^*(\boldsymbol{x}))]| \le t$$
(33)

A.7 Proof of Lemma 6

Proof.

$$\begin{split} &|\tilde{f}_{W^*,B^*}(\boldsymbol{x}) - f_{W^*,B^*}(\boldsymbol{x})| \\ \leq \max_{j \in B^-} \left(|\tanh(\gamma W^* \boldsymbol{x})^T \boldsymbol{b}_j^* - \operatorname{sign} (W^* \boldsymbol{x})^T \boldsymbol{b}_j^*| \right) \\ &+ \max_{j \in B^+} \left(|\tanh(\gamma W^* \boldsymbol{x})^T \boldsymbol{b}_j^* - \operatorname{sign} (W^* \boldsymbol{x})^T \boldsymbol{b}_j^*| \right) \\ \leq & 2 \max_{j \in B} \left(|\tanh(\gamma W^* \boldsymbol{x})^T \boldsymbol{b}_j^* - \operatorname{sign} (W^* \boldsymbol{x})^T \boldsymbol{b}_j^*| \right) \\ \leq & 4r \max_{k \in [r]} |\tanh(\gamma \boldsymbol{w}_k^{*T} \boldsymbol{x}) - \operatorname{sign} \left(\boldsymbol{w}_k^{*T} \boldsymbol{x} \right) | \end{split}$$

Given Assumption 1, we have w.p. at least $1 - c_1 r \theta$, $|\boldsymbol{w}_k^{*T} \boldsymbol{x}| \ge \theta$ for all $k \in [r]$ and

 $|\tanh(\gamma \boldsymbol{w}_{k}^{*T}\boldsymbol{x}) - \operatorname{sign}\left(\boldsymbol{w}_{k}^{*T}\boldsymbol{x}\right)| \leq 2e^{-2\gamma\theta}$