
Scaling Submodular Maximization via Pruned Submodularity Graphs

Tianyi Zhou Hua Ouyang Jeff Bilmes Yi Chang Carlos Guestrin
University of Washington

tianyizh@uw.edu

Apple

huaouyang@gmail.com

University of Washington

bilmes@uw.edu

Huawei Research America

yichang@acm.org

University of Washington

guestrin@uw.edu

Abstract

We propose a new randomized pruning method
(called “submodular sparsification (SS)”) to
reduce the cost of submodular maximization. The
pruning is applied via a “submodularity graph”
over the n ground elements, where each directed
edge is associated with a pairwise dependency
defined by the submodular function. In each step,
SS prunes a 1� 1/

p
c (for c > 1) fraction of the

nodes using weights on edges computed based on
only a small number (O(log n)) of randomly sam-
pled nodes. The algorithm requires logp

c

n steps
with a small and highly parallelizable per-step
computation. An accuracy-speed tradeoff param-
eter c, set e.g. as c = 8, leads to a fast shrink ratep
2/4 and small iteration complexity log

2

p
2

n.
Analysis shows that w.h.p., the greedy algorithm
on the pruned set of size O(log

2 n) can achieve a
guarantee similar to that of processing the original
dataset. In news and video summarization tasks,
SS is able to substantially reduce both computa-
tional costs and memory usage, while maintaining
(or even slightly exceeding) the quality of the
original (and more costly) greedy algorithm.

1 Introduction

Machine learning applications benefit from the existence of
large volumes of data. The recent explosive growth of data,
however, poses serious challenges both to humans and ma-
chines. One of the primary goals of a summarization process
is to select a representative subset that reduces redundancy
but preserves fidelity to the original data [19]. Any further
processing on only a summary (a small representative set)
by either a human or machine thus reduces computation,
memory requirements, and overall effort. Summarization
has many applications such as news digesting, photo stream

Proceedings of the 20th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida,
USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s).

presenting, data subset selection, and video thumbnailing.
A summarization algorithm, however, involves challenging
combinatorial optimization problems, whose quality and
speed heavily depend on the objective that assigns quality
scores to candidate summaries.

Submodular functions [11, 19] are broadly applied as ob-
jectives for summarization, since they naturally capture re-
dundancy amongst groups of data elements. A submodular
function is a set function f : 2

V ! R with a diminishing
returns property, i.e., given a finite “ground” set V , and any
A ✓ B ✓ V and a v /2 B, we have:

f(v [A)� f(A) � f(v [B)� f(B). (1)
This implies v is more important to the smaller set A than
to the larger set B. The increase f(v [A)� f(A) reflects
the importance of v to A and is called the “marginal gain”
f(v|A) of v conditioned on A. The objective f(·) can be
chosen from a large family of functions (e.g., including
but not limited to facility location and set cover functions).
Usually one requires a small summary, so a cardinality-
based budget is used. Hence, a summarization task can be
cast as the following:

max

S✓V,|S|k

f(S). (2)

Knapsacks and matroids are also often used as constraints.
In this paper, however, we will primarily be concerned with
cardinality constraints, but our methods do generalize to
other constraints as well.

Though submodular maximization is NP-hard, a near op-
timal solution of (2) can be achieved via the greedy algo-
rithm, having an approximation factor of 1� 1/e [25]. The
greedy algorithm starts with S ;, and selects the next
element with the largest marginal gain f(v|S) from V \S,
i.e., S S [{v⇤} where v⇤ 2 argmax

v2V \S f(v|S), and
this repeats until |S| = k. It is simple to implement and
usually outperforms other methods, e.g., those based on
integer linear programming.

Scaling up the greedy algorithm to very large data sizes
(where |V | = n is big) is a nontrivial practical problem.
The per-step computation of greedy is expensive: each step
needs to re-evaluate the marginal gains of all elements in
V \S conditioned on the new S, and thus requires O(n)
function evaluations. In addition, each step depends on the

Scaling Submodular Maximization via Pruned Submodularity Graphs

results from previous steps, so the computation does not
trivially parallelize. Moreover, one typically must keep all n
elements in memory until the end of the algorithm, since any
element might become the one with the largest marginal gain
f(v|S) as S grows. To overcome this problem, it would be
helpful to have an economical screening method to reduce
the data size before the costly submodular maximization is
performed. While related work is described in §1.2, we next
describe the contributions of this work.

1.1 Main Contribution
A submodular function f can describe higher order relation-
ships among multiple (� 3) elements via f(v|S). In the
greedy algorithm, selecting important elements (for max-
imizing f) requires evaluating f(v|S) for all v 2 V \S in
each step. In this paper, we show that removing unimportant
elements from V only needs a rough estimate of f(v|S),
one that can be derived solely from pairwise relationships
f(v|u) for a small set of element pairs (u, v). We encode the
pairwise relationships as edge weights in a “submodularity
graph”. By taking advantage of the properties of this graph,
the size of the ground set V can be efficiently reduced from
n to O(log

2 n) by randomly pruning the nodes on the graph
according to a subset of the edge weights.

In particular, given objective f , we define a directed sub-
modularity graph whose nodes are the n elements in V , and
each edge u ! v from tail u to head v is associated with
a weight w

u!v

⌘ w
uv

= f(v|u)� f(u|V \u) that reflects
the worst-case net loss when maximizing f caused by re-
moving v while retaining u (f(v|u) is the greatest loss when
removing v while retaining u while f(u|V \ u) is the least
gain of retaining u). Intuitively, removing head nodes from
V with small-weight edges reduces the ground set from V
to a (hopefully much) smaller V 0, and selecting elements
from V 0 rather than V causes a small overall objective loss
but can be much faster.

Finding, however, the smallest V 0 ✓ V such that the re-
sulting objective loss can be upper bounded by some con-
stant turns out to be another challenging non-monotone
submodular maximization problem, leading to a chicken-
and-egg situation. In addition, finding a near optimal so-
lution to this problem requires computing weights on all
n(n � 1) = O(n2

) edges. We instead propose a random-
ized pruning method called “submodular sparsification (SS)”
to reduce the ground set. By leveraging a directed trian-
gle inequality on the submodularity graph (Lemma 3), SS
only needs to compute partial weights on a few randomly
selected edges, and this only slightly increases the objec-
tive loss caused by using the reduced set V 0 rather than
V . At each step, SS randomly samples O(log n) elements
from V as probes, and removes a 1 � 1/

p
c fraction of

head elements in V that have the smallest weights from
amongst the randomly selected elements. When tradeoff
parameter c > 1 increases, the success probability of the
randomized algorithm increases, but memory size |V 0| also

increases. With c set to c = 8, 1 � 1/
p
c ' 64.6% of ele-

ments can be dropped per iteration, so the number of itera-
tions logp

c

n = log

2

p
2

n is small ( 5 in our experiments).
The per-iteration complexity is dominated by pairwise edge-
weight computations, which requires at most O(n log n)
function evaluations. However, it is highly parallelizable,
and is negligible if the objective is graph based. Hence, SS
can be scaled to large data sizes. SS can be applied before
any algorithm for submodular maximization even with a
non-monotone objective or general constraints although the
bound in Theorem 1&2 holds only in the monotone case —
the other theoretical properties only rely on submodularity
and can be extended to more general cases.

In experiments, we compare SS with the lazy greedy and
sieve-streaming algorithm [1] on real-world news and video
summarization datasets. Using the lazy greedy algorithm
with an SS-reduced ground set, we achieve quality similar
to that on the original ground set, but with computation and
memory load greatly reduced and, in fact, comparable to a
streaming algorithm whose quality is usually much worse
than offline methods.

1.2 Related Work

A number of methods have been proposed to accelerate the
speed of the greedy algorithm. Most of them, however, aim
to reduce or distribute the computation rather than the mem-
ory, and rarely do they study how to reduce the ground set
V . Therefore, their contributions are mostly complemen-
tary with SS (i.e., they can be combined with SS to further
improve algorithmic scalability).

The lazy, or accelerated, greedy algorithm [20, 17] reduces
the number of function evaluations per step by lazily updat-
ing a priority queue of marginal gains over all elements. At
each step, the algorithm repeatedly updates f(v|S) of the
top element and re-inserts it to a queue until the top element
does not change position in the queue — it then adds this
element to the running solution. Due to submodularity, the
lazy greedy algorithm has the same output and mathematical
guarantee as the original greedy algorithm, but significantly
reduces computation in practice, but in the worst case it is
as slow (if not slower) than the original greedy algorithm.

Approximate greedy algorithms further reduce the num-
ber of function evaluations per step at a cost of a worse
approximation factor. In [28, 2], each step only approxi-
mates identifying the element with the largest marginal gain
max

v2V \S f(v|S) by finding any element whose marginal
gain is larger than a fraction � of max

v2V \S f(v|S) of its
upper bound. The “lazier than lazy greedy” approach [22]
selects the element from a random subset V 0 ✓ V \S of
size O(n/k) (more than O(log n)) of SS in each step, so
only the marginal gains of v 2 V 0 need be computed. A
similar algorithm in [7] randomly selects an element from a
reasonably good subset V 0 ✓ V \S per step, and extends to
the non-monotone case.

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

Streaming submodular maximization [1, 8, 9, 12, 4] studies
how to approximate the greedy algorithm in one pass of
data under a limited memory budget (i.e., the algorithm
can access only a small number of elements in the stream
history at a time). The best known approximation factor
and hardness are both 1/2 [1, 8], worse than the 1 � 1/e
of the offline greedy algorithm.

Distributed and parallel greedy algorithms [23, 27, 3] typ-
ically partition the ground set into several not-necessarily
disjoint pieces and assigns them to multiple machines, then
run greedy on each machine, and finally combine the results.
These approaches fall into the framework of composable
coresets. The existence of such methods for some important
submodular maximization problems is not always possi-
ble [14]. In [21], a 1/3-randomized composable coreset
method is proposed to achieve an expected bound for the
combined solution. The major difference of this paper is that
we study how to reduce the ground set rather than partition
it, by developing a coreset-like algorithm on a submodular-
ity graph rather than running greedy algorithm to achieve
coreset on each machine.1 However, by replacing the greedy
algorithm on each machine with SS, we can further speed
up distributed submodular maximization by speeding up
the computation at each parallel node. Pruning methods
by thresholding marginal gains was used for distributed
submodular cover problem [24]. The major difference is
that we use a graph based strategy, and our thresholding is
applied to the edge weights rather than the marginal gains.

Another class of methods [16, 28] accelerates the greedy
algorithm by maximizing a surrogate function whose evalu-
ation is faster and cheaper than the original objective. The
surrogate can be either a tight modular lower bound or a sim-
pler submodular function. It can also be adaptively changed
in each step to better approach the original objective. In [28],
a simple pruning method is used to reduce V by exploiting
f(v|V \v), a lower bound of f(v|S) for S ✓ V . E.g., ele-
ment u whose singleton gain f(u) is less than the kth largest
f(v|V \v) over all v 2 V can be safely removed. Besides
exploiting the global redundancy of v via f(v|V \v), the
weight w

uv

used in SS further takes the pairwise relation-
ship f(v|u) into account for further ground set reduction2.
SS can also use the pruning method in [28] as an initial step.

2 Submodularity Graph

We next introduce the “submodularity graph,” a useful tool
to explore the redundancy of ground sets V in a submodular
maximization process.

Definition 1. The submodularity graph is a weighted di-
rected graph G(V,E,w) defined by a normalized submod-
ular function f : 2

V ! R
+

where V is the set of nodes

1More discussion can be found at §5.13.
2A theoretical comparison is given in §5.12 of [30]

corresponding to the ground set, and each directed edge
e = (u! v) = (u, v) 2 E from u to v has weight:

w
uv

= f(v|u)� f(u|V \u). (3)

Intuitively, the weight w
uv

measures the worst case net loss
in maximizing f(S) on a reduced set V 0 with v removed
and u retained. In Eq. (3), f(v|u) is the maximum possi-
ble gain v can offer a set involving u, while f(u|V \u) is
the minimal possible gain u can contribute to the solution
S because f(u|S) � f(u|V \u) holds by submodularity.
Hence, a small f(v|u) indicates v is unimportant if u is
retained in a solution, while a large f(u|V \u) implies that
u is always important. Taken together, a small w

uv

would
suggest removing v while keeping u. Note w

uv

is a net
loss, combining both the “local” importance of f(v|u) and
the “global” importance of f(u|V \u). Previous work such
as [28] and curvature based methods [15] do not leverage
local and global importance in the same way.

We further generalize G(V,E) to a “conditional submod-
ularity graph” G(V,E|S) describing the pairwise relation-
ships conditioned on set S ✓ V . Accordingly, the edge
weight on e = (u, v) is:

w
uv|S = f(v|S [u)� f(u|V \u). (4)

G(V,E|S) reduces to G(V,E) when S = ;, usually the
starting set in a greedy submodular maximization procedure.
Below we give a detailed analysis of how edge weight w

uv

can be used to remove elements from V . For notational
simplicity, we use “+” to denote the set union “[,” and “�”
for set subtraction “\”. Let’s study two properties of w

uv|S .

Lemma 1. If P ✓ S ✓ V , for any u, v 2 V such that
u, v /2 S, w

uv|S  w
uv|P .

Proof. Submodularity requires f(v|S + u)  f(v|P + u).
From the definition of w

uv|S in (4), the conclusion is imme-
diate.

Lemma 2. For any u, v 2 V and S ✓ V , if u 6= v and
u, v /2 S, then

f(v|S)  f(u|S) + w
uv|S . (5)

Proof.
f(v|S) = f(u|S) + f(v|u+ S)� f(u|v + S)

 f(u|S) + f(v|u+ S)� f(u|V � u)

= f(u|S) + w
uv|S . (6)

The first equality is obtained using the definition of the
marginal gain, while the inequality is from submodularity
and since (v + S) ✓ (V � u).

Lemmas 1 and 2 state that the weight w
uv

relates the two
marginal gains of u and v relative to S. The gain f(v|S) is
important for various submodular maximization algorithms
since it measures how much f(S) is improved by adding v
to S. Each step of the greedy algorithm selects the element
with the largest f(v|S), i.e., S argmax

x2V

f(x|S) [S,
and f(S) increases by f(v|S).

Scaling Submodular Maximization via Pruned Submodularity Graphs

If v 2 argmax

x2V \S f(x|S) should be selected by the
greedy algorithm at the current step, but for some reason
is missing in V 0 ✓ V (a reduced ground set), then greedy
instead selects u 2 argmax

x2V

0 f(x|S). In this case, the
objective f(S) increases by f(u|S)  f(v|S) rather than
f(v|S). By the relative optimality of u in V 0 and Lemma 2,

f(u|S) � f(argmin

x2V

0\S
w

xv|S |S)

� f(v|S)� min

x2V

0\S
w

xv|S . (7)

Hence, the objective loss caused by removing v from V and
using u instead is at most the minimal weight over all edges
entering v from other elements in V 0. In other words, an
upper bound on the price for pruning v is min

x2V

0 w
xv|S ,

which reflects the contribution of v to the set V 0. If it is
small, the objective loss is, relatively speaking, negligible
and v may be removed with impunity. We hence define this
concept as a “divergence” of v from V 0 on G(V,E|S):
Definition 2. On the submodularity graph G(V,E), the
divergence w

V

0
v

of a node v 2 V from a set of nodes V 0 is
defined as w

V

0
v

= min

x2V

0 w
xv

. Similarly, the divergence
w

V

0
v|S on the conditional submodularity graph G(V,E|S)

is defined as w
V

0
v|S = min

x2V

0\S w
xv|S .

Although the edge weights w
uv

are asymmetric, we next
show that a directed triangle inequality holds on G(V,E).
This plays significant role in SS, since it provides an upper
bound on an edge weight based on weights of adjacent
edges, and thus avoids needing to compute all the edge
weights exactly.
Lemma 3. For u, v, x 2 V , we have w

vx

 w
vu

+ w
ux

.

The proof is given in [30]. A similar inequality also holds
for w

uv|S defined on G(V,E|S).

3 Submodular Sparsification

In this section, we introduce submodular sparsification (SS),
a randomized pruning algorithm that reduces V to V 0 ✓ V
without drastically hurting the optimality of submodular
maximization. Although pruning the conditional submodu-
larity graph G(V,E|S) with the greedy algorithm can rule
out additional elements, here we focus on reducing V before
running any submodular maximization algorithm, i.e., when
S = ;, but SS can be easily extended to G(V,E|S).

3.1 Pruning as Submodular Maximization

According to Eq. (7) and Definition 2, small w
V

0
v

for all
pruned elements v 2 V \V 0 leads to small loss in the per-
step increase of objective function by the greedy algorithm.
By setting an upper bound ✏ for the loss, the following seeks
the smallest pruned set V 0 for use in the maximization of f .
Definition 3 (submodular sparsification). The submodular
sparsification problem is to solve:

max

V

0✓V

h(V 0
) := |{v 2 V \V 0

: w
V

0
v

 ✏}| . (8)

Proposition 1. The objective function h(·) in Eq. 8 is non-
monotone submodular.

The proof is in [30]. Note the problem is ✏-dependent. Let
V ⇤ be the optimal solution of Eq. (8) and K , |V ⇤|, then
K decreases when increasing ✏. When ✏ = 0, the tolerance
to the loss caused by pruning is zero. So no element can
be removed (i.e., V ⇤

= V), and running greedy on V ⇤ has
bound

�
1� e�1

�
f(S⇤

). The proof also shows h(V 0
) is

monotone in ✏. Running greedy on V ⇤ rather than V yields:

Theorem 1. Let S⇤ 2 argmax

S✓V,|S|k

f(S), where
f : 2

V ! R
+

is normalized non-decreasing and sub-
modular, let S0 be a greedy solution to the problem
max

S✓V

⇤
,|S|k

f(S). If |V ⇤| � k, the following approxi-
mation bound holds for S0.

f(S0
) �

�
1� e�1

�
(f(S⇤

)� k✏) . (9)

A proof of this is given in [30]. Unfortunately, solving
Eq. (8) leads to a chicken-and-egg problem: even approx-
imately solving this unconstrained non-monotone submod-
ular maximization requires an expensive bi-directional
randomized greedy algorithm [6] having approximation
factor 1/2 and that is slow in practice. Also, when f is
not a graph based submodular function (such as facility
location or saturated coverage), solving Eq. (8) requires a
costly computation of the weights on all n(n� 1) edges.

3.2 Randomized Pruning

Drawing inspiration from bi-criteria k-clustering in Eu-
clidean space [10], we develop a randomized pruning
method (“submodular sparsification (SS)”) on a submodular-
ity graph to produce a reduced ground set V 0 without either
computing all n(n � 1) weights or running bi-directional
greedy. The submodular sparsification procedure is given

Algorithm 1 Submodular Sparsification (SS)
1: Input: V , f , r, c
2: Output: V 0

3: Initialize: V 0 ;, n |V |
4: while |V | > r log n do
5: Sample r log n items uniformly at random from V

and place them in U ;
6: V V \U ;
7: V 0 V 0 [U ;
8: for v 2 V do
9: w

Uv

 min

u2U

[f(v|u)� f(u|V \u)]
10: end for
11: Remove (1� 1/

p
c)|V | elements from V having the

smallest w
Uv

;
12: end while
13: V 0 V [V 0

in Algorithm 1. It starts from the original ground set V and
an empty set V 0. At each iteration, it randomly samples a

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

size-(r log n) set3 of elements U from the current V , acting
as probes to test the redundancy of the remaining elements
in V , that are removed from V and added to V 0. It then
removes the top (1 � 1/

p
c)|V | elements from V having

the smallest divergence w
Uv

from U on G(V,E) because
of their unimportance to U . The procedure repeats and the
size of V shrinks exponentially fast (with a shrink rate of
1/
p
c) until it falls below a threshold. The parameter r con-

trols the size of a probe set U and influences the size of
the final V 0. In our analysis below, we set r = O(cK) for
c > 1 to produce a sufficiently large success probability.
In practice, we choose c = 8 to produce a fast shrink rate
1/
p
c =
p
2/4 < 1/2, since it can remove more than half

(⇡ 64.6%) of V per step. With r = O(cK), since K is
unknown in practice, we find that r = 8, also, empirically
works well (see Section 4).

Algorithm 1 finishes in log

p
c

n iterations. It leads to
small iteration complexity log

2

p
2

n when c = 8. The
per iteration computation is dominated by computing
w

Uv

, which requires calculating O(n log n) pairwise
relationships. This can be simplified if f is graph based4,
because the first O(n) greedy step already requires all
of the pairwise similarities/distances needed for further
f evaluations. When f is not graph based, this can be
accelerated via parallelization, since disjoint pairs u, v
in the set {f(u|v)}

u,v

may be independently computed.
f(u|V \ u) may be precomputed once in linear time.

3.3 Analysis of Submodular Sparsification

According to Lemma 2, a small w
uv

leads to a small ob-
jective loss when v is removed and u retained. Instead of
solving non-monotone submodular maximization in Eq. (8),
SS randomly selects probes u 2 U to rule out elements v
from V . The following lemma uses the directed triangle
inequality in Lemma 3 to study which us, if sampled, can
lead to a relatively small w

uv

and thus a small w
Uv

in Algo-
rithm 1. Proofs of all the following results can be found in
[30].

Lemma 4. Let u⇤
v

2 argmin

u2V

⇤ w
uv

be the tail node
of an edge with the minimal weight over all edges from
elements in V ⇤ to head v. Then, for any item v 2 V , 8u 2
P (u⇤

v

) \Q(u⇤
v

) where
P (u⇤

v

) = {u 2 V : f(u+ u⇤
v

)  f(v + u⇤
v

)},
Q(u⇤

v

) = {u 2 V : f(u) + f(u|V \u) �
f(u⇤

v

) + f(u⇤
v

|V \u⇤
v

)}. (10)
we have that w

uv

 2w
u

⇤
vv

.

Lemma 4 states that for any item v, if P (u⇤
v

) \Q(u⇤
v

) 6= ;
and at least one u 2 P (u⇤

v

) \ Q(u⇤
v

) is sampled in Algo-

3The base of all logarithms is 2 if not otherwise specified.
4Which means f is defined based on an underlying weighted

graph whose weight is usually given by pairwise similarity. Exam-
ples include facility location and saturated coverage [19].

rithm 1, then w
uv

, the maximal loss in f(S) caused by
dropping v, is sufficiently small, so v can be safely removed.
The below discusses how to sample us and drop vs.
Proposition 2. For an element u⇤ 2 V ⇤ and c > 1, de-
fine its |V |/(cK)-NN ball B (u⇤, |V |/(cK)) as the set of
|V |/(cK) elements in V with the smallest f(u+ u⇤

), and
let V

u

⇤
= {v 2 V : u⇤

v

= u⇤} denote the set of elements
ruled out by u⇤. If one u 2 B(u⇤, |V |/(cK)) \ Q(u⇤

) is
sampled into U in some iteration of Algorithm 1, then all
the elements in V

u

⇤ outside the ball fulfill the following:

8v 2 V
u

⇤\B
⇣
u⇤, |V |/(cK)

⌘
, w

uv

 2w
u

⇤
v

. (11)
Based on Proposition 2, we can derive the maximal number
of removed elements v whose importance represented by
w

Uv

cannot be upper bounded.
Proposition 3. For each u⇤ 2 V ⇤, if one u 2
B (u⇤, |V |/(cK)) \ Q(u⇤

) is sampled into U and added
to V 0 in some iteration of Algorithm 1, then

|{x 2 V : w
Ux

� 2w
V

⇤
x

}|  |V |/c. (12)
The following proposition explains why Algorithm 1 re-
duces ground set V exponentially by a ratio of 1 � 1/

p
c.

It also shows that all the pruned elements v satisfy w
Uv


2w

V

⇤
v

, which indicates that ruling out them from V will
lead to at most a 2w

V

⇤
v

loss in objective f(S).
Proposition 4. Before line 11 of Algorithm 1, the following
holds.

|{v 2 V : w
Uv

 2w
V

⇤
v

}| �
�
1� 1/

p
c
�
|V |. (13)

Therefore, it is safe to remove the 1 � 1/
p
c fraction of

items from V with the smallest w
Uv

, since their importance
w

Uv

can be upper bounded. Proposition 4 results in the
following Lemma.
Lemma 5. For each u⇤ 2 V ⇤, if at least one u 2
B (u⇤, |V |/(cK)) \ Q(u⇤

) is sampled and added into U ,
8v 2 V \V 0 where V 0 is the output of Algorithm 1, we have
w

V

0
v

 2w
V

⇤
v

.

Now we study the failure probability, i.e., the probability
that the condition in Lemma 5 is not true.
Proposition 5. If for each u⇤ 2 V ⇤,
Pr [u 2 Q(u⇤

)|u 2 B(u⇤, |V |/(cK))] � q for an item u
uniformly sampled from V , and if r = O(cK) = pcK, then
the probability that no u 2 B (u⇤, |V |/(cK)) \ Q(u⇤

) is
sampled and added into U for at least one u⇤ 2 V ⇤ in at
least one iteration of Algorithm 1 is at most n1�qp

log

p
c

n.
Although Pr [u 2 Q(u⇤

)|u 2 B(u⇤, |V |/(cK))] is a data
dependent term that is hard to analyze, there exist several
choices for its lower bound q, which are more interpretable
and increases when reducing c. The details are given in [30].
In §3.4, we provide an importance re-sampling method that
can effectively increase q in practice.

By using Lemma 5 and Proposition 5, we replace ✏ in the
proof of Theorem 1 with 2✏, which yields:
Theorem 2. Under the assumptions in Proposition 5,
the size of the output V 0 of Algorithm 1 is |V 0| =

Scaling Submodular Maximization via Pruned Submodularity Graphs

(cp/ log
p
c)K log

2 n. With high probability, i.e., 1 �
n1�qp

log

p
c

n, we have that 8v 2 V \V 0, w
V

0
v

 2w
V

⇤
v

,
and thus the greedy algorithm on V 0 outputs a solution S0

such that
f(S0

) �
�
1� e�1

�
(f(S⇤

)� 2k✏) , (14)
where S⇤ is the optimal solution to Eq. (2), and k is the
budget in Eq. (2).

Remarks: Critically, via ✏, the above analysis shows a trade-
off between: 1) the approximation bound, 2) the size of V 0

(the memory load), and 3) the computational cost. The ap-
proximation bound Eq. (14) can be improved if ✏ in Eq. (8)
is small, but a smaller ✏ leads to larger K = |V ⇤| (size
of the optimal solution to Eq. (8)). This results in a larger
reduced set V 0 of size (cp/ log

p
c)K log

2 n; and a larger
V 0 produced by Algorithm 1 means more computation per
step. It also shows a tradeoff between the success probabil-
ity and |V 0| (which is proportional to the memory and the
computational cost) via c and p: if c or p is large, the suc-
cess probability 1� n1�qp

log

p
c

n increases, but |V 0| also
increases. Given ✏ that measures the loss from approximate
optimality (the 1� 1/e guarantee), K 2 [1, |V |] measures
the ✏-reducibility of V . In Theorem 2, although K and q is
hard to know, we can adjust c and p (by adjusting c = pcK)
to achieve a small |V 0| and high success probability. SS
fails when K = |V | because |V 0| � K. On real datasets we
observe |V 0|⌧ |V | even when ✏ is small, thus suggesting a
large zone of practical success for SS.

SS can also reduce the ground set for non-monotone sub-
modular maximization monotone under general constraints
(e.g., knapsack or matroid) by applying it before any al-
gorithm runs. All previous analysis still holds in general
except Theorem 1 and Theorem 2, whose proofs rely on a
cardinality constraint and monotonicity. They can be eas-
ily modified, however, by applying Eq. (18) to the proof
procedure of the other algorithm’s bound. The fundamen-
tal reason is that the properties (Lemmas 1-3) of weight
w

uv

on the submodularity graph G(V,E) depend only on
submodularity and non-negativity of f .

3.4 Additional Improvements

In practice, several techniques can be further applied to
Algorithm 1 to improve either its effectiveness or efficiency.
Firstly, the pruning technique based on f(u|V \u) proposed
in [28] can be applied to V before running Algorithm 1 to
rule out additional elements and save computation.

The second improvement would apply importance re-
sampling to the uniformly sampled probes in U after Line
5 of Algorithm 1. According to Proposition 5, uniform
sampling leads to large Pr [u 2 B (u⇤, |V |/(cK))], while
re-sampling u with large f(u) + f(u|V \u) increases the
probability Pr [u 2 Q(u⇤

v

)|u 2 B (u⇤, |V |/(cK))] and thus
its lower bound q, which results in a larger success proba-
bility 1 � n1�qp

log

p
c

n. Intuitively, large f(u) suggests

Figure 1: Utility f(S) and time cost vs. size of data n

Figure 2: Relative utility f(S)/f(S
greedy

) and time cost
associated with different sizes of reduced set V 0, which cor-
respond to 10 different values of r varying between [2, 20]
with step size 2.

u may be important, while large f(u|V \u) indicates its
importance is undiminished by other elements in V .

The third strategy is to further reduce V 0 by exploring its re-
dundancy. In particular, after Algorithm 1, the bi-directional
greedy algorithm [6] can be used to solve Eq. (8) defined on
the reduced ground set V 0. Since V 0 is much smaller than
V , the cost may be acceptable.

4 Experiments
In this section, on several news and video datasets, we
compare the summary achieved by running the greedy
algorithm on the reduced set V 0 of SS with summaries
achieved by other algorithms on the original set V . We
use the feature based submodular function [29] f(S) =P

u2U
p
c
u

(S) as our objective, where U is a set of fea-
tures, and c

u

(S) =
P

v2S

!
v,u

is a modular score (!
v,u

is
the affinity of element v to feature u). This function typi-
cally achieves good performance on summarization tasks.

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

Figure 3: Statistics of relative utility f(S)/f(S
greedy

),
ROUGE-2 score and F1-score on daily news summarization
results of 3823 days’ news from New York Times corpus
between 1996-2007.

Our baseline algorithms are the lazy greedy approach [20]
(which has identical output as greedy but is faster) and
the “sieve-streaming” [1] approach for streaming submod-
ular maximization, which has low memory requirements
as it takes one pass over the data. We set r = 8 and
1� 1/

p
c = 1�

p
2/4 ⇡ 64.6% in Algorithm 1.

4.1 Empirical Study on News

An empirical study is conducted on a ground set containing
sentences from all NYT articles on a randomly selected
date from the NYTs annotated corpus 1996-2007 (https:
//catalog.ldc.upenn.edu/LDC2008T19). Fig-
ure 1 shows how f(S) and time cost varies when we change
n. The budget size k of the summary set to the number of
sentences in a human generated summary. The number of
trials in sieve-streaming is 50, leading to memory require-
ment of 50k. The utility curve of SS overlaps that of lazy
greedy, while its time cost is much less and increases more
slowly than that of lazy greedy. Sieve-streaming performs
much worse than SS in terms of utility (a 10% smaller utility
usually leads to substantial decline on summarization per-
formance, please refer to Figure 3), and its time cost is only
slightly less (this is because it quickly saturates by selecting
k elements after passing a few (⌧ |V |) elements). Figure 2
shows how relative utility f(S)/f(S

greedy

) (S
greedy

is the
greedy solution) and SS time cost vary with the size of the re-
duced set V 0. SS quickly reaches a f(S) = 0.97f(S

greedy

)

once the size exceeds 300, while its computational cost
increases slowly.

4.2 News Summarization
We conduct summarization experiments on two large news
corpora, the NYTs annotated corpus 1996-2007, and the
DUC 2001 corpus (http://www-nlpir.nist.gov/

Figure 4: Size of data n vs. time cost on daily news summa-
rization results of 3823 days’ news from New York Times
corpus between 1996-2007. The area of each circle is pro-
portional to the relative utility f(S)/f(S

greedy

).

Figure 5: Scatter plot of relative utility f(S)/f(S
greedy

)

achieved by submodular sparsification on the 3823 days’
news with the corresponding size of ground set V and the
size of reduced set V 0. Each point corresponds to one day.

projects/duc). The first dataset includes articles pub-
lished in the NYTs over 3823 days from 1996-2007. We
collect the sentences in articles associated with human gen-
erated summaries as the ground set V (with sizes varying
from 2000 to 20000), and extract their TFIDF features to
build f(S). We concatenate the sentences from all human
generated summaries for the same date as a reference sum-
mary. We compare the machine generated summaries pro-
duced by different methods with the reference summary by
ROUGE-2 [18] (recall on 2-grams) and ROUGE-2 F1-score
(F1-measure based on recall and precision on 2-grams).

We also compare their relative utility. As before, sieve-
streaming has memory set at 50k. The statistics over 3823
days are shown in Figure 3. SS has a relative utility of
� 0.99 on most days, while sieve-streaming is mostly in
the [0.92, 0.93] region. Both the ROUGE-2 and F1 score

https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
http://www-nlpir.nist.gov/projects/duc
http://www-nlpir.nist.gov/projects/duc

Scaling Submodular Maximization via Pruned Submodularity Graphs

Figure 6: F1-score of the summaries generated by greedy (yellow bar), sieve-streaming (cyan bar), SS (magenta bar) and
the first 15% frames (green bar) comparing to reference summaries from 15 users on 25 videos from SumMe dataset. Each
plot associates with a video.

of SS are better than sieve-streaming, and even outperform
greedy a bit. This may be because SS removes many of the
elements on which greedy might become trapped in some
local sub-optimal region.

Figure 4 shows the number n of sentences per day and
the corresponding time cost of each algorithm. The area
of each circle is proportional to relative utility. We use a
log scale time axis for a wider dynamic range. SS reduces
computation over lazy greedy especially when n is large.
Sieve-streaming’s time cost decreases when n � 6000, but
its relative utility is reduced due to the aforementioned early
saturating. Figure 5 shows the distribution of relative utility
achieved by SS with different data sizes n and reduced
ground set sizes over 3823 different days. The relative
utility of SS is � 0.99 on most days, and even � 1 when
n  6000. This indicates that summarization on the reduced
set V 0 achieved by SS can even occasionally outperform
that on the original ground set V .

4.3 Video Summarization

We apply lazy greedy, sieve-streaming, and SS to 25 videos
from dataset SumMe [13] (http://www.vision.ee.
ethz.ch/~gyglim/vsum/). Each video has 1000 ⇠
10000 frames as given in Table 2 [30]. The results are given
in [30]. The greedy algorithm on the SS-reduced ground
set consistently approaches or outperforms lazy greedy on
recall and F1-score, while the time cost is much smaller and
a large fraction of frames may be removed.

We resize each frame to a 180 ⇥ 360 image, and extract
features from two standard image descriptors, i.e., a pyramid

of HoG (pHoG) [5] to delineate local and global shape, and
GIST [26] to capture global scene. The 2728 pHoG features
are achieved over a four-level pyramid using 8 bins with
angle of 360 degrees. The 256 GIST features are obtained
by using 4 ⇥ 4 blocks and 8 orientation per scale. We
concatenate them to form a 2984-dimensional feature vector
for each frame to build f(·). Each algorithm selects 15%
of all frames as summary set, i.e., k = 0.15|V |. Sieve-
streaming holds a memory of 10k frames.

We compare the summaries generated by the three algo-
rithms with the ones produced by the ground truth and 15

users. Each user was asked to select a subset of frames as
summary, and ground truth score of each frame is given by
voting from all 15 users. For each video, we compare the
generated summary with the reference summary composed
of the top p frames with the largest ground truth scores for
different p, and the user summary from different users.

In particular, we report F1-score and recall for comparison
to ground truth score generated summaries in Figure 9 and
Figure 10 [30]. We report F1-score and recall for compar-
ison to user summaries in Figure 6 and Figure 11 [30]. In
each plot for each video, we also report the average F1-score
and average recall over all 15 users.

SS consistently approaches or outperforms lazy greedy,
while the time cost is much smaller according to Table 2
[30]. Although on a few videos sieve-streaming achieves
the best F1-score, in these cases its generated summaries
are trivially dominated by the first 15% frames as shown in
Figure 6.

http://www.vision.ee.ethz.ch/~gyglim/vsum/
http://www.vision.ee.ethz.ch/~gyglim/vsum/

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin

References

[1] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman,
Amin Karbasi, and Andreas Krause. Streaming submod-
ular maximization: Massive data summarization on the
fly. In SIGKDD, pages 671–680, 2014.

[2] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algo-
rithms for maximizing submodular functions. In SODA,
pages 1497–1514, 2014.

[3] Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin
Ward. The power of randomization: Distributed submod-
ular maximization on massive datasets. In ICML, pages
1236–1244, 2015.

[4] Mohammadhossein Bateni, Mohammadtaghi Haji-
aghayi, and Morteza Zadimoghaddam. Submodular
secretary problem and extensions. ACM Trans. Algo-
rithms, 9(4):32:1–32:23, 2013.

[5] Anna Bosch, Andrew Zisserman, and Xavier Munoz.
Representing shape with a spatial pyramid kernel. In
ACM International Conference on Image and Video Re-
trieval, pages 401–408, 2007.

[6] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor,
and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximiza-
tion. In FOCS, pages 649–658, 2012.

[7] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor,
and Roy Schwartz. Submodular maximization with car-
dinality constraints. In SODA, pages 1433–1452, 2014.

[8] Niv Buchbinder, Moran Feldman, and Roy Schwartz.
Online submodular maximization with preemption. In
SODA, pages 1202–1216, 2015.

[9] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud.
Streaming algorithms for submodular function maxi-
mization. arXiv:1504.08024, 2015.

[10] Dan Feldman, Amos Fiat, Micha Sharir, and Danny
Segev. Bi-criteria linear-time approximations for gen-
eralized k-mean/median/center. In Proceedings of the
Twenty-third Annual Symposium on Computational Ge-
ometry, pages 19–26, 2007.

[11] Satoru Fujishige. Submodular functions and optimiza-
tion. Annals of discrete mathematics. Elsevier, 2005.

[12] Ryan Gomes and Andreas Krause. Budgeted nonpara-
metric learning from data streams. In ICML, 2010.

[13] Michael Gygli, Helmut Grabner, Hayko Riemenschnei-
der, and Luc Van Gool. Creating summaries from user
videos. In ECCV, 2014.

[14] Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian,
and Vahab S. Mirrokni. Composable core-sets for diver-
sity and coverage maximization. In PODS, pages 100–
108, 2014.

[15] Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Curva-
ture and optimal algorithms for learning and minimizing
submodular functions. In NIPS, 2013.

[16] Rishabh Iyer, Stefanie Jegelka, and Jeff A. Bilmes.
Fast semidifferential-based submodular function opti-
mization. In ICML, 2013.

[17] Jure Leskovec, Andreas Krause, Carlos Guestrin, Chris-
tos Faloutsos, Jeanne VanBriesen, and Natalie Glance.
Cost-effective outbreak detection in networks. In
SIGKDD, pages 420–429, 2007.

[18] Chin-Yew Lin. Rouge: A package for automatic eval-
uation of summaries. In Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop, pages 74–
81, 2004.

[19] Hui Lin and Jeff Bilmes. A class of submodular func-
tions for document summarization. In ACL, pages 510–
520, 2011.

[20] Michel Minoux. Accelerated greedy algorithms for max-
imizing submodular set functions. In Optimization Tech-
niques, volume 7 of Lecture Notes in Control and Infor-
mation Sciences, chapter 27, pages 234–243. 1978.

[21] Vahab Mirrokni and Morteza Zadimoghaddam. Ran-
domized composable core-sets for distributed submodu-
lar maximization. In STOC, pages 153–162, 2015.

[22] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Jan Vondrák, and Andreas Krause. Lazier
than lazy greedy. In AAAI, pages 1812–1818, 2015.

[23] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and
Andreas Krause. Distributed submodular maximization:
Identifying representative elements in massive data. In
NIPS, pages 2049–2057, 2013.

[24] Baharan Mirzasoleiman, Morteza Zadimoghaddam, and
Amin Karbasi. Fast distributed submodular cover:
Public-private data summarization. In NIPS, pages 3594–
3602. 2016.

[25] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing sub-
modular set functions—I. Mathematical Programming,
14(1):265–294, 1978.

[26] Aude Oliva and Antonio Torralba. Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision,
42(3):145–175, 2001.

[27] Xinghao Pan, Stefanie Jegelka, Joseph E Gonzalez,
Joseph K Bradley, and Michael I Jordan. Parallel dou-
ble greedy submodular maximization. In NIPS, pages
118–126, 2014.

[28] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-stage
submodular maximization. In ICML, 2014.

[29] Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris D. Bar-
tels, and Jeff A. Bilmes. Submodular subset selection for
large-scale speech training data. In IEEE International
Conference on Acoustics, Speech and Signal Processing,
(ICASSP) 2014, pages 3311–3315, 2014.

[30] Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, and
Carlos Guestrin. Supplementary material for “scal-
ing submodular maximization via pruned submodularity
graphs”. In AISTATS, 2017.

	Introduction
	Main Contribution
	Related Work

	Submodularity Graph
	Submodular Sparsification
	Pruning as Submodular Maximization
	Randomized Pruning
	Analysis of Submodular Sparsification
	Additional Improvements

	Experiments
	Empirical Study on News
	News Summarization
	Video Summarization

	Appendix
	Proof of Lemma 3
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Lemma 5
	Proof of Proposition 5
	Discussion of q
	Proof of Theorem 2
	Comparison to Pruning method in fast-multi-stage
	Comparison to Parallel Methods
	Experiments on DUC2001 News Summarization
	Experiments on Video Summarization

