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Abstract
In many settings people must give numerical scores to entities from a small discrete set. For in-
stance, rating physical attractiveness from 1–5 on dating sites, or papers from 1–10 for conference
reviewing. We study the problem of understanding when using a different number of options is
optimal. For concreteness we assume the true underlying scores are integers from 1–100. We con-
sider the case when scores are uniform random and Gaussian. While in theory for this setting it
would be optimal to use all 100 options, in practice this is prohibitive, and it is preferable to utilize
a smaller number of options due to humans’ cognitive limitations. Our results suggest that using a
smaller number of options than is typical could be optimal in certain situations. This would have
many potential applications, as settings requiring entities to be ranked by humans are ubiquitous.

1. Introduction

Humans rate items or entities in many important settings. For example, users of dating websites
and mobile applications rate other users’ physical attractiveness, teachers rate scholarly work of
students, and reviewers rate the quality of academic conference submissions. In these settings,
the users assign a numerical (integral) score to each item from a small discrete set. However, the
number of options in this set can vary significantly between applications, and even within different
instantiations of the same application. For instance, for rating attractiveness, three popular sites all
use a different number of options. On “Hot or Not,” users rate the attractiveness of photographs
submitted voluntarily by other users on a scale of 1–10 (Figure 11). These scores are aggregated
and the average is assigned as the overall “score” for a photograph. On the dating website OkCupid,
users rate other users on a scale of 1–5 (if a user rates another user 4 or 5 then the rated user receives
a notification)2 (Figure 23). And on the mobile application Tinder users “swipe right” (green heart)
or “swipe left” (red X) to express interest in other users (two users are allowed to message each
other if they mutually swipe right), which is essentially equivalent to using a binary {1, 2} scale
(Figure 34). Education is another important application area requiring human ratings. For the 2016
International Joint Conference on Artificial Intelligence, reviewers assigned a “Summary Rating”
score from -5–5 (equivalent to 1–10) for each submitted paper (Figure 4).5). The papers are then

1. http://blog.mrmeyer.com/2007/are-you-hot-or-not/
2. The likelihood of receiving an initial message is actually much more highly correlated with the variance—and par-

ticularly the number of “5” ratings—than with the average rating (Fry, 2015).
3. http://blog.okcupid.com/index.php/the-mathematics-of-beauty/
4. https://tctechcrunch2011.files.wordpress.com/2015/11/tinder-two.jpg
5. https://easychair.org/conferences/?conf=ijcai16
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Figure 1: Hot or Not users rate attractiveness 1–10. Figure 2: OkCupid users rate attractiveness 1–5.

Figure 3: Tinder users rate attractiveness 1–2.

Figure 4: IJCAI reviewers rate papers -5–5.

discussed and scores aggregated to produce an acceptance or rejection decision based largely on the
average of the scores.

Despite the importance and ubiquity of the problem, there has been little fundamental research
done on the problem of determining the optimal number of options to allow in such settings.
We study a model in which users have a underlying integral ground truth score for each item in
{1, . . . , n} and are required to submit an integral rating in {1, . . . , k}, for k � n. (For ease of pre-
sentation we use the equivalent formulation {0, . . . , n−1}, {0, . . . , k−1}.) We use two generative
models for the ground truth scores: a uniform random model in which the fraction of scores for
each value from 0 to n−1 is chosen uniformly at random (by choosing a random value for each and
then normalizing), and a model where scores are chosen according to a Gaussian distribution with
a given mean and variance. We then compute a “compressed” score distribution by mapping each
full score s from {0, . . . , n− 1} to {0, . . . , k − 1} by applying

s←

⌊
s(
n
k

)⌋ . (1)
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We then compute the average “compressed” score ak, and compute its error ek according to

ek =

∣∣∣∣af − n− 1

k − 1
· ak
∣∣∣∣ , (2)

where af is the ground truth average score. The goal is to pick argminkek. While there are many
possible generative models and cost functions to use, these seemed like the most natural ones to
start with. We leave study of alternative choices for future work.

We derive a closed-form expression for ek that depends on only a small number (k) of parame-
ters of the underlying distribution for an arbitrary distribution.6 This allows us to exactly character-
ize the performance of using each number of choices. In computational simulations we repeatedly
compute ek and compare the average values. We focus on n = 100 and k = 2, 3, 4, 5, 10, which we
believe are the most natural and interesting choices for initial study.

One could argue that this model is somewhat “trivial” in the sense that it would be optimal to
set k = n to permit all the possible scores, as this would result in the “compressed” scores agreeing
exactly with the full scores. However, there are several reasons that would lead us to prefer to
select k � n in practice (as all of the examples previously described have done), thus making this
“thought experiment” worthwhile. It is much easier for a human to assign a score from a small set
than from a large set, particularly when rating many items under time constraints. We could have
included an additional term into the cost function ek that explicitly penalizes larger values of k,
which would have a significant effect on the optimal value of k (providing a favoritism for smaller
values). However the selection of this function would be somewhat arbitrary and would make the
model more complex, and we leave this for future study. Given that we do not include such a penalty
term, one may expect that increasing k will always decrease ek in our setting. While the simulations
show a clear negative relationship between k and ek, we show that smaller values of k can actually
lead to smaller ek surprisingly often. These smaller values would receive further preference with a
penalty term.

The most closely related theoretical work studies the impact of using finely grained numerical
grades (e.g., 100, 99, 98) vs. coarse letter grades (e.g., A, B, C) (Dubey and Geanakoplos, 2010).
They conclude that if students care primarily about their rank relative to the other students, they
are often best motivated to work by assigning them to coarse categories (letter grades) than by the
exact numerical exam scores. In a specific setting of “disparate” student abilities they show that
the optimal absolute grading scheme is always coarse. Their model is game-theoretic; each player
(student) selects an effort level, seeking to optimize a utility function that depends on both the
relative score and effort level. Their setting is quite different from ours in many ways. For one, they
study a setting where it is assumed that the underlying “ground truth” score is known, yet may be
disguised for strategic reasons. In our setting the goal is to approximate the ground truth score as
closely as possible.

While we are not aware of prior theoretical study of our problem, there have been experimental
studies on the optimal number of options on a “Likert scale” (Matell and Jacoby, 1971; Wildt and
Mazis, 1978; Cox III, 1980; Friedman et al., 1981). The general conclusion is that “the optimal num-
ber of scale categories is content specific and a function of the conditions of measurement” (Garland,

6. For theoretical simplicity we theoretically study a continuous version where scores are chosen according to a dis-
tribution over (0, n) (though the simulations are for the discrete version) and the compressed scores are over
{0, . . . , k − 1}. Continuous approximations for large discrete spaces have been studied in other settings; for in-
stance, they have led to simplified analysis and insight in poker games with continuous distributions of private infor-
mation (Ankenman and Chen, 2006).
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1991). There has been study of whether including a “mid-point” option (i.e., the middle choice from
an odd number) is beneficial. One experiment demonstrated that the use of the mid-point category
decreases as the number of choices increases: 20% of respondents choose the mid-point for 3 and 5
options while only 7% did for 7, 9, . . . , 19 options (Matell and Jacoby, 1972). They conclude that
it is preferable to either not include a mid-point at all or use a large number of options. Subsequent
experiments demonstrated that eliminating a mid-point option can reduce social desirability bias
which results from respondents’ desires to please the interviewer or not give what they perceive to
be a socially unacceptable answer (Garland, 1991).

2. Theoretical characterization

Suppose scores are given by continuous pdf f (with cdf F ) on (0, 100), and we wish to compress
them to two options, {0, 1}. Scores below 50 are mapped to 0 and scores above 50 to 1.

The average of the full distribution is

af = E[X] =

∫ 100

x=0
xf(x)dx.

The average of the compressed version is

a2 =

∫ 50

x=0
0f(x)dx+

∫ 100

x=50
1f(x)dx =

∫ 100

x=50
f(x)dx

= F (100)− F (50) = 1− F (50).

So e2 = |af − 100(1− F (50))| = |E[X]− 100 + 100F (50)|.
For three options,

a3 =

∫ 100/3

x=0
0f(x)dx+

∫ 200/3

x=100/3
1f(x)dx+

∫ 100

x=200/3
2f(x)dx

= F (200/3)− F (100/3) + 2(1− F (200/3))
= 2− F (100/3)− F (200/3)

e3 = |af − 50(2− F (100/3)− F (200/3))|
= |E[X]− 100 + 50F (100/3) + 50F (200/3)|

In general for n total and k compressed options,

ak =
k−1∑
i=0

∫ n(i+1)
k

x=ni
k

if(x)dx

=

k−1∑
i=0

[
i

(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]

= (k − 1)F (n)−
k−1∑
i=1

F

(
ni

k

)

= (k − 1)−
k−1∑
i=1

F

(
ni

k

)
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ek =

∣∣∣∣∣af − n

k − 1

(
(k − 1)−

k−1∑
i=1

F

(
ni

k

))∣∣∣∣∣
=

∣∣∣∣∣E[X]− n+
n

k − 1

k−1∑
i=1

F

(
ni

k

)∣∣∣∣∣ (3)

Equation 3 allows us to characterize the relative performance of choices of k for a given distri-
bution f . For each k the characterization requires only knowing k statistics of f (the k − 1 values
of F

(
ni
k

)
plus E[X]). In practice these could likely be closely approximated from historical data

for small values of k.
As an example we see that e2 < e3 iff

|E[X]− 100 + 100F (50)| < |E[X]− 100 + 50F (100/3) + 50F (200/3)|

Consider a full distribution that has half its mass right around 30 and half its mass right around
60 (Figure 5). Then af = E[X] = 0.5 · 30 + 0.5 · 60 = 45. If we use k = 2, then the mass
at 30 will be mapped down to 0 (since 30 < 50) and the mass at 60 will be mapped up to 1
(since 60 > 50) (Figure 6). So a2 = 0.5 · 0 + 0.5 · 1 = 0.5. Using normalization of n

k = 100,
e2 = |45 − 100(0.5)| = |45 − 50| = 5. If we use k = 3, then the mass at 30 will also be mapped
down to 0 (since 0 < 100

3 ); but the mass at 60 will be mapped to 1 (not the maximum possible value
of 2 in this case), since 100

3 < 60 < 200
3 (Figure 7). So again a3 = 0.5 · 0 + 0.5 · 1 = 0.5, but now

using normalization of n
k = 50 we have e3 = |45− 50(0.5)| = |45− 25| = 20. So, surprisingly, in

this example allowing more ranking choices actually significantly increases error.

Figure 5: Example distribution for which compressing with k = 2 produces lower error than k = 3.

3. Rounding compression

An alternative model we could have considered is to use rounding to produce the compressed scores
as opposed to using the floor function from Equation 1. For instance, for the case n = 100, k = 2,
instead of dividing s by 50 and taking the floor, we could partition the points according to whether
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Figure 6: Compressed distribution using k = 2. Figure 7: Compressed distribution using k = 3.

they are closer to t1 = 25 or t2 = 75. In the example above, the mass at 30 would be mapped to t1
and the mass at 60 would be mapped to t2. This would produce a compressed average score of

a2 =
1

2
· 25 + 1

2
· 75 = 50.

No normalization would be necessary, and this would produce error of

e2 = |af − a2| = |45− 50| = 5,

as the floor approach did as well. Similarly, for k = 3 the region midpoints will be q1 = 100
6 ,

q2 = 50, q3 = 500
6 . The mass at 30 will be mapped to q1 = 100

6 and the mass at 60 will be mapped
to q2 = 50. This produces a compressed average score of

a3 =
1

2
· 100

6
+

1

2
· 50 =

100

3
.

This produces an error of

e3 = |af − a3| =
∣∣∣∣45− 100

3

∣∣∣∣ = 35

3
= 11.67

Although the error for k = 3 is smaller than for the floor, it is still significantly larger than the error
for k = 2, and using two options still outperforms using three for the example in this new model.

In general, this approach would create k “midpoints” {mk
i }:

mk
i =

n(2i− 1)

2k

For k = 2 we have

a2 =

∫ 50

x=0
25 +

∫ 100

x=50
75 = 25F (50) + 75(1− F (50)) = 75− 50F (50)

e2 = |af − (75− 50F (50))| = |E[X]− 75 + 50F (50)|

One might wonder whether the floor approach would ever outperform the rounding approach
(in the example above the rounding approach produced lower error k = 3 and the same error for
k = 2). As a simple example to see that it can, consider the distribution with all mass on 0. The
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floor approach would produce a2 = 0 giving an error of 0, while the rounding approach would
produce a2 = 25 giving an error of 25. Thus, the superiority of the approach is dependent on the
distribution. We explore this further in the experiments.

For three options,

a3 =

∫ 100/3

x=0
100/6f(x)dx+

∫ 200/3

x=100/3
50f(x)dx+

∫ 100

x=200/3
500/6f(x)dx

= 100/6F (100/3) + 50(F (200/3)− F (100/3)) + 500/6(1− F (200/3)
= 100/6F (100/3) + 50F (200/3)− 50F (100/3) + 500/6− 500/6F (200/3)

= 500/6− 100/3F (100/3)− 100/3F (200/3)

e3 = |af − (500/6− 100/3F (100/3)− 100/3F (200/3))|
= |E[X]− 500/6 + 100/3F (100/3) + 100/3F (200/3)|

For general n and k,

ak =
k−1∑
i=0

∫ n(i+1)
k

x=ni
k

mk
i+1f(x)dx

=

k−1∑
i=0

∫ n(i+1)
k

x=ni
k

n(2i+ 1)

2k
f(x)dx

=

k−1∑
i=0

[
n(2i+ 1)

2k

(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]

=
n

k

k−1∑
i=0

[
i

(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]
+

n

2k

k−1∑
i=0

[(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]

=
n

k

[
(k − 1)−

k−1∑
i=1

F

(
ni

k

)]
+

n

2k

=
n(2k − 1)

2k
− n

k

k−1∑
i=1

F

(
ni

k

)

ek =

∣∣∣∣∣af −
[
n(2k − 1)

2k
− n

k

k−1∑
i=1

F

(
ni

k

)]∣∣∣∣∣ =
∣∣∣∣∣E[X]− n(2k − 1)

2k
+
n

k

k−1∑
i=1

F

(
ni

k

)∣∣∣∣∣ (4)

Like for the floor model ek requires only knowing k statistics of f . The rounding model has
an advantage over the floor model that there is no need to convert scores between different scales
and perform normalization. One drawback is that it requires knowing n (the expression for mk

i is
dependent on n), while the floor model does not. In our experiments we assume n = 100, but
in practice it may not be clear what the agents’ ground truth granularity is and may be easier to
just deal with scores from 1 to k. Furthermore, it may seem unnatural to essentially ask people to
rate items as “100

6 , 50,
200
6 ” rather than “1, 2, 3” (though the conversion between the score and mk

i

could be done behind the scenes essentially circumventing the potential practical complication).
We note that one could generalize both the floor and rounding model by using a score of s(n, k)i
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for the i’th region. For the floor setting we set s(n, k)i = i, and for the rounding setting we set
s(n, k)i = mk

i = n(2i+1)
2k .

4. Computational simulations

The above analysis leads to the immediate question of whether the example for which e2 < e3 was
just a fluke or whether using fewer choices can actually reduce error under reasonable assumptions
on the generative model. We study this question using simulations which we believe are the two
most natural models. While we have studied the continuous setting where the full set of options is
continuous over (0, n) and the compressed set of options is the discrete space {0, . . . , k−1}, we will
now consider the perhaps more realistic setting where the full set is the discrete set {0, . . . , n− 1},
and the compressed set is {0, . . . , k − 1} (though it should be noted that the two settings are likely
extremely similar qualitatively).

The first generative model we consider is a uniform model in which the values of the pmf pf
for each of the n possible values are chosen independently and uniformly at random. Formally, we
construct a histogram of n scores for pf according to Algorithm 1. We then compress the full scores
to a compressed distribution pk by applying Algorithm 2.

The second generative model is a Gaussian model in which the values are generated according
to a normal distribution with specified mean µ and standard deviation σ. This model also takes as
a parameter a number of samples s to use for generating the scores. The procedure is given by
Algorithm 3. As for the uniform setting, Algorithm 2 is then used to compress the scores.

Algorithm 1 Procedure for generating full scores in uniform model
Inputs: Number of scores n

scoreSum← 0
for i = 0 : n do

r ← random(0,1)
scores[i]← r
scoreSum = scoreSum +r

for i = 0 : n do
scores[i] = scores[i] / scoreSum

Algorithm 2 Procedure for compressing scores
Inputs: scores[], number of total scores n, desired number of compressed scores k
Z(n, k)← n

k . Normalization
for i = 0 : n do

scoresCompressed
[⌊

i
Z(n,k)

⌋]
+= scores[i]

For our simulations we used n = 100, and considered k = 2, 3, 4, 5, 10, which are popular
and natural values. For the Gaussian model we used s = 1000, µ = 50, σ = 50

3 . For each set of
simulations we computed the errors for all considered values of k for m = 100, 000 “items” (each
corresponding to a different distribution generated according to the specified model). The main
quantities we are interested in computing are the number of times that each value of k produces the
lowest error over the m items, and the average value of the errors over all items for each k value.
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Algorithm 3 Procedure for generating full scores in Gaussian model
Inputs: Number of scores n, number of samples s, mean µ, standard deviation σ

for i = 0 : s do
r ← randomGaussian(µ, σ)
if r < 0 then

r = 0
else if r > n− 1 then

r ← n− 1

++scores[round(r)]
for i = 0 : n do

scores[i] = scores[i] / s

In the first set of experiments, we compared performance between using k = 2, 3, 4, 5, 10 to see
for how many of the trials each value of k produced the minimal error. The results are in Table 1.
Not surprisingly, we see that the number of victories increases monotonically with the value of k,
while the average error decreased monotonically (recall that we would have zero error if we set
k = 100). However, what is perhaps surprising is that using a smaller number of compressed scores
produced the optimal error in a far from negligible number of the trials. For the uniform model,
using 10 scores minimized error only around 53% of the time, while using 5 scores minimized error
17% of the time, and even using 2 scores minimized it 5.6% of the time. The results were similar
for the Gaussian model, though a bit more in favor of larger values of k, which is what we would
expect because the Gaussian model is less likely to generate “fluke” distributions that could favor
the smaller values.

2 3 4 5 10
Uniform # victories 5564 9265 14870 16974 53327

Uniform average error 1.32 0.86 0.53 0.41 0.19
Gaussian # victories 3025 7336 14435 17800 57404

Gaussian average error 1.14 0.59 0.30 0.22 0.10

Table 1: Number of times each value of k in {2,3,4,5,10} produces minimal error and average error
values, over 100,000 items generated according to both models.

We next explored the number of victories between just k = 2 and k = 3, with results in Table 2.
Again we observed that using a larger value of k generally reduces error, as expected. However, we
find it extremely surprising that using k = 2 produces a lower error 37% of the time. As before, the
larger k value performs relatively better in the Gaussian model. We also looked at results for the
most extreme comparison, k = 2 vs. k = 10. These results are provided in Table 3. Using 2 scores
outperformed 10 8.3% of the time in the uniform setting, which was larger than we expected. In
Figures 8–10, we present a distribution for which k = 2 particularly outperformed k = 10.

We next repeated the extreme k = 2 vs. 10 comparison, but we imposed a restriction that the
k = 10 option could not give a score below 3 or above 6. (If it selected a score below 3 then we set it
to 3, and if above 6 we set it to 6). These result are given in Table 4. For some settings, for instance
the paper reviewing setting, extreme scores are very uncommon, and we strongly suspect that the
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2 3
Uniform number of victories 36805 63195

Uniform average error 1.31 0.86
Gaussian number of victories 30454 69546

Gaussian average error 1.13 0.58

Table 2: Number of times each value of k in {2,3} produces minimal error and average error values,
over 100,000 items generated according to both generative models.

2 10
Uniform number of victories 8253 91747

Uniform average error 1.32 0.19
Gaussian number of victories 4369 95631

Gaussian average error 1.13 0.10

Table 3: Number of times each value of k in {2,10} produces minimal error and average error
values, over 100,000 items generated according to both generative models.

Figure 8: Example distribution for which compressing with k = 2 produces significantly lower
error than k = 10. The full distribution has mean 54.188, while the k = 2 compression
has mean 0.548 (54.253 after normalization) and the k = 10 compression has mean 5.009
(55.009 after normalization). The normalized errors between the means were 0.906 for
k = 10 and 0.048 for k = 2, yielding a difference of 0.859 in favor of k = 2.

vast majority of scores are in this middle range. Some possible explanations are that reviewers who
give extreme scores may be required to put in additional work to justify their scores, and are more
likely to be involved in arguments with the other reviewers (or with the authors in the rebuttal).
Reviewers could also experience higher regret or embarrassment for being “wrong” and possibly
off-base in the review by missing an important nuance. In this setting using k = 2 outperforms
k = 10 nearly 1

3 of the time in the uniform model.
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Figure 9: Compressed distribution for k = 2. Figure 10: Compressed distribution for k = 10.

2 10
Uniform number of victories 32250 67750

Uniform average error 1.31 0.74
Gaussian number of victories 10859 89141

Gaussian average error 1.13 0.20

Table 4: Number of times each k in {2,10} produces minimal error and average error values, over
100,000 items generated according to both models. For k = 10, we only permitted scores
between 3 and 6 (inclusive). If a score was below 3 we set it to be 3, and above 6 to 6.

We also considered the situation where we restricted the k = 10 scores to fall between 3 and
7 (as opposed to 3 and 6). Note that the possible scores range from 0–9, so this restriction is
asymmetric in that the lowest three possible scores are eliminated while only the highest two are.
This is motivated by the intuition that raters may be less inclined to give extremely low scores
which may hurt the feelings of an author (for the case of paper reviewing). In this setting, which
is seemingly quite similar to the 3–6 setting, k = 2 produced lower error 93% of the time in the
uniform model!

2 10
Uniform number of victories 93226 6774

Uniform average error 1.31 0.74
Gaussian number of victories 54459 45541

Gaussian average error 1.13 1.09

Table 5: Number of times each k in {2,10} produces minimal error and average error values, over
100,000 items generated according to both models. For k = 10, we only permitted scores
between 3 and 7 (inclusive). If a score was below 3 we set it to be 3, and above 7 to 7.

We next repeated these experiments for the rounding compression function. There are several
interesting observations from Table 6. In this setting, k = 3 is the clear choice, performing best in
both generative models (by a very significant margin for the Gaussian model). The smaller values
of k perform significantly better in the rounding model than in the floor model (as indicated by
lower average errors) while the larger values perform significantly worse, and their errors seem to
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approach 0.5 for both models. Taking both compression functions into account, the optimal overall
approach would still be to use the floor approach with k = 10, which produced the smallest average
errors of 0.19 and 0.1 in the two models, while using k = 3 in the rounding setting produced errors
of 0.47 and 0.24. The 2 vs. 3 experiments produced very similar results for the two compressions
(Table 7). The 2 vs. 10 results were quite different, with 2 performing better almost 40% of the time
with rounding, vs. less than 10% with the floor function (Table 8). In the 2 vs. 10 truncated 3–6
experiments 2 performed relatively better in the rounding setting for both models (Table 9), and for
the 2 vs. 10 truncated 3–7 experiments k = 2 performed better nearly all the time (Table 10).

2 3 4 5 10
Uniform # victories 15766 33175 21386 19995 9678

Uniform average error 0.78 0.47 0.55 0.52 0.50
Gaussian # victories 13262 64870 10331 9689 1848

Gaussian average error 0.67 0.24 0.50 0.50 0.50

Table 6: Number of times each value of k in {2,3,4,5,10} produces minimal error and average error
values, over 100,000 items generated from both models with rounding compression.

2 3
Uniform number of victories 33585 66415

Uniform average error 0.78 0.47
Gaussian number of victories 18307 81693

Gaussian average error 0.67 0.24

Table 7: Number of times each value of k in {2,3} produces minimal error and average error values,
over 100,000 items generated according to both models with rounding compression.

2 10
Uniform number of victories 37225 62775

Uniform average error 0.78 0.50
Gaussian number of victories 37897 62103

Gaussian average error 0.67 0.50

Table 8: Number of times each value of k in {2,10} produces minimal error and average error val-
ues, over 100,000 items generated according to both models with rounding compression.

5. Conclusion

Settings in which humans must rate items or entities from a small discrete set of options are ubiqui-
tous. We have singled out several important applications—rating attractiveness for dating websites
and mobile applications, assigning grades to students, and reviewing academic papers for confer-
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2 10
Uniform number of victories 55676 44324

Uniform average error 0.79 0.89
Gaussian number of victories 24128 75872

Gaussian average error 0.67 0.34

Table 9: Number of times each value of k in {2,10} produces minimal error and average error val-
ues, over 100,000 items generated according to both models with rounding compression.
For k = 10, we only permitted scores between 3 and 6 (inclusive). If a score was below 3
we set it to be 3, and above 6 to 6.

2 10
Uniform number of victories 99586 414

Uniform average error 0.78 3.50
Gaussian number of victories 95692 4308

Gaussian average error 0.67 1.45

Table 10: Number of times each value of k in {2,10} produces minimal error and average error
values, over 100,000 items generated according to both generative models with rounding
compression. For k = 10, we only permitted scores between 3 and 7 (inclusive). If a
score was below 3 we set it to be 3, and above 7 to 7.

ences. The number of available options can vary considerably, even within different instantiations
of the same application. For instance, we saw that three popular sites for the attractiveness rating
problem use completely different systems: Hot or Not uses a 1–10 system, OkCupid uses 1–5 “star”
system, and Tinder uses a binary 1–2 “swipe” system.

Despite the ubiquity and importance of the problem of selecting the optimal number of rating
choices, we have not seen it studied theoretically previously. Our goal is to select k to minimize
the average (normalized) error between the compressed average score and the ground truth average.
We studied two natural models for generating the scores. The first is a uniform model where the
scores are selected independently and uniformly at random, and the second is a Gaussian model
where they are selected according to a more structured procedure that gives more preference for the
options near the center.

We provided a closed-form solution for continuous distributions with arbitrary cdf. This allows
us to characterize the relative performance of choices of k for a given distribution. We saw that,
counterintuitively, using a smaller value of k can actually produce a smaller error for some distribu-
tions (even though we know that as k approaches n the error approaches 0). We presented a specific
example distribution f for which using k = 2 outperforms k = 3.

We performed numerous computational simulations, comparing the performance between dif-
ferent values of k for different generative models and metrics. The main metric we used was the
absolute number of times for which values of k produced the minimal error. We also considered
the average error over all simulated items. Not surprisingly, we observe that performance generally
improves monotonically with increased k, and more so for the Gaussian model than the uniform.
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However, we observe that small k values can be optimal a non-negligible amount of the time, which
is perhaps counterintuitive. In fact, using k = 2 outperformed k = 3, 4, 5, and 10 on 5.6% of the
trials in the uniform setting. Just comparing 2 vs. 3, k = 2 performed better around 37% of the time.
Using k = 2 outperformed k = 10 8.3% of the time, and significantly more as we imposed some
very natural restrictions on the k = 10 setting that are motivated by intuitive phenomena. When
we restricted the k = 10 to only assign values between 3 and 7 (inclusive), using k = 2 actually
produced lower error 93% of the time! This could correspond to a setting where raters are ashamed
to assign extreme scores (particularly extreme low scores).

We compared two different natural compression rules—one based on the floor function and one
based on rounding—and weighed the pros and cons of each. For smaller values of k the rounding
approach leads to significantly lower error than the floor approach, with k = 3 being the clear
optimal choice, while for larger values of k rounding leads to significantly higher error.

One avenue for future study would be to extend our theoretical characterization analysis in order
to get a better understanding of the specific distributions for which different values of k are optimal,
as opposed to our experimental results which are in aggregate over many distributions. Specific ap-
plication domains will have distributions with different properties, and improved understanding will
allow us to determine which k value is optimal for the types of distributions we expect to encounter
for a given domain. This improved theoretical understanding can be coupled with exploring data on
specific applications of interest.
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