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Abstract

We present a framework for incorporating
prior information into nonparametric estima-
tion of graphical models. To avoid distri-
butional assumptions, we restrict the graph
to be a forest and build on the work of
forest density estimation (FDE). We refor-
mulate the FDE approach from a Bayesian
perspective, and introduce prior distribu-
tions on the graphs. As two concrete ex-
amples, we apply this framework to estimat-
ing scale-free graphs and learning multiple
graphs with similar structures. The resulting
algorithms are equivalent to finding a maxi-
mum spanning tree of a weighted graph with
a penalty term on the connectivity pattern of
the graph. We solve the optimization prob-
lem via a minorize-maximization procedure
with Kruskal’s algorithm. Simulations show
that the proposed methods outperform com-
peting parametric methods, and are robust
to the true data distribution. They also lead
to improvement in predictive power and in-
terpretability in two real data sets.

1 Introduction

Graphical models are widely used to encode the con-
ditional independence relationships between random
variables. In particular, a random vector X =
(X1, . . . , Xd) is represented by an undirected graph
G = (V,E) with d = |V | vertices and missing edges
(i, j) 6∈ E whenever Xi and Xj are conditionally inde-
pendent given the other variables. One major statis-
tical task is to learn the graph from n i.i.d. copies of
the random vector.
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Existing approaches for estimating graphical mod-
els make assumptions on either the underlying dis-
tribution or the graphical structure. Currently the
most popular method, called graphical lasso (Fried-
man et al., 2008), assumes that the random vector
follows a multivariate Gaussian distribution. In this
way, learning the graph is equivalent to estimating
the precision matrix Ω, since the conditional indepen-
dence of a Gaussian random vector is entirely deter-
mined by the sparsity pattern of Ω. The graphical
lasso finds a sparse estimate of Ω by maximizing the
`1-regularized log-likelihood. On the other hand, we
can make no distributional assumptions but restrict
the graph to be a forest instead. Under this structural
constraint, there exists a factorization of the density
function involving only the univariate and bivariate
marginal densities, which makes nonparametric esti-
mation tractable in high dimensions. In this case, es-
timating the graph amounts to finding the maximum
spanning tree of a weighted graph; see, for example,
Chow and Liu (1968); Liu et al. (2011) for details.

Oftentimes, additional information on the structure
of a graph is available a priori, which could be uti-
lized to assist the estimation task (Koivisto and Sood,
2004). For example, a wide variety of the networks
in recent literature, such as protein, gene, and social
networks, are reported to be scale-free. That is, the
degree distribution of the vertices follows a power law:
p(degree = k) ∝ k−α for some α > 1. In such scale-
free networks, some vertices have many more connec-
tions than others, and these highest-degree vertices are
usually called hubs and serve significant roles in their
networks. As another example of prior information,
consider the applications where we believe that sev-
eral networks share similar but not necessarily identi-
cal structures. This phenomenon is not unusual when
we have multiple sets of data across distinct classes or
units, such as gene expression measurements collected
on a set of normal tissue samples and a set of can-
cer tissue samples. It is thus natural to ask whether
such prior information can be integrated to improve
estimation.
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Various approaches have been proposed to incorporate
the prior belief of the underlying graphs, for exam-
ple, Defazio and Caetano (2012); Liu and Ihler (2011);
Tan et al. (2014); Tang et al. (2015) for learning scale-
free graphical models, and Guo et al. (2011); Danaher
et al. (2014); Peterson et al. (2015); Zhu and Barber
(2015) for joint estimation of multiple graphical mod-
els. Nevertheless, to the best of our knowledge, all the
existing methods assume some parametric distribution
on the data, mostly multivariate Gaussian. Such dis-
tributional assumptions can be quite unrealistic and
unnecessary in many applications. Even though the
marginal distribution of each variable can be trans-
formed to approximately Gaussian, which allows arbi-
trary univariate distributions, the joint dependence is
still restricted under the Gaussian assumption.

In this paper, we relax such distributional assumptions
and estimate graphical models nonparametrically. We
build on the forest density estimation (FDE) method
introduced in Liu et al. (2011). In particular, we re-
formulate the FDE approach from a Bayesian perspec-
tive, and encode the prior information by putting some
prior distribution on the graphs, which favors those
that are more consistent with our prior belief. We
further show that for the scale-free-graph case and
the multiple-graph case, such an approach amounts
to finding a maximum spanning tree of a weighted
graph with a penalty term on the connection pattern
of the nodes. We then devise an algorithm based on a
minorize-maximization procedure and Kruskal’s algo-
rithm (Kruskal, 1956) to find a local optimal solution.

The rest of the paper is organized as follows. In the
following section, we give background on forest density
estimation. In Section 3, we first give a general frame-
work on how to incorporate prior information to non-
parametric forest-based graphical model estimation,
and then illustrate how the framework can be special-
ized to model scale-free graphical models and jointly
estimate multiple graphical models with similar struc-
ture. We present theoretical results of the algorithm in
Section 4. In Section 5, we provide a brief review on
the related work. Experimental results on synthetic
data sets and real applications are presented in Sec-
tion 6, followed by a conclusion in Section 7. Proofs
and some additional experimental results are collected
in the supplementary material.

2 Forest density estimation

We say an undirected graph is a forest if it is acyclic.
Let F = (VF , EF ) be a forest with vertices VF =
{1, . . . , d} and edge set EF ∈ VF × VF . Let X =
(X1, . . . , Xd) be a d-dimensional random vector with
density p(x) > 0. We say that X, or equivalently,

its density p, is Markov to F if Xi and Xj are condi-
tionally independent given the other random variables
whenever edge (i, j) is missing in EF . A density p that
is Markov to F has the following factorization

p(x) =
∏

(i,j)∈EF

pij(xi, xj)

pi(xi)pj(xj)

∏
`∈VF

p`(x`), (1)

where each pij(xi, xj) is a bivariate density and each
pl(xl) is a univariate density. With this factorization,
we can write the expected log-likelihood as

E log p(X) =
∑

(i,j)∈EF

I(Xi;Xj)−
∑
`∈VF

H(X`), (2)

where I(Xi;Xj) =
∫
pij(xi, xj) log

pij(xi,xj)
pi(xi)pj(xj)

dxidxj
is the mutual information between Xi and Xj , and
H(X`) = −

∫
p`(x`) log p`(x`)dx` is the entropy of X`.

We maximize the right hand side of (2) to find the
optimal forest F

F̂ = arg max
F∈Fd

∑
(i,j)∈EF

I(Xi;Xj), (3)

where Fd is the collection of spanning trees on vertices
{1, . . . , d}. We let Fd contain only spanning trees be-
cause there is always a spanning tree that solves the
problem (3). This problem can be recast as the prob-
lem of finding a maximum spanning tree for a weighted
graph, where the weight wij of the edge between nodes
i and j is I(Xi;Xj). Kruskal’s algorithm (Kruskal,
1956) is a greedy algorithm that is guaranteed to find
an optimal solution, while Chow and Liu (1968) pro-
pose the procedure in the setting of discrete random
variables. The method is described in Algorithm 1.
See Zhou (2011) for a discussion of a number of greedy
algorithms for graphical model selection.

Algorithm 1 Kruskal’s (Chow-Liu) algorithm

Input Weight matrix W = (wij)d×d
Initialize E(0) ← ∅
for ` = 1, . . . , d− 1 do

(i(`), j(`)) ← arg max(i,j) wij such that E(`−1) ∪
{(i(`), j(`))} doesn’t contain a cycle

E(`) ← E(`−1) ∪ {(i(`), j(`))}
end for
Output The final edge set E(d−1)

However, this procedure is not practical since the true
density p is unknown. Suppose instead that we have
X1,1:d, . . . , Xn,1:d, which are n i.i.d. copies of the ran-
dom vector X. We replace the population mutual in-
formation by the estimates

Î(Xi;Xj) =

∫
p̂ij(xi, xj) log

p̂ij(xi, xj)

p̂i(xi)p̂j(xj)
dxidxj ,
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where p̂ij(xi, xj) and p̂`(x`) are kernel density estima-
tors of the bivariate and univariate marginal densities

p̂ij(xi, xj) =
1

n

n∑
t=1

1

h22
K

(
Xti − xi
h2

)
K

(
Xtj − xj

h2

)
,

p̂`(x`) =
1

n

n∑
t=1

1

h1
K

(
Xt` − x`

h1

)
with a kernel function K and bandwidths h2 and h1.
The resulting estimator of the graph becomes

F̃ = arg max
F∈Fd

∑
(i,j)∈EF

Î(Xi;Xj). (4)

A held-out set is usually used to prune the spanning
tree F̃ by stopping early in Algorithm 1 when the likeli-
hood on the held-out set is maximized. Thus we obtain
a forest estimate of the graph.

3 Learning forest graphical model
with prior knowledge

3.1 A Bayesian framework

Sometimes we have some prior information about the
structure of the underlying graphical models, and
would like to incorporate that to assist the estima-
tion. One way to realize that is to encode the prior
knowledge into prior distributions on the spanning
trees. Let π(F ) be a prior distribution on Fd, the
set of the spanning trees with d nodes. Given the data
X1,1:d, . . . , Xn,1:d and assuming the density p is known
and Markov to the spanning tree F , we can write the
likelihood as

p(X|F ) =

n∏
t=1

 ∏
(i,j)∈EF

pij(Xti, Xtj)

pi(Xti)pj(Xtj)

∏
`∈VF

p`(Xt`)

 .

Then the posterior probability of F is

p(F |X) ∝ p(X|F )π(F )

∝
n∏
t=1

 ∏
(i,j)∈EF

pij(Xti, Xtj)

pi(Xti)pj(Xtj)

∏
k∈VF

pk(Xtk)

 · π(F ).

(5)

The maximum a posteriori (MAP) estimate is given
by

F̂map = arg max
F∈Fd

{ ∑
(i,j)∈EF

n∑
t=1

1

n
log

pij(Xti, Xtj)

pi(Xti)pj(Xtj)

+
1

n
log π(F )

}
. (6)

Since we do not know the true density p in practice,
we can plug in the estimator (4) and obtain

F̃π = arg max
F∈Fd

{ ∑
(i,j)∈EF

Î(Xi;Xj) +
1

n
log π(F )

}
(7)

as an approximation of F̂map. In fact, F̃π is obtained
by replacing the true marginal densities and the empir-
ical distributions in (6) by their corresponding density
estimates. It can also be viewed as a penalized version
of the estimator (4).

The penalty term 1
n log π(F ), which is sometimes com-

binatorial, could make the optimization problem ex-
tremely hard to solve. However, when log π(F ) is con-
vex with respect to the entries of the adjacency matrix
of F , we can adopt a minorize-maximization algorithm
(Hunter and Lange, 2004) to find a local optimal so-
lution. In fact, given the convexity of log π(F ), the
objective function adopts a linear lower bound at any
current estimates. This linear lower bound can be then
decomposed into a sum of weights over the edges, and
we can apply the Kruskal’s algorithm to update our
estimate. We shall see in details in the following two
concrete examples how this can be carried out.

3.2 Scale-free graphs

Now suppose that we have reasons to believe that the
graph is scale-free, or more generally, that the graph
consists of several nodes that have dominating degrees
compared to the rest. Let δ(F, l) be the degree of the
node l of a spanning tree F ∈ Fd. Consider a prior
distribution on F which satisfies

π(F ) ∝
∏
`∈VF

δ(F, `)−α, (8)

for some α > 1. This prior distribution favors the
spanning trees whose degrees have a power law distri-
bution, and thus reflects our prior beliefs. Plugging
this in (7), we obtain

F̃π = arg max
F∈Fd

{ ∑
(i,j)∈EF

Î(Xi;Xj)−λ
∑
`∈VF

log(δ(F, `))

}
,

where λ = α/n can be now viewed as a tuning pa-
rameter. To solve this optimization problem, we first
rewrite the objective function as

f(F ) =
∑
i<j

wijFij − λ
d∑
i=1

log

 d∑
j=1

Fij

 , (9)

where wij = Î(Xi;Xj). Here we also abuse our nota-
tion by writing F as the adjacency matrix of F , that
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is, Fij = 1 if and only if (i, j) ∈ EF . Note that we
have the additional constraint that the graph F is a
spanning tree. Given a current estimate F̌ , we first
lower bound f(F ) by linearizing it at F̌ :

f(F ) ≥
∑
i<j

wijFij − λ
d∑
i=1

log

 d∑
j=1

F̌ij


+

∑d
j=1 Fij −

∑d
j=1 F̌ij∑d

j=1 F̌ij

)

=
∑
i<j

(
wij −

λ∑d
`=1 F̌i`

− λ∑d
`=1 F̌j`

)
Fij + C,

where C is a constant which doesn’t depend on F . We
can maximize this lower bound by applying Kruskal’s
algorithm to the graph with edge weights

w̌ij = wij −
λ∑d

`=1 F̌i`
− λ∑d

`=1 F̌j`
. (10)

We see that the weights are updated at each itera-
tion based on the current estimate of the graph. Each
edge weight is penalized by two quantities that are
inversely proportional to the degrees of the two end-
points of the edge. An edge weight is thus penalized
less if its endpoints are already highly connected and
vice versa. With such a “rich gets richer” procedure,
the algorithm encourages some vertices to have high
connectivity and hence the overall degree distribution
to have a heavy tail. We iterate through such mi-
norization and maximization steps until convergence.
Since the objective function is always increasing, the
algorithm is guaranteed to converge to a local maxi-
mum.

3.3 Multiple graphs with similar structure

In this part, we illustrate how the framework can be
modified to facilitate the case where we have multi-
ple graphs that are believed to have similar but not
necessarily identical structures. Instead of one single
graph, suppose that we now have K graphical mod-
els with underlying forests F (1), . . . , F (K), and for the

kth one, we observe data X(k) = (X
(k)
1,1:d, . . . , X

(k)
nk,1:d

).

Given a joint prior distribution π on (F (1), . . . , F (K)),
we combine the likelihood for the K models and up-
date the posterior distribution (5) to be

p(F (1:K)|X(1:K))

∝
K∏
k=1

n∏
t=1

 ∏
(i,j)∈E

F (k)

p
(k)
ij (X

(k)
ti , X

(k)
tj )

p
(k)
i (X

(k)
ti )p

(k)
j (X

(k)
tj )

·
∏

`∈V
F (k)

p
(k)
` (X

(k)
t` )

 · π(F (1:K)). (11)

Next, we design a prior distribution on the set of
K spanning trees which reflects our belief that the
structures across the K of them share some similar-
ity. Again we use F (k) to denote the adjacency matrix

of the corresponding graph, that is, F
(k)
ij = 1 if and

only if (i, j) ∈ EF (k) . We consider the following hier-
archical model:

τij ∼ Beta(α, β) for all i < j,

F
(k)
ij | τij ∼ Bernoulli(τij) for all k and i < j.

According to this model, the same edge across multi-
ple graphs is governed by the same parameter τij , and
hence encourage similarity across them. This essen-
tially gives a prior distribution on F (1:K):

π(F (1:K))

∝
∏
i<j

∫
τij

p(Fij | τij)p(τij)dτij · 1{F (k) ∈ Fd for all k}

∝
∏
i<j

B(α+ ‖Fij‖1, β +K − ‖Fij‖1)

· 1{F (k) ∈ Fd for all k},

where Fij is the vector containing the (i, j)th entries of
F (k) for k = 1, . . . ,K, ‖ · ‖1 denotes the `1 norm, and
B(·, ·) denotes the Beta function. Now combining this
with (11) and following the reasoning in Subsection
3.1, we obtain our estimator in this case

F̃ (1:K)
π = arg max

F (k)∈Fd, ∀k


K∑
k=1

∑
(i,j)∈E

F (k)

Î(X
(k)
i ;X

(k)
j )

+λ
∑
i<j

logB(α+ ‖Fij‖1, β +K − ‖Fij‖1)

 .

(12)
Note that we include an extra tuning parameter λ
in front of the penalty term to give us a bit more
flexibility in controlling its magnitude. The function
k 7→ logB(α+k, β+K−k) is convex and takes larger
values when k is close to 0 or K compared to those in
between. Using it as a penalty thus favors the set of
graphs which share common edges.

To solve (12), we again adopt a minorize-maximization
procedure. Specifically, write the objective function as

f(F (1:K)) =

K∑
k=1

∑
i<j

w
(k)
ij F

(k)
ij

+ λ
∑
i<j

logB(α+ ‖Fij‖1, β +K − ‖Fij‖1),

where w
(k)
ij = Î(X

(k)
i ;X

(k)
j ). Given a current solution
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F̌ (k), we linearize f(F (1:K)) at F̌ (k) and get

f(F (1:K)) ≥
K∑
k=1

∑
i<j

(
w

(k)
ij + λ

(
ψ(α+ ‖F̌ij‖1)

−ψ(β +K − ‖F̌ij‖1)
))

F
(k)
ij + C,

where ψ(x) = d
dx log Γ(x) is the digamma function.

This gives the following weights updating rule:

w̌
(k)
ij = w

(k)
ij +λ

(
ψ(α+ ‖F̌ij‖1)− ψ(β +K − ‖F̌ij‖1)

)
.

Note that k 7→ ψ(α+ k)−ψ(β +K − k) is an increas-
ing function. Therefore, this updating rule borrows
strength across the K graphs – it increases an edge’s
weight when ‖Fij‖1 is large, i.e., when other graphs
also have edge (i, j) present.

3.4 Algorithms

As a short conclusion, we summarize the two proce-
dures, which share a lot of similarity but work for dif-
ferent applications, here in Algorithm 2 and 3. After
getting the output of the algorithm, we will prune the
resulting spanning tree to obtain a forest estimate (to
avoid overfitting in high dimensions). We do this by
going through the last iteration of the algorithm and
stop at the step where the likelihood is maximized on
a held-out dataset.

Algorithm 2 Scale-free graph estimation

input Weight matrix W = (wij)d×d, tuning param-
eter λ
F ← output of Algorithm 1 on W
do

w̌ij ← wij − λ∑d
`=1 Fi`

− λ∑d
`=1 Fj`

F ← output of Algorithm 1 on W̌ = (w̌ij)d×d
while F has not converged
output F

Algorithm 3 Joint estimation for multiple graphs

input Weight matrices W (k) = (w
(k)
ij )d×d for k =

1, . . . ,K, tuning parameters λ, α, β

F (k) ← output of Algorithm 1 on (w
(k)
ij )d×d for k =

1, . . . ,K
do

w̌
(k)
ij ← w

(k)
ij + λ (ψ(α+ ‖Fij‖1)

−ψ(β +K − ‖Fij‖1))
F (k) ← output of Algorithm 1 on W̌ (k) =

(w̌ij)d×d for k = 1, . . . ,K
while F (1:K) have not converged
output F (1:K)

4 Statistical Properties

In this section, we present a theoretical result on struc-
ture selection consistency of the scale-free graph esti-
mation procedure. We follow a similar argument in
Liu et al. (2011). The consistency result for joint esti-
mation of multiple graphs is similar.

Instead of assuming the true density is Markov to a
forest, we focus on the comparison of the estimated
forest with the oracle forest, which minimize the risk.
Specifically, let F ∗d be the optimal spanning tree within
Fd that minimizes the negative log-likelihood loss. Let
F̂ SF
d,λ be the scale-free spanning tree which is obtained

from Algorithm 2.

To prove selection consistency, we need some assump-
tions on the true density function and the kernel func-
tions. We give the detailed assumptions in the supple-
mentary material. Essentially, Assumption 1 ensures
that the univariate and bivariate densities are smooth
with order β and can be lower and upper bounded. As-
sumption 2 assumes that the kernel function is well-
behaved and β-valid (Tsybakov, 2008). In addition,
we define the crucial set T be a set of pairs of edges
((i, j), (i′, j′)) such that I(Xi;Xj) 6= I(Xi′ ;Xj′) and
with positive probability, flipping the relative order of
I(Xi;Xj) and I(Xi′ ;Xj′) changes the learned forest
structure in the population Chow-Liu algorithm. We
obtain the following result on selection consistency.

Theorem 1. Suppose Assumption 1 and Assump-
tion 2 in the supplementary material hold with β being
the smooth parameter. Suppose further that

min
((i,j),(i′,j′))∈T

|I(Xi;Xj)− I(Xi′ ;Xj′)| ≥ 6Ln,

where Ln = Ω

(√
log(n)+log(d)
nβ/(1+β)

)
. If the tuning param-

eter λ < Ln, then we have as n→∞

P(F̂ SF
d,λ = F ∗d )→ 1.

We give the proof in the supplementary material. This
theorem implies that the scale-free forest density esti-
mation method satisfies the structure selection consis-
tency if d = o(exp(nβ/(1+β))).

5 Related work

Before proceeding to present the performance of the
proposed nonparametric methods on simulated and
real datasets, we pause to review some of the existing
approaches on estimation of scale-free graphical mod-
els and joint estimation of multiple graphical models.

Most existing methods for estimating graphical mod-
els with prior information assume that the data follow
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General
With prior information

Scale-free graph Multiple graphs

Parametric Glasso SFGlasso∗ (Liu and Ihler, 2011) GuoGlasso∗ (Guo et al., 2011)
(Friedman et al., 2008) HubGlasso† (Tan et al., 2014) JointGlasso† (Danaher et al., 2014)

Nonparametric FDE (Liu et al., 2011) SF-FDE‡ J-FDE‡

∗: non-convex method †: convex method ‡: this paper

Table 1: Summary and comparison between different methods in graphical modeling.

multivariate Gaussian distributions. To encourage a
scale-free graph, Liu and Ihler (2011) propose to re-
place the `1 penalty in the formulation of the graphical
lasso by a non-convex power law regularization term.
Along the same line, Defazio and Caetano (2012) im-
pose a convex penalty by using submodular functions
and their Lovász extension. Essentially, both methods
try to penalize the log degree of each node, but end up
using a continuous/convex surrogate to avoid the com-
binatorial problems involving the degrees. Tan et al.
(2014) propose a general framework to accommodate
networks with hub nodes, using a convex formulation
that involves a row-column overlap norm penalty.

Methods for inferring Gaussian graphical models on
multiple units have also been proposed in recent years.
Guo et al. (2011) propose a method for joint esti-
mation of Gaussian graphical models by penalizing
the graphical lasso objective function by the square
root of `1 norms of the edge vector across all graphs,
which results in a non-convex problem. A convex
joint graphical lasso approach is developed in Danaher
et al. (2014), which is based on employing generalized
fused lasso or group lasso penalties. Peterson et al.
(2015) and Zhu and Barber (2015) propose Bayesian
approaches for inference on multiple Gaussian graphi-
cal models.

We summarize in Table 1 the aforementioned meth-
ods, which will be implemented and compared next.
Methods proposed in this paper can be viewed as non-
parametric counterparts to the parametric methods.

6 Experiments

6.1 Synthetic data

In this subsection, we evaluate the performance of the
proposed methods and other existing methods on syn-
thetic data.

Graph structures We consider the following types
of graph structures with d = 100 vertices.

• Scale-free graph: We use a preferential attach-
ment process to generate a scale-free graph (Al-

bert and Barabási, 2002). We start with a chain of
4 nodes (i.e., with edges 1–2, 2–3, and 3–4). New
nodes are added one at a time, and each new node
is connected to one existing node with probability
pi ∝ δαi , where δi is the current degree of the ith
node, and α is a parameter, which we set to be
1.5 in our experiments. A typical realization of
such networks is shown in Figure 1 (left).

• Stars: The graph has 5 stars of size 20; each
star is a tree with one root and 19 leaves. An
illustration is shown in Figure 1 (right).

• Multiple graphs: We follow the above two
mechanisms to generate multiple graphs with sim-
ilar structures. In particular, we generate a set of
K = 3 scale-free graphs, which share 80 common
edges (this is done by applying the above gen-
erative model to grow a common tree of size 80
to be shared across the 3 units; each unit then
continues this growing process independently un-
til obtaining a tree of 100 vertices), and another
set of K = 3 stars graphs, which have 4 common
stars and one individual star with distinct roots.

We also consider scenarios where the true graph is not
forest. The results are included in the supplementary
material.

Probability distributions Given a particular
graph, we generate 200 samples according to two types
of probability distributions that are Markov to the
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Figure 1: An illustration of simulated graph patterns.
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Graphs with hubs

Graph ×
Dist.

FDE SF-FDE
Glasso SFGlasso HubGlasso

held-out oracle held-out oracle held-out oracle

Scale-free × N 0.79 0.92 0.86 0.91 0.88 0.92 0.84 0.88
Stars × N 0.82 0.96 0.90 0.93 0.96 0.98 0.97 0.99
Scale-free × t 0.89 0.98 0.05 0.43 0.28 0.53 0.53 0.55
Stars × t 0.93 0.98 0.52 0.56 0.65 0.67 0.79 0.79

Multiple graphs

Graph ×
Dist.

FDE J-FDE
Glasso GuoGlasso JointGlasso

held-out oracle held-out oracle held-out oracle

Scale-free × N 0.78 0.90 0.85 0.92 0.97 0.97 0.95 0.97
Stars × N 0.80 0.92 0.89 0.92 0.94 0.95 0.89 0.96
Scale-free × t 0.91 0.98 0.03 0.44 0.54 0.64 0.65 0.66
Stars × t 0.92 0.98 0.47 0.53 0.67 0.70 0.70 0.71

Table 2: Averaged F1 scores for methods applied on the simulated data.

graph: Gaussian copulas and t copulas (Demarta and
McNeil, 2005). The Gaussian copula (resp., the t cop-
ula) can be thought of as representing the dependence
structure implicit in a multivariate Gaussian (multi-
variate t) distribution, while each variable follows a
uniform distribution on [0, 1] marginally. Since the
graph structures we consider are trees or forests, we
generate the data sequentially, first sampling for an
arbitrary node in a tree, and then drawing samples
for the neighboring nodes according to the conditional
distribution given by the copula until going through
all nodes in the tree. In our simulations, the degree of
freedom of the t copula is set to be 1, and the correla-
tion coefficients are chosen to be 0.4 and 0.25 for the
Gaussian and the t copula.

Methods We implement methods that are summa-
rized in Table 1. For the forest-based methods, we use
a held-out set of size 100 to select tuning parameter
and prune the estimated spanning trees. To implement
the Gaussian-based methods, we first transform the
data marginally to be approximately Gaussian. We
choose the tuning parameters by searching through a
fine grid, and selecting those that maximize the likeli-
hood on the held-out set. We refer to this as held-out
tuning. The results obtained by the held-out tuning
reflect the performance of the methods in a fully data-
driven way. To prevent over-selection of edges, we use
the refit method, which is a two-step procedure – in
the first step, a sparse precision matrix is obtained;
in the second step, a Gaussian model is refitted with-
out regularization, but enforcing the sparsity pattern
obtained in the first step. In addition, we also con-
sider what we call oracle tuning, where the tuning pa-

rameters are chosen to maximize the F1 score of the
estimated graph. An F1 score is the harmonic mean
of a method’s precision and recall and hence a mea-
sure of its accuracy. It’s a number between 0 and 1; a
higher score means better accuracy and 1 means per-
fect labelling. This tuning method requires the knowl-
edge of the true graph, and hence it’s not obvious that
there would exist a data-driven way to achieve this.
We include the oracle tuning since it reflects the opti-
mal performance that can be possibly achieved by the
methods.

Results For both scale-free graphs and multiple
graphs, we carry out four sets of experiments, with
data generated from the two types of graphs and the
two types of distributions. For each set of experiments,
we repeat the simulations 10 times and record the F1

scores of the estimated graphs for each method. The
average F1 scores are shown in Table 2. From the
table, we see that SF-FDE and J-FDE always outper-
form FDE on these particular situations. Also, SF-FDE
and J-FDE perform as well as or better than the other
three methods. In particular, when the true copula is
Gaussian, the graphical lasso-based methods all have
very high scores; they fail to deliver good performance
when the true copula is no longer Gaussian. On the
other hand, the forest-based methods are not affected
too much by the true distribution.

6.2 Real data

Stock price data We test our methods on the daily
closing prices for d = 417 stocks that are constantly
in the S&P 500 index from Yahoo! Finance. The log
returns of each stock are replaced by their respective
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Figure 2: Estimated graph for SF-FDE applied on the
stock price data. The stocks are colored according
to their Global Industry Classification Standard cate-
gories.

normal scores, subject to a Winsorized truncation.

In the application of learning scale-free forests, we use
the data from the first 9 months of 2014 as the training
data and the data from the last 3 months of 2014 as
the held-out data. The result turns out that SF-FDE

yields a larger held-out log-likelihood than FDE (64.5
compared to 62.6), implying that a scale-free approx-
imation is helpful in predicting the relationships. The
estimated graph by SF-FDE is shown in Figure 2. We
see that the resulting clusters tend to be consistent
with the Global Industry Classification Standard cat-
egories, which are indicated by different colors in the
graph. To complete the comparison, we include in
the supplementary material results for fitting the stock
price data using Gaussian-based methods, which, how-
ever, do not provide as interpretable results as the tree-
based methods.

We also consider the application of learning multiple
forests by dividing the data into 4 periods from 2009
to 2012, one for a year, and model the 4-unit data
using our proposed method. The aggregated held-out
log-likelihood over the 4 units are 193.4 for J-FDE and
185.5 for FDE. The numbers of common edges across
the 4 graphs are 111 for J-FDE and 24 for FDE, respec-
tively. The plots are included in the supplementary
material.

University webpage data As a second example,
we apply our methods to the university webpage data
from the “World Wide Knowledge Base” project at
Carnegie Mellon University, which consists of the oc-
currences of various terms on student webpages from
4 computer science departments at Texas, Cornell,

Washington, and Wisconsin. We choose a subset of
100 terms with the largest entropy. In the analysis,
we compute the empirical distributions instead of ker-
nel density estimates since the data is discrete.

To understand the relationships among the terms, we
first wish to identify terms that are hubs. Results show
that SF-FDE detects 4 highly connected nodes of degree
greater than 10: comput, system, page, and interest.
Then we model the 4-unit data, one for a university.
Figure 3 shows the estimated graphs by J-FDE (iso-
lated nodes are not displayed in each graph). These
results provides an intuitive explanation of the rela-
tionships among the terms across the 4 universities.

7 Conclusion

In this paper, we introduce a nonparametric frame-
work for incorporating prior knowledge to assist esti-
mation of graphical models. Instead of Gaussianity
assumptions, it assumes the density is Markov to a
forest, thus allowing arbitrary distribution. A key in-
gredient is to design a prior distribution on graphs that
favors those consistent with the prior belief. We illus-
trate the idea by proposing such prior distributions,
which lead to two algorithms, for the problems of es-
timating scale-free networks and multiple graphs with
similar structures. An interesting future direction is
to apply this idea to more applications and different
types of prior information.

comput

scienc

univers

page
home

system

depart

research

interest

work

student

austin

inform
program

link

graduat web

texa

utexa

address

phone
public

languag

contact

group

parallel

distribut
oper databas

hall

www

java

graphic

world
algorithm

machin

comput

scienc

univers

page

home

system

depart

research

interest
work

student

engin
project

inform
program

link

cornel

web

softwar

languag

network

parallel

distribut
oper

stuff

school

construct

databas

design

fall

hall

www

perform

architectur

java

listgraphic

master

high

world site

algorithm
ithaca

internet

applic

thing

friend

area

(a) Texas (b) Cornell

comput
sciencunivers

page

home

system

depart

research

work

student

engin

program
link

graduat

washington

web

softwar
year

seattl

languag

usa

paper

parallel
distribut

oper

perform

applic

comput
scienc

univers

page

home

system

depart

research

interest

student

engin

project

inform
program

link

offic

graduat

time

madison

web

wisconsin

phone

softwar

public

year

languag

parallel

distribut

person

oper

school

construct

databas

educ

perform

architectur

list

high

world
technolog

algorithm

street
dayton

compil
applic

data

peopl

make

(c) Washington (d) Wisconsin

Figure 3: Estimated graphs for J-FDE applied on the
university webpage data. Edges shared by at least 3
units are colored in red.
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