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Abstract

Simple decision heuristics are cognitive models of human and animal decision making. They
examine few pieces of information and combine the pieces in simple ways, for example, by
considering them sequentially or giving them equal weight. They have been studied most
extensively for the problem of comparison, where the objective is to identify which of a
given number of alternatives has the highest value on a specified (unobserved) criterion.
We present the most comprehensive empirical evaluation of decision heuristics to date on
the comparison problem. In a diverse collection of 56 real-world data sets, we compared
heuristics to powerful statistical learning methods, including support vector machines and
random forests. Heuristics performed surprisingly well. On average, they were only a few
percentage points behind the best-performing algorithm. In many data sets, they yielded
the highest accuracy in all or parts of the learning curve.

1. Introduction

People and animals spend much of their time choosing among alternative options. For ex-
ample, a venture capitalist chooses among companies to invest in, a writer among potential
publishers, and a bee colony among suitable nest sites. The true values of the alternatives
are typically not known in advance. A choice is made by examining other pieces of relevant
information. For instance, venture capitalists do not know how much they will earn from
investing in a particular company but can examine the track record of the founders.

How do people and animals make such decisions? One theory is that they use simple
heuristics (Gigerenzer et al., 1999). These simple decision rules examine only a few pieces
of information, perhaps only a single piece of information, and combine the pieces in simple
ways. For example, lexicographic heuristics consider the various pieces of information se-
quentially, one at a time, while tallying heuristics give different pieces of information equal
weight. There is evidence supporting the use of such simple models in a wide range of
decisions made by people and animals (Gigerenzer et al., 2011; Hutchinson and Gigerenzer,
2005).

Compared to standard statistical decision methods, heuristics are very frugal in their
use of information and have very low computational requirements. And yet earlier stud-
ies have shown that heuristics can be surprisingly effective when compared to statistical
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learning methods, including logistic regression, decision trees, naive Bayes, and nearest
neighbor methods (Brighton and Gigerenzer, 2008; Martignon and Laskey, 1999; Simsek
and Buckmann, 2015).

Intrigued by these earlier results, we systematically analyzed the performance of heuris-
tics compared to the very best statistical models, including random forests and support
vector machines (SVMs), the two models that performed best in a recent large-scale com-
parison of 179 classification algorithms across 121 data sets (Fernandez-Delgado et al., 2014).
In this study, of the five highest ranked classifiers, three were random forest implementations
(first, second, and fifth position) while the other two were SVM implementations.

We analyzed a diverse collection of 56 real-world data sets that included two well-known
heuristics, take-the-best (Gigerenzer and Goldstein, 1996) and tallying (Czerlinski et al.,
1999). Heuristics performed remarkably well. On average, they were only a few percentage
points behind the best performing algorithm. In many data sets, they yielded the highest
accuracy in all or parts of the learning curve.

In the following sections, we first formally define the decision problem we address and
describe decision models that are based on heuristics, classification, and regression. We
then provide an overview of earlier results on how well heuristics perform. We continue
with a description of our methodology and results. We conclude with a discussion of our
findings.

2. Background

The decision problem we address is comparison, where the objective is to identify the
alternative with the highest criterion value, given m alternatives and k attributes on each
alternative. We focus on problems with exactly two alternatives. An example is to determine
which of two stocks will have a higher return on investment in 5 years, given attributes such
as the name recognition of the company.

Let A and B denote the first and the second alternative, respectively. Let x4 denote the
vector of attribute values of alternative A, and y4 its criterion value. The outcome variable
of interest is 045 = sgn(ya —yp) € {—1,0, 1}, where sgn is the mathematical sign function.
The objective is to construct a decision rule for selecting one or the other alternative using
the available attributes, in other words, to learn a decision rule f(x4,xp) € {—1,0,1} from
training data T = {x%,x%, ol g} ;.

The comparison problem is intrinsically symmetrical. Comparing A to B should return
the same decision as comparing B to A. That is, f(x4,xp) should equal —f(xp,x4).
One can expect better accuracy when imposing this symmetry constraint on the learning
method.

Notice that an outcome value of 0 may be useful for training but the learned model need
not identify this outcome at all. From the decision maker’s perspective, when alternatives
have equal value, either alternative would qualify as a correct decision.

In the heuristics literature, attributes are called cues; we follow this custom when dis-
cussing heuristics.

Below, we describe three approaches to comparison and comment on the informational
needs of the various approaches.
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2.1 Decision heuristics

We consider three heuristics: single-cue (Hogarth and Karelaia, 2005; Simsek and Buck-
mann, 2015), tallying (Czerlinski et al., 1999), and take-the-best (Gigerenzer and Goldstein,
1996). These heuristics associate each cue with a direction to determine how the cue decides
on its own. Cue direction can be positive or negative, favoring the object with the higher or
lower cue value, respectively. It can also be neutral, favoring neither object. Cue directions
can be learned in a number of ways, including social learning. In our analysis, they are
learned from training examples.

Single-cue is perhaps the simplest decision method one can imagine. It compares the
alternatives on a single cue, breaking ties randomly. A model for this heuristic specifies the
identity of the cue and its direction. We learn both from training examples. Specifically,
among the 2k possible models, where k is the number of cues, the single-cue model is the
one that has the highest accuracy in the training examples.

Tallying is a voting model. It determines how each cue votes on its own—for alternative
A, for alternative B, or for neither—and selects the object with the highest number of votes,
breaking ties randomly. A tally model needs only to specify cue directions.

Take-the-best is a lexicographic model. It considers the cues one at a time, in a specified
order, until it finds a cue that discriminates between the alternatives, that is, a cue whose
value differs on the two alternatives. It then decides based on that cue alone. A take-the-
best model specifies cue directions and cue order.

Cue directions are learned in the same manner for all heuristics. The direction of each
cue is learned independently of the directions of other cues. The information required
from each training example is simply the direction d of the cue in that example: d =
sgn((ya —yB) X (x4 —xzp)) € {—1,0,+1}. Let p and n respectively denote the number
of positive and negative samples in the training set. Specifically, p = Zfi 11(d; = 1) and
n = Zfi 1 I(d; = —1), where I is the indicator function. Cue direction is set to positive,
negative, or neutral, respectively, if p > n, p <n, or p = n.

Cue order in take-the-best is set to the order of decreasing validity of the cues in the
training sample, where validity is max{p/(p + n),n/(p +n)}. That is, cues are ordered by
how often they decide correctly when they are able to discriminate between the alternatives.

2.2 Classification

Because our outcome variable is discrete, any classification algorithm is directly applicable.
In principle, learning can be done as a function of attribute values of individual objects,
but in practice the training data required will be prohibitive. Thus we explore learning a
decision rule as a function of attribute differences, Axsp = x4 — xp. Our objective then
is to learn decision rule f(Axsp) € {1,—1,0} from training data T = {Ax'z, 0% 5}V

2.3 Regression

Regression can be used to estimate the difference in criterion values of the two alterna-
tives and deduce which alternative has the higher criterion value based on these estimates.
Specifically, we train a regressor h(Ax4p) with training data T = {Ax% 5, (ya —yp)'}Y
to use in decision rule f(x4,xp) = sgn(h(Axap)).
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2.4 Data requirements

Regression requires the highest level of information. It requires that the difference in the
criterion values of the alternatives be known in training data, which may not always be
possible. In contrast, the training data required for classification is more easily available
because all that is required is the identity of the alternative with the higher criterion value—
the criterion values of either alternative or the difference in their criterion values are not
needed.

Informational needs of heuristics are substantially less than those of classifiers. They do
not even require the differences in cue values to be quantified; they need only the sign of
cue differences. For example, if height of a person is a cue, heuristics need to know which of
two people is taller but not the height of either person or the magnitude of the difference.

3. Earlier work

Czerlinski et al. (1999) compared take-the-best and tallying to multiple linear regression in
20 real-world data sets. In each data set, the authors trained the models on all pairwise
comparisons among 50% of the objects and tested them on all pairwise comparisons among
the remaining objects. They dichotomized the numerical attributes around the median,
converting the attribute to binary to mimic people’s typically limited knowledge about at-
tribute values and the potential unreliability of precise values. Take-the-best performed
best, with a mean accuracy of 0.72 across data sets, compared to 0.69 for tallying, and 0.68
for multiple linear regression. When the authors repeated their analysis without dichotomiz-
ing the attributes but using their exact numerical values, mean accuracies of take-the-best
and multiple linear regression were identical at 0.76. The authors did not test tallying with
numerical attributes.

Brighton (2006) presented learning curves on eight data sets, where attributes were again
dichotomized around the median, comparing take-the-best to neural networks, decision
trees, and nearest neighbor methods. In four data sets, take-the-best had the highest
accuracy on almost the entire learning curve. In the other four data sets, take-the-best had
the highest accuracy on at least some parts of the learning curve.

Katsikopoulos et al. (2010) showed mean accuracy in 19 data sets for training sam-
ples of 2 to 10 objects. They compared multiple models, including take-the-best, tallying,
multiple linear regression, and naive Bayes, implementing most models with and without
dichotomizing the attributes. Take-the-best (with undichotomized cues) had the highest
accuracy for all but the smallest training-sample size of two objects, in which case tallying
(with dichotomized cues) had the highest accuracy. Again, tallying was not tested with
exact numerical values.

Brighton and Gigerenzer (2012) compared take-the-best to SVM in a single data set,
where attributes were naturally binary, and found that the accuracy levels of the two models
were comparable throughout the learning curve.

Simsek and Buckmann (2015) presented learning curves for heuristics, logistic regression,
and decision trees on 63 natural data sets. On average, tallying was the most accurate
method on very small sample sizes. When models were trained on 50% of instances in the
data set, mean accuracy across data sets was 0.725 for tallying, 0.743 for take-the-best,
0.746 for CART, and 0.747 for logistic regression.
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Table 1: Data sets used in the analysis.

ID Name Objects Cues || ID Name Objects  Cues
1 Manpower 17 ) 29  Mortality 60 15
2 Waste 20 5 30  Movie 62 12
3 Jet 22 5 31  Dropout 63 18
4 Sperm 24 8 32 Land 67 4
5 Cigarette 25 3 33 Lakes 69 10
6 Galédpagos 29 5 34  City 76 9
7 Agriculture 29 6 35 Car 93 21
8 Ice 30 3 36  Basketball 96 4
9 Oxidant 30 4 37 Infant 101 3
10  Recycling 31 7 38  Obesity 136 11
11  Reactor 32 10 39  Contraception 152 6
12 Rebellion 32 6 40  Votes 159 b)
13 Excavator 33 5 41  Pitcher 176 15
14 Occupation 36 3 42 Birthweight 189 8
15 Pinot 38 6 43 Athletes 202 8
16  Highway 39 11 44 CPU 209 6
17 AFL 41 4 45 Tip 244 6
18 Air 41 6 46  Bodyfat 252 13
19 Bones 42 6 47  Hitter 263 19
20  Mussels 44 8 48  Diamond 308 4
21  Mines 44 4 49  Algae 340 11
22 Prefecture 45 5 50  Faculty 397 5
23  Crime 47 15 51  Mileage 398 7
24 Homeless 50 7 52 Monet 430 4
25 SAT 50 4 53  Affair 601 8
26  Fuel 51 5 54  Lung 654 4
27  Salary 52 5 55  Rent 2053 10
28  Sleep 58 7 56  Home 3281 4
4. Analysis

We used 56 data sets gathered from a wide variety of sources, including online data reposito-
ries, statistics and data-mining competitions, packages for R statistical software, textbooks,
and research publications. The subjects were diverse, including biology, business, computer
science, ecology, economics, education, engineering, environmental science, medicine, polit-
ical science, psychology, sociology, sports, and transportation. The data sets varied in size,
ranging from 17 to 3,281 objects. They also varied in the amount of information available,
ranging from 3 to 21 attributes. Many of the smaller data sets contained the entirety of the
population of objects, for example, all 29 islands in the Galdpagos archipelago. The data
sets are listed in Table 1 and described in the supplementary material. All data sets are
publicly available.

Missing attribute values were imputed by the mean, median, and mode value in the
data set for interval, ordinal, and categorical attributes, respectively. Objects with missing
criterion values were discarded. For ordinal attributes, attribute difference between two
objects was recoded into a new ordinal attribute with three values, indicating if the differ-
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ence is positive, negative, or zero. This is because the exact value of the difference is not
meaningful for ordinal attributes, only its sign. A categorical attribute with ¢ categories
was recoded into ¢ binary attributes, each indicating membership in one category.

Almost all earlier studies have dichotomized the numerical attributes as described in
Section 3. We did not. All models, including heuristics, generally yield higher accuracy
when attributes are not dichotomized.

We examine two performance metrics on decision quality. Our primary metric is accu-
racy, where a decision is considered to be accurate if it selects the object with the higher
criterion value or if the objects are equal in criterion value. We examine, in addition, a
linear loss metric that equals 0 if the decision is accurate, and “”“‘;7?"5‘ otherwise, where z
is a normalizing constant for the data set, computed as follows:

L= ZV(AB) |yA—yB|. (1)
> ovia,B) 1

We present results with the following classification algorithms: random forests, SVMs,
and naive Bayes; the following regression algorithms: multiple linear regression (MLR)
with elastic net penalty and random forest regression; and the following heuristics: single-
cue, take-the-best, and tallying. We trained SVMs using their implementation in the R
package 1071 (Meyer et al., 2014). We tried both a linear and a Gaussian kernel, with
a 10-fold cross-validated grid search for parameter values. We trained random forests and
random forest regression using the implementation in the R package randomForest (Liaw
and Wiener, 2002), with 10-fold cross-validated search for the best value of the parameter
mtry. We trained linear regression with elastic net regularization (Zou and Hastie, 2005),
using the R package glmnet (Friedman et al., 2009). We selected the parameter values of a
and A using 10-fold cross-validation. We used the naive Bayes implementation in R package
el071 (Meyer et al., 2014), with Laplace smoothing. Additional implementation details are
described in the supplementary material.

5. Results

We present results on the performance of each algorithm as training-set size increases,
starting from a size of one. Recall that a training instance requires information on two
objects. Consequently, a single training instance uses two objects from the data set. These
two objects are then discarded, not to be used again in any train or test instance.

To generate learning curves, we randomly sampled m test instances from each data set
(m = n/10, where n is the number of objects in the data set). We then progressively
sampled training sets of increasing size using the remaining objects in the data set. We
replicated this procedure 4,000 times for SVM, and 10,000 times for all other algorithms.
The smaller numbers for SVM are due to the substantially higher training time required
for this model.

Figure 1 shows the mean learning curve across 56 data sets for various algorithms.
Table 2 reports mean accuracy and linear loss across 56 data sets for training sets of size
10, 20, 50, and 90 instances. Figure 2 displays individual learning curves on 20 of the data
sets.
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Figure 1: Mean accuracy in 56 data sets as a function of the training-set size. On the
horizontal axis, the figure also shows the number of data sets contributing to the
mean performance.

Table 2: Mean performance across 56 data sets

Accuracy 1 — Linear loss

Training set size 10 20 50 90 10 20 50 90

Data sets n=53 n=34 n=19 n=14|n=53 n=34 n=19 n=14
Take-the-best 0.689 0.712 0.739 0.758 | 0.741 0772  0.797  0.819
Tallying 0.694 0.710 0.727  0.739 | 0.750 0.772  0.784  0.798
Single-cue 0.673 0.695 0.723 0.746 | 0.721  0.749 0.775  0.804
Naive Bayes 0.722  0.733 0.751  0.764 | 0.792 0.807 0.817 0.832
Random forest 0.715 0.731  0.751 0.767 | 0.781 0.798 0.811 0.829
SVM (linear) 0.700  0.717  0.747 0.769 | 0.765 0.784 0.811 0.835
SVM (radial) 0.687  0.710 0.741 0.762 | 0.745 0.776  0.801  0.824
Random forest regression | 0.727  0.742 0.759 0.774 | 0.800 0.814 0.823  0.839
MLR (elastic net) 0.721  0.737  0.760 0.777 | 0.788 0.809 0.827 0.846

Along the mean learning curves, the differences between the heuristics and the statistical
learning algorithms are relatively small. The maximum difference in accuracy between
the best heuristic and the best algorithm at a given sample size is at most 0.037. On
the early parts of the curve, tallying performed better than take-the-best but is roughly
0.025 percentage points behind the best performing algorithms: random forest, random
forest regression, and naive Bayes. With larger training-set sizes, take-the-best performed
remarkably well. With training-set sizes of 44 or larger, it trailed the top algorithm by 0.019
on average. We should also note that a relatively simple method, naive Bayes, performed
remarkably well. Along the mean learning curve, it closely trailed random forest regression
on most training-set sizes.
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On individual data sets, there were substantial differences in the performance of the
various algorithms. In most of the data sets, at least one heuristic performed as well as or
better than the best performing classification algorithm in all or parts of the learning curve.
The results on linear loss are very similar to those on accuracy.

We measured the computation time required for training and testing the various models
midway along the learning curve, where the size of the training set was roughly 90% of
its maximum value. The experiment was run on a single kernel of a cluster (Intel Xeon
CPU E5-2670, 4GB memory). For one pass over the data sets, SVM with the radial kernel
required on average 283 minutes, SVM with the linear kernel required 16 minutes, random
forest required two minutes, and MLR (elnet) required one minute. In contrast, take-the-
best and tallying each required only 0.40 seconds. Note that the R packages we used to
train SVM and random forests both call highly efficient Fortran and C code, while our
implementation of the heuristics is programmed entirely in the much slower R language.

6. Discussion

Among the decision methods tested earlier in the literature, including logistic regression
and decision trees, tallying stood out as the best method for sample sizes with 1-10 in-
stances (Simsek and Buckmann, 2015). We found that tallying (on average) falls short of
more powerful statistical algorithms—random forest, random forest regression, and naive
Bayes—even when training sets are small.

One surprising result is that with larger training-set sizes, multiple linear regression
(with elastic net penalty) performed better on average than any other algorithm. This result
has important implications because decision heuristics are often treated as an approximation
of a linear decision rule. Several properties of the decision environment are known to allow
heuristics to approximate a linear algorithm (Hogarth and Karelaia, 2006; Baucells et al.,
2008; Martignon and Hoffrage, 2002; Katsikopoulos, 2011). Furthermore, these properties
are prevalent in natural decision problems (Simsek, 2013; Simsek et al., 2016).

It is fair to conclude that in a diverse collection of natural environments, heuristics
fared remarkably well when compared to powerful statistical learning algorithms. To put
this result into context, it is useful to remember that the computational, informational, and
memory requirements of heuristics, both at training and decision time, are extremely low.

One possible reason for the success of heuristics is that comparison is an easy problem,
at least when compared to regression or classification. Given the fundamental importance
of comparison for intelligent behavior, it would be fruitful to examine this problem theoreti-
cally and to develop statistical learning algorithms that address it directly, taking advantage
of its special properties.

We hope these results will encourage further study of decision heuristics. In particu-
lar, we hope they will motivate further mathematical analysis as well as development of
additional heuristic models.
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