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Abstract
Accurate prediction of the future trajectory of a disease is an important challenge in
personalized medicine and population health management. However, many complex chronic
diseases exhibit large degrees of heterogeneity, and furthermore there is not always a single
readily available biomarker to quantify disease severity. Even when such a clinical variable
exists, there are often additional related biomarkers that may help improve prediction of
future disease state. To this end, we propose a novel probabilistic generative model for
multivariate longitudinal data that captures dependencies between multivariate trajectories
of clinical variables. We use a Gaussian process based regression model for each individual
trajectory, and build off ideas from latent class models to induce dependence between their
mean functions. We develop a scalable variational inference algorithm that we use to fit
our model to a large dataset of longitudinal electronic patient health records. Our model’s
dynamic predictions have significantly lower errors compared to a recent state of the art
method for modeling disease trajectories, and they are being incorporated into a population
health rounding tool to be used by clinicians at our local accountable care organization.

1. Introduction

The ability of healthcare organizations to utilize predictions about individuals’ future health
to make appropriate interventions is becomingly increasingly important with the adoption of
accountable care and alternative payment models (CMS (2016)). In particular, managing
patients with complex, chronic diseases such as cardiovascular disease, diabetes, and chronic
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kidney disease is especially difficult, as selection of optimal therapy may require integration of
multiple conditions and risk factors that are considered in isolation under current approaches
to care. Further, patients with multiple chronic conditions are among both the most expensive
and highest utilizers of healthcare services (Johnson and et al. (2015)).

However, predicting future disease trajectory is an extremely challenging problem. One
difficulty is the many underlying sources of variability that can drive the different potential
manifestations of the disease. For instance, the underlying biological mechanisms of the disease
can give rise to latent disease subtypes, or groups of individuals with shared characteristics
(Saria and Goldenberg (2015)). For most complicated diseases, there are no clear definitions
of subtypes, so this must be inferred from the data. In addition, there are individual-specific
sources of variability that may not be directly observed, such as behavioral and genetic
factors, environmental conditions, or temporary infections. Another challenge is the fact
that observations are irregularly sampled, asynchronous, and episodic, precluding the use of
many time series methods developed for data regularly sampled at discrete time intervals.
The large degree of missing data, especially when modeling multivariate longitudinal data,
also presents complications. The task is made even more difficult when the primary data
source is the electronic health record (EHR) rather than a curated registry, as even selecting
a relevant cohort of patients to model can take extensive review by a clinical expert.

In our work, we collaborated with Duke Connected Care, an accountable care organization
affiliated with the Duke University Health System. Accountable care organizations are
healthcare institutions that aim to link provider reimbursement with quality metrics and
reductions in total cost of healthcare services to a specific population of patients. These
organizations need personalized prediction tools capable of flagging specific patients in their
populations at the highest risk of having poor outcomes (Parikh et al. (2016)). Data to
develop such tools are already largely being collected automatically with the widespread
adoption of EHRs. However, in order to be clinically relevant the prediction methods will
need to be flexible enough to accommodate the inherent limitations of operational EHR data
(Hersh and et al (2013)), dynamically update predictions as more information is collected,
and scale seamlessly to the massive size of modern health records.

We focused our efforts on developing models for chronic kidney disease (CKD), which is
characterized by a slow and typically symptomless loss of kidney function over time that
results in complications that can cause poor health, premature death, increased health service
utilization, and excess economic costs. A person’s kidney function can be approximated
by their estimated glomerular filtration rate (eGFR), which is calculated using a common
clinical laboratory test (serum creatinine or cystatin C) and demographic information (age,
sex and race) (Levey and et al. (2009)). Impairment of a person’s eGRF is used to define
and stage CKD. In addition, a number of other routinely measured laboratory values may be
used to help detect abnormal or declining kidney function. Despite the fact that CKD can
be easily identified using simple eGFR-based laboratory criteria, it is often not recognized
(Szczech et al. (2014), Tuot et al. (2011)), and providing optimal care for CKD patients is
notoriously difficult. Even among patients with recognized CKD, prediction of progression
to kidney failure (requiring dialysis or kidney transplantation), or other complications such
as early death from heart attack or stroke, is a formidable task (Mendelssohn et al. (2011)).
Additionally, providers often fail to prescribe appropriate preventive treatment to slow disease
progression or address complications (Smart et al. (2014)).
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Figure 1: Clinical course of a patient who experienced a rapid progression of CKD. Top plot
shows estimated glomerular filtration rate (eGFR), an estimate of kidney function
(60-100 is normal, <60 indicates clinically significant kidney disease). The bottom
plot shows the trajectory of five other clinical labs relevant to kidney disease.

These traits make CKD an ideal condition to develop disease progression models that can
be used in high-impact care management programs. The difficulties with CKD care are best
explained with a representative clinical case, illustrated in Figure 1. A 47 year-old man makes
first contact with the health system with normal kidney function, although he possesses
several risk factors for developing CKD. Over the next few years, his kidney function rapidly
deteriorates (normal annual rate of kidney function loss at his age is only about 1-2 mL/min).
However, his kidney disease goes unnoticed due to other more pronounced medical conditions,
and he does not receive any treatment to slow progression to total kidney failure. At age 52 he
is finally referred to a kidney specialist, but now it is too late to make advanced preparations
for kidney failure, such as pre-emptive kidney transplantation or at-home dialysis, and kidney
failure is inevitable. Within a few months of this first specialist appointment, he requires
hospitalization for emergency dialysis initiation, a traumatic procedure that also makes him
among the most expensive type of patient to treat (Johnson and et al. (2015)). While on
dialysis over the next decade he suffers several cardiovascular complications before ultimately
dying at age 63. A care management program utilizing individualized predictions from a
disease progression model, like the one developed in this work, might have been able to act
upon the multiple missed opportunities from this patient story.

Our aim in this work is to develop flexible, broadly applicable statistical models for
multivariate longitudinal data. Ideally such a method would not only accurately model
related time-varying clinical variables, but also leverage information from them to improve
prediction of the disease trajectory of interest. For instance, in our particular application to
CKD, while eGFR is the primary biomarker of interest, prediction of other labs can also



be clinically useful. To accomplish this, we utilize a hierarchical latent variable model that
captures dependencies between multivariate longitudinal trajectories. Our model uses a
Gaussian process (GP) with a highly structured mean function to model each longitudinal
variable for each individual. The mean functions for the GPs are then made dependent
through shared latent variables. Using our model, we study a large cohort of patients with
CKD from the Duke University Health System EHR and make predictions about the future
trajectory of their disease severity, as measured by eGFR, along with five other commonly
recorded laboratory values that are known to be affected by CKD. The stochastic variational
inference algorithm that we develop to fit the model scales well to the large dataset, and our
model’s predictions have significantly lower error than a state-of-the-art univariate method
for predicting disease trajectories.

2. Related Work

Within the medical literature, the vast majority of predictive models are cross-sectional and
only consider features at or up until the current time to predict outcomes at a fixed point
in the future. Typically, these models only attempt to explain variability in the outcome
of interest by conditioning on baseline covariates. This precludes the ability to generate
dynamic individualized predictions, making them difficult to use for medical decision making
in practice. For instance, Tangri and et al. (2011) is a commonly referenced Cox proportional
hazards model for predicting time to kidney failure.

Within the statistics and machine learning communities, Markov models of many varieties
are frequently used to generate dynamic predictions, e.g. autoregressive models, HMMs, and
state space models (Murphy (2012)). However, these methods are generally only applicable in
settings with discrete, regularly-spaced observation times, and in most applications the data
consists of a single set of multivariate time series (e.g. financial returns), not a large collection
of sparsely sampled multivariate time series (in our setting, disease or lab trajectories). GPs
have been commonly been used in settings with continuous time observations, see e.g. (Shi
et al. (2005)) for a thorough overview. Since they are prior distributions over functions, they
are a natural modeling choice for disease trajectories, however, accurate forecasts for GPs
require careful specification of the mean functions (Roberts and et al. (2013)).

There are several related works that tackle the problem of dynamic predictions for medical
applications. (Rizopoulos (2011)) construct joint models with a focus on updating dynamic
predictions about time to death as more values of a longitudinal biomarker are observed.
They also account for individual heterogeneity using random effects. Related work on joint
modeling (Proust-Lima and et al. (2014)) uses a mixture model to address heterogeneity.
Although a few works from this joint modeling literature address multivariate data, typically
the only dependency among variables is simplistic, coming from a shared vector of random
effects. Most similar to our work is (Schulam and Saria (2015)), who present a model for a
univariate marker of disease trajectory using a GP with a highly structured mean function.

There has been much recent interest in machine learning in modeling EHRs and other
types of healthcare data. For instance, (Lian and et al. (2015)) use hierarchical point processes
to predict hospital admissions, and (Ranganath and et al. (2015)) develop a dynamic factor
model to learn relationships between diseases and predict future diagnosis codes. Some
related papers use multitask GPs to model multivariate longitudinal clinical data from the



Intensive Care Unit (ICU) (Durichen and et al. (2015), Ghassemi and et al. (2015)). However,
these works use independently trained models for each patient and do not hierarchically share
any information across patients. This worked well in their examples, since in the ICU there
is a relatively large number of observations per subject, but would not work as well with our
much sparser EHR data from chronic disease patients. Closer to our work in the application
is (Perotte and et al. (2015)), whose main goal is prediction of time of progression from
CKD stage 3 to stage 4. Although they use a standard Kalman filter to model multivariate
laboratory data, this is not the main aim of their work and it will also not be as flexible as
our GP-based models. Finally, Futoma et al. (2016) present a method for jointly modeling
CKD disease trajectory with adverse events. Though their application and data is similar
to this work, they were primarily concerned with improving prediction of cardiac events
using information from eGFR trajectories, while our focus is instead on leveraging additional
longitudinal clinical variables to improve prediction of eGFR trajectories.

3. Proposed Multivariate Disease Trajectory Model

Our proposed hierarchical latent variable model jointly models each patient’s multivariate
longitudinal data by using a GP for each individual variable, with shared latent variables
inducing dependence between the mean functions. Note that our model reduces to the
method presented in (Schulam and Saria (2015)) in the univariate setting.

Let ~yi(t) = (yi1(t), . . . , yiP (t))> ∈ RP denote the P−dimensional trajectory of measure-
ments for individual i, and let ~yip = {yip(tipj)}

nip

j=1 be the nip observations for variable p at
times tipj for this individual. Let ci, ~zi, ~bi, and ~fi be latent variables specific to individual i, to
be defined subsequently. We will assume for each person that the longitudinal variables are con-
ditionally independent given these latent variables: p(~yi|ci, ~zi, ~bi, ~fi) =

∏P
p=1 p( ~yip|ci, ~zi, ~bi, ~fi).

For each longitudinal variable, we propose the following generative model:

yip(t) ∼ N(µip(t), σ
2
p) (1)

µip(t) ∼ GP(Φ(p)
pop(t)

>Λ(p)xi + Φ(p)
z (t)>β(p)zip + Φ

(p)
l (t)>bip,Kp) (2)

Kp(t, t
′) = a2pexp{−l−1p |t− t′|} (3)

zip|ci ∼ Multinomial(Ψ(p)
ci ) (4)

with priors across all P variables:

ci ∼ Multinomial(πi), πig =
ew

>
g xi∑G

g′=1 e
w>

g′xi
(5)

~bi = (bi1, . . . , biP )> ∼ N(0,Σb). (6)

The first term in the mean function (2) admits population-level fixed effects for each
lab using observed baseline covariates xi ∈ Rq, e.g. gender, race, age. Λ(p) ∈ Rdp×q is a
coefficient matrix with Φ

(p)
pop(t) ∈ Rdp a basis expansion of time; in practice we use a linear

expansion of time with dp = 2 so this term allows for a fixed intercept and slope.
The second term in (2) is a subpopulation component, where it is assumed individual i’s

trajectory for variable p belongs to a latent subpopulation, denoted zip ∈ {1, . . . , Gp}. Each



subpopulation is associated with a unique trajectory; in particular, Φ
(p)
z (t) ∈ Rdz is a fixed

B-spline basis expansion of time (for simplicity, assumed to be the same for each variable:
degree two, with the same eight interior knots evenly spaced in time) with β(p)g ∈ Rdz the
coefficient vector for subpopulation g and variable p.

The prior for each zip in (4) depends on the individual’s “global” cluster ci ∈ {1, . . . , G}.
Drawing on ideas from latent structure analysis for multivariate categorical data (Lazarsfeld
and Henry (1968)), the ci induce dependence among the P trajectory-specific clusters zip, as
they have conditionally independent multinomial priors. Each of the G columns Ψ

(p)
g in the

matrix Ψ(p) ∈ RGp×G defines a distribution over the Gp values that zip can take. The ci then
has a multinomial logistic regression prior in (5) that depends on the baseline covariates xi,
where {wg}Gg=1 are regression coefficients with w1 ≡ 0 for identifiability.

The third term in (3) is a random effects component, allowing for individual-specific long-
term deviations in trajectory that are learned dynamically as more data becomes available.
In practice Φl(t) ∈ Rdl is a linear expansion of time with dl = 2, so that bip ∈ Rdl is a random
slope and intercept vector for patient i. The overall vector ~bi has a multivariate normal prior
distribution in (6), making the random effects dependent across labs.

Finally, Kp(t, t
′) = a2pexp{−l−1p |t − t′|} is the Ornstein-Uhlenbeck (OU) covariance

function for the GP each variable, with parameters ap, lp. This kernel is well-suited for
modeling transient deviations from the mean function, as it is mean-reverting and has
no long-range dependence between deviations. We can rewrite (2) as µip(t) = Λ(p)xi +
Φz(t)>βzip + Φl(t)

>bip + fip(t), where fip(t) ∼ GP(0,Kp), so that we can explicitly represent
the short-term deviations fip from the GP in order to learn them during inference.

4. Inference

The computational problem associated with fitting our model is estimation of the posterior
distribution of latent variables and model parameters given the observed data. As is common
with complex probabilistic generative models, exact computation of the posterior is intractable
and requires approximation to compute. To this end, we develop a mean field variational
inference [Jordan et al., 1999] algorithm to find an approximation to the posterior.

Variational inference converts the task of posterior inference into an optimization problem
of finding a distribution q in some approximating family of distributions that is close in KL
divergence to the true posterior. The problem is equivalent to maximizing what is known as
the evidence lower bound (ELBO) [Bishop, 2006]:

L(q) = Eq[log p(y, z, b, f, c,Θ)− log q(z, b, f, c,Θ)], (7)

which forms a lower bound on the marginal likelihood p(y) of our model.

Variational Approximation

The model parameters to be learned are Θ =
{
{Λ(p), β(p),Ψ(p), ap, lp, σ

2
p}Pp=1,W,Σb

}
, and

the local latent variables specific to each person are their global cluster assignment ci,
subpopulation assignments zip, random effects ~bi and structured noise functions fip. The



joint distribution for our model can be expressed as:

p(y, z, b, f, c,Θ) = p(Θ)

N∏
i=1

p(bi|Θ)p(ci|Θ)

P∏
p=1

p( ~yip|zip, bip, fip,Θ)p(zip|ci,Θ)p(fip|Θ) (8)

We make the mean field assumption for the variational distribution, which assumes that
in the approximate posterior q, all the latent variables are independent. This implies that
q(z, b, f, v,Θ) = q(Θ)

∏N
i=1 qi(ci, zi, bi, fi), where:

qi(ci, zi, bi, fi) = qi(ci|νci)qi(bi|µbi ,Σbi)
P∏

p=1

qi(zip|νzip)qi(fip|µfip ,Σfip) (9)

The assumed variational distributions for each latent variable are in the same family as
their prior distribution, i.e. ci and zip are multinomials, and bi is multivariate normal. For
fip we use a multivariate normal evaluated at all times at which variable p is observed
for patient i. To evaluate fip at additional times e.g. during model evaluation we use
the conditional GP framework and treat the observed values as pseudo-inputs, from the
sparse GP literature (Titsias (2009)). Finally, for all model parameters Θ we learn a point
estimate, so their variational distributions are delta functions. We impose vague normal
priors on Λ(p), β(p), and W , a uniform prior on Ψ(p), and learn MLEs for other parameters.
Thus, the goal of our variational algorithm is to learn optimal variational parameters
λi = {νci , νzip , µbi ,Σbi , µfip ,Σfip} for each individual i, as well as a point estimate Θ̂ for
model parameters. In practice, we optimize Cholesky decompositions of covariance matrices.

Solving the Optimization Problem

We use the automatic differentiation package autograd 1 in Python to compute exact gradients
in order to optimize the lower bound, since the lower bound has an analytic closed-form
expression. At each iteration of the algorithm, we optimize the local variational parameters
using exact gradients. To optimize the global parameters, we turn to stochastic optimization,
a commonly used tool in variational inference. Rather than using the entire large dataset
to compute exact gradients of the ELBO with respect to Θ, we can compute an unbiased
noisy gradient based on a sampled batch of observations (Hoffman et al. (2013)). To set the
learning rate we use RMSProp, which adaptively allows for a different learning rate for each
parameter (Tieleman and Hinton (2012)).

5. Empirical Study

In this section we describe our experimental setup and results on our dataset.

Dataset

Our dataset contains laboratory values from 44,519 patients with stage 3 CKD or higher
extracted from the Duke University Health System EHR. IRB approval (#Pro00066690)
was obtained for this work. We started with an initial cohort of roughly 600,000 patients

1. https://github.com/HIPS/autograd



that had at least one encounter in the health system in the year prior to Feb. 1, 2015. This
includes inpatient, outpatient, and emergency department visits over a span of roughly 20
years. From this, we filtered to patients who had at least five recorded values for serum
creatinine, the laboratory value we used to calculate eGFR. Finally, we selected patients that
had Stage 3 CKD or higher, indicative of moderate to severe kidney damage and defined as
two eGFR measurements less than 60 mL/min separated by at least 90 days.

We also choose to model five related lab values that have important clinical significance
for CKD. The first, serum albumin, is an overall marker of health and nutrition. The second,
serum bicarbonate, can indicate acid accumulation from inadequate acid elimination by
the kidney. The third, serum calcium, can indicate improperly functioning kidneys if levels
are too high. The fourth, serum phosphorus, can indicate phosphorus accumulation due
to inadequate elimination by the kidney, and is associated with cardiovascular death and
bone disorders. Finally, urine albumin to creatinine ratio (ACR) is a risk factor and cause of
kidney failure (we use a log transform following common practice). While all 44,519 patients
have at least five eGFR measurements, there are 884, 242, 78, 16159, and 4321 patients who
have no recorded values for the other labs, and the median number of measurements for each
lab (among patients with at least one) is 14, 8, 11, 12, 3, and 4, respectively.

As a final preprocessing step, since the recorded eGFR values are extremely noisy and
eGFR is only a valid estimate of kidney function at steady state, we take the mean of eGFR
readings in monthly time bins for each patient. We also do this to the other lab values, to
reduce the overall noise in short time spans. Future work will more explicitly model periods
of rapid fluctuation and high variance as they may be related to long term risk. In order
to align the patients on a common time axis, for each patient we fix t = 0 to be their first
recorded eGFR reading below 60 mL/min. The baseline covariates used for xi were baseline
age, race and gender, and indicator variables for hypertension and diabetes, as well as an
overall intercept.

Evaluation

After learning a point estimate for the global model parameters during training, they are
held fixed. Then, an approximate posterior over the local latent variables is learned for each
patient in the held-out test set. Predictions about future lab values are made by drawing
samples from the approximate posterior predictive. We compare our method with the method
of (Schulam and Saria (2015)), trained independently to each of the 6 labs. For each test
patient, we learn their parameters three times, using data up until times t = 1, t = 2, and
t = 4, each time recording the mean absolute error of predictions for each lab in future time
windows. These values are then averaged over all patients in the test set, and finally averaged
over 10 cross validation folds to produce Table 1. We use the 10 fold cross validation with
one-sided, paired t-tests to test for significant improvements in performance.

Results

Table 1 displays the results of both methods. We set G = Gp = 10, but results were not
sensitive to this choice. Our proposed method generally outperforms (Schulam and Saria
(2015)), especially when less data is used to make predictions (e.g. t = 1). This makes
sense, as our method is able to learn correlations between variables to improve predictions.



Table 1: Mean Absolute Errors across all labs from 10 fold cross validation. Bold indicates p-
value from one-sided, paired t-test comparing methods was < .05. *,**,*** indicate
p < .01, < .001, < .0001, respectively.

Predictions with data up to... t = 1 t = 2 t = 4

Lab Model (1, 2] (2, 4] (4, 8] (8, 19] (2, 4] (4, 8] (8, 19] (4, 8] (8, 19]
eGFR Schulam 8.84 10.36 12.04 13.78 8.82 11.10 13.17 9.33 12.15

Proposed 8.76** 10.18*** 11.79*** 13.68 8.67** 10.99* 13.13 9.34 12.18
Serum Alb. Schulam 0.59 0.79 1.06 1.49 0.60 0.87 1.27 0.62 0.96

Proposed 0.32*** 0.37*** 0.43*** 0.56*** 0.33*** 0.42*** 0.56*** 0.38*** 0.52***
Serum Bicarb. Schulam 1.91 2.02 2.13 2.27 1.89 2.04 2.20 1.90 2.12

Proposed 1.85 1.98 2.09 2.29 1.88 2.06 2.29 1.94 2.26
Serum Calc. Schulam 0.71 1.02 1.56 2.78 0.72 1.21 2.28 0.81 1.55

Proposed 0.36*** 0.41*** 0.49*** 0.61*** 0.38*** 0.47*** 0.61*** 0.42 *** 0.57***
Serum Phos. Schulam 1.02 1.28 1.44 1.40 1.11 1.33 1.29 1.12 1.15

Proposed 0.66*** 0.81** 1.09 1.62 0.72*** 1.01 1.46 0.84* 1.27
Urine ACR Schulam 1.15 1.30 1.45 1.62 1.14 1.32 1.52 1.14 1.37

Proposed 0.84*** 0.96*** 1.11** 1.40 0.89*** 1.09* 1.40 0.99* 1.31

Further, in cases where the methods had to predict future labs for a patient that did not yet
have any observed values for that lab, (Schulam and Saria (2015)) could only predict using
baseline covariates, while our multivariate approach could also leverage information from the
other related labs. Current clinical practice for managing care of CKD patients uses clinical
judgment alone to predict future disease status. Incorporation of a model such as ours to
predict eGFR trajectory and other labs would provide a useful tool for providers to assess
the risk of future decline in kidney function.

6. Discussion

In this paper, we proposed a flexible model for multivariate longitudinal data, and applied it
to disease trajectory modeling in CKD. Our model yields good performance on the task of
predicting future kidney function and related lab values. Although our work is a promising
early work for developing machine learning models from EHR data and applying them to
real clinical tasks, many inherent limitations to working with operational EHR data (Hersh
and et al (2013)) must be overcome in order for the methods to be widely used in practice.

There are many interesting avenues for future work. We plan to consider models for
other diseases, including diabetes and cardiovascular disease, which are frequently comorbid
with CKD. Incorporation of a larger number of longitudinal variables will require care in
order to ensure tractability, especially if we choose to model frequently recorded vitals.
Another interesting direction to consider is joint models for adverse event data, such as in
(Futoma et al. (2016)). Jointly modeling multiple event processes (e.g. emergency department
visits, heart attacks, strokes) will allow us to learn correlations between different types of
events. Given that much of the data recorded in the EHR is in the form of administrative
billing codes, future work should incorporate these into the models as well, perhaps in an
unsupervised fashion. Finally, models incorporating additional outcomes such as medical
costs, hospitalizations, and patient quality of life are of significant practical interest.

The screenshot in Figure 2 shows a prototype of the rounding tool being developed with
Duke Connected Care, where our predictions will help flag high risk patients for chart review
during rounding sessions. Deployment of a flexible, scalable predictive tool such as ours offers
ACOs the opportunity to transform the way care is provided to large patient populations.



Figure 2: Snapshots from our CKD rounding application (with synthetic data). The top
panel shows a pre-rounding table of patients to be rounded on, along with risk
scores and appropriate flags. The middle panel displays patient data and other
relevant information so that this patient’s care can be efficiently managed and an
appropriate intervention made, if applicable. The bottom panel shows a list of
tasks assigned to each group present at rounds.
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