
Scaling Submodular Maximization via Pruned Submodularity Graphs

5 Appendix

5.1 Proof of Lemma 3

Proof. Firstly, we have the following inequality.
f(x|v) = f(x+ u|v)� f(u|v + x)

= f(x|u+ v) + f(u|v)� f(u|v + x)

 f(x|u) + f(u|v)� f(u|v + x). (15)
The first two equalities follow from the definition of
marginal gain, while the inequality is due to submodularity.
Following the definition of w

uv

in Eq. (3), we have
w

vx

= f(x|v)� f(v|V � v)

 f(x|u) + f(u|v)� f(u|v + x)� f(v|V � v)

 [f(x|u)� f(u|V � u)] + [f(u|v)� f(v|V � v)]

= w
ux

+ w
vu

. (16)
The first inequality is due to Eq. (15), and the second in-
equality is via submodularity.

5.2 Proof of Proposition 1

Proof. Define a set A
u

for each u 2 V 0 such that A
u

=

{v 2 V : w
uv

 ✏}. Note u 2 A
u

because w
uu

=

�f(u|V \u)  0  ✏ and hence V 0 ✓ [
u2V

0A
u

. The
objective function h in Eq. (8) can be written as
h(V 0

) = |{v 2 V \V 0
: w

V

0
v

 ✏}|
= |{v 2 V \V 0

: 9x 2 V 0
: w

xv

 ✏}|

=

�����

[

u2V

0

A
u

!
\ V 0

����� =

�����
[

u2V

0

A
u

������ |V 0| , (17)

where f
SC

(V 0
) =

��S
u2V

0 A
u

�� is the simple set cover func-
tion [11], which is monotone non-decreasing submodular,
and �|V 0| is a monotone decreasing modular (negative car-
dinality) function. Because the sum of a submodular func-
tion and a modular function is still submodular, the objective
in Eq. (8) is non-monotone submodular.

5.3 Proof of Theorem 1

Proof. Recall that u⇤
v

2 argmin

u2V

⇤ w
uv

is the tail node
of an edge with the minimal weight over all edges from
elements in V ⇤ to head v. Since |V ⇤| � k, the greedy
algorithm on V ⇤ will run for k steps and select k ele-
ments. We use S

i

to denote the solution set at the be-
ginning of the ith step, let u

i

2 argmax

x2V

⇤\Si
f(x|S

i

)

be the selected element in this step. In addition, let v
i

=

argmax

x2V \Si
f(x|S

i

) be the unfettered greedy choice at
step i. Then we have the following:

f(v
i

|S
i

)  f(u
i

|S
i

) + min

x2V

⇤
w

xvi|S

 f(u
i

|S
i

) + min

x2V

⇤
w

xvi

= f(u
i

|S
i

) + w
u

⇤
vi

vi

 f(u
i

|S
i

) + ✏.

(18)

The first inequality is by Eq. (7), the second inequality is
due to Lemma 1, while the last inequality comes from the

definition of problem Eq. (8). Hence, for arbitrary i, we
have

f(S⇤
)  f(S

i

[S⇤
)

 f(S
i

) +

P
x2S

⇤\Si

f(x|S
i

)

 f(S
i

) +

P
x2S

⇤
f(x|S

i

)

 f(S
i

) + kmax

x2V

f(x|S
i

)

= f(S
i

) + kf(v
i

|S
i

)

 f(S
i

) + k [f(u
i

|S
i

) + ✏]
= f(S

i

) + k [f(S
i+1

)� f(S
i

) + ✏] .

(19)

The first inequality uses monotonicity of f(·), while the
second one is due to submodularity. The third inequality
is due to the non-negativity of f(·). The fourth inequality
is due to the maximal greedy selection rule for the greedy
algorithm on the original ground set V . The fifth inequality
is the result of applying Eq. (18). The last equality is due to
the greedy selection rule S

i+1

= u
i

[S
i

for the greedy algo-
rithm on the reduced ground set V ⇤. Rearranging Eq. (19)
yields

[f(S⇤
)� k✏]� f(S

i

)  k[f(S
i+1

)� f(S
i

)] (20)
Let

�
i

= [f(S⇤
)� k✏]� f(S

i

), (21)
then the rearranged inequality equals to

�
i

 k[�
i

� �
i+1

], (22)
Since �

i

� �
i+1

� 0, this equals to

�
i+1


✓
1� 1

k

◆
�
i

. (23)

Since in total k elements are selected by the greedy algo-
rithm, applying Eq. (23) from i = 0 to i = k yields

�
k


✓
1� 1

k

◆
k

�
0

 e�1�
0

. (24)

By using the definition of �
i

in Eq. (21), the above inequality
leads to

f(S0
) = f(S

k

) �
�
1� e�1

�
(f(S⇤

)� k✏) . (25)
This completes the proof.

5.4 Proof of Lemma 4

Proof. The proof follows from Lemma 3 and our assump-
tion to u.
w

uv

w
uu

⇤
v
+ w

u

⇤
vv

=f(v|u⇤
v

) + f(u⇤
v

|u)� f(u⇤
v

|V \u⇤
v

)� f(u|V \u)
=f(v + u⇤

v

) + f(u+ u⇤
v

)� f(u⇤
v

)� f(u)

� f(u⇤
v

|V \u⇤
v

)� f(u|V \u)
2f(v + u⇤

v

)� f(u⇤
v

)� f(u)

� f(u⇤
v

|V \u⇤
v

)� f(u|V \u)
=2 [f(v|u⇤

v

)� f(u⇤
v

|V \u⇤
v

)]

+ [f(u⇤
v

) + f(u⇤
v

|V \u⇤
v

)� f(u)� f(u|V \u)]
2w

u

⇤
vv
.

The first inequality is due to Lemma 3. The second inequal-
ity is because f(u+ u⇤

v

)  f(v + u⇤
v

) which follows from

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

u 2 P (u⇤
v

). The third inequality is due to u 2 Q(u⇤
v

).

5.5 Proof of Proposition 2

Proof. Recall V ⇤ is the optimal solution of problem in
Eq. (8). Due to the definition of |V |/(cK)-NN ball, we
have
8v 2 V

u

⇤\B (u⇤, |V |/(cK)) , f(u+ u⇤
)  f(v + u⇤

).
(26)

Hence, u 2 P (u⇤
v

) \Q(u⇤
v

). By using Lemma 4, we have
w

uv

 2w
u

⇤
v

. (27)
This completes the proof.

5.6 Proof of Proposition 3

Proof. According to Proposition 2, for each u⇤ 2 V ⇤, if
one u 2 B (u⇤, |V |/(cK)) \ Q(u⇤

) is sampled into U in
some iteration of Algorithm 1, then any item v outside the
ball satisfies

w
Uv

= min

x2U

w
xv

 w
uv

 2w
u

⇤
vv

= 2w
V

⇤
v

.

Hence, one element u fulfilling w
Uu

� 2w
V

⇤
u

in the
complement set must be contained in least one of the K
|V |/(cK)-NN balls whose centers are the K elements in
V ⇤. Therefore, the total number of such u is at most
|V |/c = K ⇥ |V |/(cK), the maximal number of elements
in all the K |V |/(cK)-NN balls.

5.7 Proof of Proposition 4

Proof. We consider V
i

, set V at the beginning of the ith

iteration, and V
i�1

, set V right before the removal step of
the previous iteration. According to the pruning amount
1� 1/

p
c:

|V
i

| = 1/
p
c|V

i�1

|. (28)
Since Proposition 3 indicates

|{u 2 V
i

: w
Uu

� 2w
V

⇤
u

}|  |V
i�1

|
c

, (29)

we have
|{v 2 V

i

: w
Uv

 2w
V

⇤
v

}|
=|V

i

|� |{u 2 V
i

: w
Uu

� 2w
V

⇤
u

}|

� 1p
c
|V

i�1

|� 1

c
|V

i�1

|

=

✓
1� 1p

c

◆
⇥ (

1p
c
)|V

i�1

|

=

✓
1� 1p

c

◆
|V

i

|.

Because the above result is correct for arbitrary i, it com-
pletes the proof.

5.8 Proof of Lemma 5

Proof. According to Proposition 4, after removal, all the
elements in {v 2 V : w

Uv

> 2w
V

⇤
v

} are retained in V 0.
So none of them is in V \V 0.

According to Proposition 2, if for each u⇤ 2 V ⇤ at least
one alternate u 2 B (u⇤, |V |/(cK)) \ Q(u⇤

) is sampled
and added into U , 8v 2 V , we have w

V

0
v

 2w
V

⇤
v

. This
completes the proof.

5.9 Proof of Proposition 5

Proof. According to the assumption and definition of Q(u⇤
)

in Lemma 4, 8u 2 U ,
Pr [u 2 Q(u⇤

)|u 2 B (u⇤, |V |/(cK))] � q. (30)
In addition, the probability for that an uniform sample u is
inside the |V |/(cK)-NN ball B (u⇤, |V |/(cK)) of u⇤ is

Pr (u 2 B (u⇤, |V |/(cK))) =

1

cK
. (31)

Combining the two probabilities, we have
Pr (u 62 B (u⇤, |V |/(cK)) \Q(u⇤

))  1� q

cK
. (32)

Since r = O(cK) = pcK, among the r log n = pcK log n
samples of U in one iteration, for one specific u⇤, the proba-
bility that no sample belongs to B (u⇤, |V |/(8K)) \Q(u⇤

)

is
Pr (U \ (B (u⇤, |V |/(8K)) \Q(u⇤

)) = ;)


⇣
1� q

cK

⌘
r logn

=

⇣
1� q

cK

⌘
pcK logn

 n�qp.

Note there are K items in V ⇤, and there will be at most
log

p
c

n iterations. By union bound, the failure probability
that no u 2 B(u⇤, |V |/(cK))\Q(u⇤

) is sampled and added
into U for at least one u⇤ 2 V ⇤ in at least one iteration of
Algorithm 1 is at most

K ⇥ n�qp ⇥ log

p
c

n  n1�qp

log

p
c

n. (33)

5.10 Discussion of q

In Proposition 5 and Theorem 2, the failure probability is
small when q is large. Here q is a lower bound of conditional
probability

Pr [u 2 Q(u⇤
)|u 2 B (u⇤, |V |/(cK))] � q. (34)

The conditional probability describes the probability of
f(u) + f(u|V \u) � f(u⇤

) + f(u⇤|V \u⇤
) (35)

for item u inside the ball B (u⇤, |V |/(cK)).

In §3.4, we mentioned a weighted resampling method that
samples probe items from uniformly sampled items (with
weight of item u proportional to f(u) + f(u|V \u)) to
achieve a sufficiently large q. The effectiveness of this
method has been broadly demonstrated in our experiments.

However, in theory it is hard to directly quantify how large
the conditional probability is because it is data dependent.
Nevertheless, we can discuss the possible values of its

Scaling Submodular Maximization via Pruned Submodularity Graphs

lower bound q in two special cases and the general case.
The discussion shows that by increasing the size of ball
B (u⇤, |V |/(cK)) (via reducing c) we can achieve large
and more interpretable q.

In the following, we will use B to denote B (u⇤, |V |/(cK))

analysis for simplicity. Note each u⇤ 2 V ⇤ is (unknown)
constant, and all quantities related to u⇤ need to be treated
as constant as well.

Firstly, we will discuss two special cases in which q can be
chosen as q = Pr [u 2 Q(u⇤

)] if ✏ is sufficiently small and
B is sufficiently large. Let

R , max

v2B
f(v + u⇤

) (36)

to be f(v + u⇤
) for any item v on the boarder of the

|V |/(cK)-NN ball B, then u 2 B is equivalent to
f(u|u⇤

)  R� f(u⇤
). (37)

When 1) ✏  R � f(u⇤
); or 2) 8u 2 V

u

⇤5, f(u) 
R� f(u⇤

), f(u|u⇤
)  R� f(u⇤

) is always true, because
1) in the first case, f(u|u⇤

)  ✏ holds true due to u⇤ 2 V ⇤,
the optimal solution to Eq. (8); and 2) in the second case,
f(u)  f(u|u⇤

) holds true due to submodularity. In both
cases, the condition u 2 B is always true and can be re-
moved. Therefore,

Pr [u 2 Q(u⇤
)|u 2 B] = Pr [u 2 Q(u⇤

)] . (38)
Case 1) holds true if ✏ is sufficiently small and/or R is
sufficiently large, while Case 2) holds true if R is sufficiently
large. make them true, we can reduce ✏ when defining the
problem in Eq. (8), and increase R by increasing the size of
B (via reducing c).

Secondly, in the general case, the condition f(u)  R �
f(u⇤

) in Case 2) holds true only for some u 2 V
u

⇤ . Let the
set of these items to be V 0

u

⇤ . For the rest items u 2 V
u

⇤\V 0

u

⇤ ,
we have f(u) > R� f(u⇤

), so
f(u|V \u) � 2f(u⇤

) + f(u⇤|V \u⇤
)�R)

f(u) + f(u|V \u) � f(u⇤
) + f(u⇤|V \u⇤

) ,
u 2 Q(u⇤

).

Hence, let constant a , 2f(u⇤
) + f(u⇤|V \u⇤

), for u 2
V
u

⇤\V 0

u

⇤ ,
Pr [u 2 Q(u⇤

)|u 2 B] � Pr [f(u|V \u) � a�R|u 2 B] .
(39)

Combining analysis for u in the two sets, for u 2 V
u

⇤ ,

Pr [u 2 Q(u⇤
)|u 2 B] � Pr [u 2 Q(u⇤

)]⇥ |V 0

u

⇤ |
|V

u

⇤ |+

Pr [f(u|V \u) � a�R|u 2 B]⇥
✓
1� |V 0

u

⇤ |
|V

u

⇤ |

◆
.

Therefore, in the general case, q can be chosen as the right
hand side of the above inequality. The two terms in the right
hand side increases when increasing R. So a sufficiently
large q can be achieved by increasing the size of B (via
reducing c again).

5Definition of Vu⇤ was given in Proposition 2

When treating q as an unknown constant, the success prob-
ability increases when increasing c, as discussed after
Theorem 2. However, when the value of q is chosen as
suggested above, the behavior of the failure probability
n1�qp ⇥ log

p
c

n when changing c becomes more complex.
According to the analysis above, reducing c increases q so
decreases the first factor n1�qp, but it increase the second
factor logp

c

n. This makes the failure probability increases
in some intervals of c but decreases in others, and finding a
good c is critical and worthy studying in future works.

5.11 Proof of Theorem 2

Proof. Firstly, since r log n = pcK log n elements are se-
lected into V 0 per iteration, and the number of iterations is
log

p
c

n, so the size of V 0 is
|V 0| = pcK log n⇥ log

p
c

n = (pc/ logp
c

)K log

2 n.
(40)

Secondly, combing the results of Lemma 5 and failure prob-
ability n1�qp

log

p
c

n in Proposition 5, we have: with suc-
cess probability 1 � n1�qp

log

p
c

n, 8v 2 V \V 0, w
V

0
v


2w

V

⇤
v

.

Thirdly, since w
V

0
v

 2w
V

⇤
v

, we replace w
u

⇤
vi

vi with
2w

u

⇤
vi

vi in Eq. (18), the rest proof of Theorem 1 leads to

f(S0
) �

�
1� e�1

�
(f(S⇤

)� 2k✏) . (41)
This completes the proof.

5.12 Comparison to Pruning method in [28]

We provide a theoretical comparison to the pruning method
in [28], which removes all elements whose singular gain
f(v)  f(u

k

|V |u
k

), where u
k

is the elements with the kth

largest value of f(u|V \u) in V . Comparing to this method,
SS removes elements by thresholding of edge weights with
form w

uv

= f(v|u)� f(u|V \u). It can be seem that w
uv

involves both the global information f(u|V \u) used in [28]
and local (mutual) relationship f(v|u). We show below that
this helps to remove more elements.

We compare [28] with a simpler thresholding strategy
w

uv

 0 which removes less elements than Algorithm
1, because each iteration of SS equals using a threshold-
ing strategy w

uv

 ⌧ with ⌧ > 0 (it is easy to guarantee
⌧ > 0 by tuning c in Algorithm 1). The simpler strat-
egy keeps u and removes v if w

uv

 0, which equals to
f(v|u)  f(u|V \u). If the reduced ground set is V

0
, the

removed set of elements is
V \V 0

= {v 2 V |f(v|u
v

)� f(u
v

|V \u
v

)  0,
u
v

2 argmin

u2V

0
[f(v|u)� f(u|V \u)]}. (42)

The simpler strategy is lossless on achieved objective value,
because w

uv

is the loss caused by this pruning action, and
a non-positive w

uv

will keep the achieved objective value
the same. Hence, the approximation bound of greedy or
lazy greedy on the reduced ground set is the same as the one
achieved on the original ground set.

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

Pruning method in [28] has the same guarantee (according to
Lemma 1 in [28]). Its reduced ground set can be represented
as

V \V
0
= {v 2 V |f(v)� f(u

k

|V \u
k

)  0}. (43)

The thresholding rules (the inequality) in (42) and (43) have
similar forms now. To discuss their relationship, we consider
two cases in the following.

When u
k

2 V
0
, we have
f(v|u

v

)� f(u
v

|V \u
v

)

= min

u2V

0
[f(v|u)� f(u|V \u)]

 f(v|u
k

)� f(u
k

|V \u
k

)

 f(v)� f(u
k

|V \u
k

).

(44)

So the removed set in (43) is a subset of the removed set in
(42). This indicates that the simpler strategy based on w

uv

can remove more elements.

When u
k

62 V
0
, we can always find a u

0

k

2 V
0

as an
alternative of u

k

such that
f(u

k

|u
0

k

)� f(u
0

k

|V \u
0

k

)  0, (45)
so we have

f(u
k

|V \u
k

)  f(u
k

|u
0

k

)  f(u
0

k

|V \u
0

k

). (46)
Therefore,

f(v|u
v

)� f(u
v

|V \u
v

)

= min

u2V

0
[f(v|u)� f(u|V \u)]

 f(v|u0

k

)� f(u
0

k

|V \u0

k

)

 f(v)� f(u
k

|V \u
k

).

(47)

So the removed set in (43) is a subset of the removed set in
(42). This, again, indicates that the simpler strategy based
on w

uv

can remove more elements.

Combining the two cases, we can conclude that SS can
remove more elements than pruning method in [28].

5.13 Comparison to Parallel Methods

Parallelization can be used to accelerate the computations
within each iteration of SS. Because it only computes some
pairwise edge weights. So parallelization tricks to compute
pairwise measures can be used in our case as well (and
is a widely used method). But in our experiments we se-
quentially compute the edge weights to fairly compare with
the other methods. Moreover, our main contribution is not
a parallel method. Our experiment do not use or require
parallelization. In fact, SS in Algorithm 1 prunes elements
sequentially subset by subset: which subset of elements to
remove relies on which elements have been removed before.

Our major contribution is the graph defined by a new form
of edge weight, and the graph based sequentially pruning
method: it does not rely on any parallelization. The idea
is very different from previous parallel submodular maxi-
mization methods. Our methods are entirely complementary
with those methods, so we do not believe it is necessary to
give a detailed empirical comparison to parallel submodular
maximization.

Figure 7: Statistics of relative utility f(S)/f(S
greedy

),
ROUGE-2 score and F1-score on topic based news summa-
rization results of 60 document sets from DUC2001 training
and test set, comparing to 400-word human generated sum-
mary.

Figure 8: Statistics of relative utility f(S)/f(S
greedy

),
ROUGE-2 score and F1-score on topic based news summa-
rization results of 60 document sets from DUC2001 training
and test set, comparing to 200-word human generated sum-
mary.

5.14 Experiments on DUC2001 News Summarization

We also observe similar result on DUC 2001 corpus, which
are composed of two datasets. The first one includes 60 sets
of documents, each is selected by a NIST assessor because
the documents in a set are related to a same topic. The
assessor also provides four human generated summary of
word count 400, 200, 100, 50 for each set. In Figure 7 and
Figure 8, we report the statistics to ROUGE-2 and F1-score
of summaries of the same size generated by different algo-
rithms. The second dataset is composed of four document
sets associated with four topics. We report the detailed
results in Table 1. Both of them show submodular sparsifi-
cation can achieve similar performance as greedy algorithm,

Scaling Submodular Maximization via Pruned Submodularity Graphs

Table 1: Performance of Lazy greed, sieve-streaming, and submodular sparsification on four topic summarization datasets
from DUC 2001. For each topic, the machine generated summary is compared to four human generated ones of word count
from 50 to 400.

Algorithm words Daycare Healthcare Pres92 Robert Gates
ROUGE2 F1 ROUGE2 F1 ROUGE2 F1 ROUGE2 F1

Lazy Greedy

400 0.836 0.674 0.845 0.686 0.885 0.686 0.849 0.734

200 0.813 0.615 0.811 0.632 0.842 0.623 0.788 0.682

100 0.766 0.542 0.753 0.605 0.618 0.420 0.715 0.621

50 0.674 0.484 0.765 0.539 0.602 0.341 0.631 0.514

Sieve-Streaming

400 0.825 0.687 0.814 0.711 0.827 0.710 0.798 0.745

200 0.789 0.627 0.782 0.675 0.670 0.659 0.691 0.688

100 0.747 0.542 0.658 0.597 0.414 0.443 0.632 0.620

50 0.607 0.475 0.681 0.551 0.413 0.345 0.553 0.477

SS

400 0.837 0.674 0.845 0.686 0.883 0.685 0.849 0.734

200 0.813 0.615 0.811 0.632 0.842 0.623 0.788 0.682

100 0.766 0.542 0.753 0.605 0.617 0.420 0.715 0.621

50 0.674 0.484 0.765 0.539 0.602 0.341 0.631 0.514

whereas outperforms sieve-streaming.

5.15 Experiments on Video Summarization

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

Figure 9: F1-score of the summaries generated by lazy greedy (“•”), sieve-streaming (“⇥”), submodular sparsification
(“⌥”) and the first 15% frames (“·”) comparing to reference summaries of different sizes between [0.02|V |, 0.32|V |] based
on ground truth score (voting from 15 users) on 25 videos from SumMe. Each plot associates with a video.

Figure 10: Recall of the summaries generated by lazy greedy (“•”), sieve-streaming (“⇥”), submodular sparsification (“⌥”)
and the first 15% frames (“·”) comparing to reference summaries of different sizes between [0.02|V |, 0.32|V |] based on
ground truth score (voting from 15 users) on 25 videos from SumMe. Each plot associates with a video.

Scaling Submodular Maximization via Pruned Submodularity Graphs

Figure 11: Recall of the summaries generated by greedy (yellow bar), sieve-streaming (cyan bar), SS (magenta bar) and the
first 15% frames (green bar) comparing to reference summaries from 15 users on 25 videos from SumMe dataset. Each plot
associates with a video.

Table 2: Information of SumMe dataset and time cost (CPU seconds) of different algorithms.
Video #frames |V 0| Lazy Greedy Sieve-streaming SS
Air Force One 4494 1031 907.3712 3.9182 71.4521
Base jumping 4729 1074 164.1434 5.5865 84.6877
Bearpark climbing 3341 1038 177.8583 3.7311 48.0415
Bike polo 3064 866 96.5305 3.9578 36.4832
Bus in rock tunnel 5131 1387 505.7766 6.0088 125.8121
Car over camera 4382 1396 146.9416 5.3323 69.6157
Car railcrossing 5075 1210 852.1686 5.2265 96.2396
Cockpit landing 9046 2292 669.8063 12.3186 212.7866
Cooking 1286 200 30.0717 1.2868 5.7096
Eiffel tower 4971 1647 304.2690 5.4755 86.5552
Excavators river crossing 9721 1971 1507.3028 13.8139 284.5136
Fire Domino 1612 464 34.2871 1.8814 9.9833
Jumps 950 308 15.0508 0.9055 4.8719
Kids playing in leaves 3187 986 221.4644 3.4660 41.1956
Notre Dame 4608 1136 169.1235 5.1406 72.9076
Paintball 6096 1664 763.3255 6.7853 128.1723
Paluma jump 2574 727 210.8670 2.5342 26.7430
Playing ball 3120 697 132.7437 3.2250 32.3198
Playing on water slide 3065 778 111.7358 3.4088 30.4131
Saving dolphines 6683 1860 435.0732 7.3322 121.5891
Scuba 2221 775 45.6177 2.5213 18.4227
St Maarten Landing 1751 628 19.0717 2.8701 12.4074
Statue of Liberty 3863 1223 160.7075 4.0164 55.7420
Uncut evening flight 9672 3324 718.7015 14.6717 208.8540
Valparaiso downhill 5178 1438 428.3941 6.0002 154.5902

	Introduction
	Main Contribution
	Related Work

	Submodularity Graph
	Submodular Sparsification
	Pruning as Submodular Maximization
	Randomized Pruning
	Analysis of Submodular Sparsification
	Additional Improvements

	Experiments
	Empirical Study on News
	News Summarization
	Video Summarization

	Appendix
	Proof of Lemma 3
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Lemma 5
	Proof of Proposition 5
	Discussion of q
	Proof of Theorem 2
	Comparison to Pruning method in fast-multi-stage
	Comparison to Parallel Methods
	Experiments on DUC2001 News Summarization
	Experiments on Video Summarization

