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Abstract

The ultimatum game serves for studying various aspects of decision making (DM). Recently,
its multi-proposer version has been modified to study the influence of deliberation costs. An
optimising policy of the responder, switching between several proposers at non-negligible
deliberation costs, was designed and successfully tested in a simulated environment. The
policy design was done within the framework of Markov Decision Processes with rewards
also allowing to model the responder’s feeling for fairness. It relies on simple Markov mod-
els of proposers, which are recursively learnt in a Bayesian way during the game course.
This paper verifies, whether the gained theoretically plausible policy, suits to real-life DM.
It describes experiments in which this policy was applied against human proposers. The re-
sults – with eleven groups of three independently acting proposers – confirm the soundness
of this policy. It increases the responder’s economic profit due to switching between pro-
posers, in spite of the deliberation costs and the used approximate modelling of proposers.
Methodologically, it opens the possibility to learn systematically willingness of humans to
spent their deliberation resources on specific DM tasks.

Keywords: decision making; deliberation effort; Markov decision process; ultimatum game

1. Introduction

Maximizing of expected utility is perceived as “rational” within traditional economic mod-
els (von Neumann and Morgenstern (1944); Thaler (2000)). The observed discrepancies
between theoretically optimal DM and real DM, e.g. (Gong et al. (2013), Jones (1999),
Regenwetter et al. (2011)), can be diminished by changing the behaviour of DM subjects
(by educating them) and by modifying decision rewards and models used in prescriptive
theories. Our paper deals with the latter case and focuses on the influence of deliberation
effort in DM.

A proper theory respecting deliberation effort should take into account that any decision
made, either by humans or machines, costs time (Ortega and Stocker (2016)) energy and
possibly other, limited, resources (Ortega et al. (2016)); a sample of different application
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domains and related references are in Ruman et al. (2016). In this paper, we rely on, the
design of DM policies respecting deliberation effort treated as an application of standard
Markov Decision Process (MDP, Puterman (1994)) with the reward explicitly influenced
by deliberation costs and with the environment model learnt in a Bayesian way (Peterka
(1981)). The solution was developed for designing policy of the responder in multi-proposer
ultimatum games (UG, Rubinstein (1994)). The simplicity of the UG enables extensive
tests confronting prescriptive and human DM. In the UG, the proposer offers the split of a
given amount of money and the responder either accepts this split, and the money are split,
or refuses it, and none of players gets anything. In multi-proposer versions, the responder
has the right to select the proposer among several of them. Any change of the proposer
between rounds is penalized. In this way, the influence of deliberation effort is respected.
Simulations documented in Ruman et al. (2016) confirmed the expected behaviour of the
proposed responder’s policy. However, a key question remained open: Will this policy
be successful in real-life? It is a specific case of the generally inspected question: Does a
prescriptive, theoretically justified, solution suit real life DM? Our experiments with human
proposers, which form the core of this paper, provide answers to the posed questions.

The paper layout is as follows. Section 2 recalls formalization and the optimal design
of the responder’s policy in the multi-proposer UG. Section 3 describes the performed
experiments and their results. Section 4 contains discussion. Section 5 provides concluding
remarks.

2. Tested Decision-Making Policy

The section formalizes the multi-proposer UG and recalls the essence of the tested policy
proposed in Ruman et al. (2016) as an application of MDP (Puterman (1994)).

2.1 Preliminaries

Throughout, bold capital X is a set of x-values; xt is the value of x at the decision epoch
t ∈ T = {1, . . . , N} bounded by a horizon N ∈ N (here, the number of game rounds);
p(x|y) is a conditional probability. MDP provides a general framework for describing an
agent (here, responder), which interacts with an environment (here, available proposers) by
taking appropriate actions to achieve her goal. The decisions about actions at ∈ A (here,
select the proposer to play with and accept or reject her offer) made are only influenced
by the observed environment state st−1 ∈ S ⊂ N, not by the whole environment history.
The state st−1 evolves to st according to the transition probabilities, p = (p(st|at, st−1))t∈T,
influenced by actions (at)t∈T, and the agent receives rewards r = (r(st, at, st−1))t∈T. Given
the initial state s0 = 0, the tuple (T,S,A, r, p) describes MDP. The agent evaluates ran-
domized DM policies π =

(
(p(at|st−1))at∈A,st−1∈S

)
t∈T — formed by randomized decision

rules p(at|st−1), at ∈ A, st−1 ∈ S, t ∈ T — based on the expected reward

Eπ[r(st, at, st−1)] =
∑
at∈A

∑
st∈S

∑
st−1∈S

r(st, at, st−1)p(st|at, st−1)p(at|st−1)p(st−1), (1)

where state probabilities p(st) evolve according to

p(st) =
∑
at∈A

∑
st−1∈S

p(st|at, st−1)p(at|st−1)p(st−1)
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with p(s0) = δ(s0, 0). The used Kronecker symbol δ(x, y) = 1 if x = y, δ(x, y) = 0 if x 6= y.
The agent seeks for the optimal policy πopt maximizing the sum of expected rewards (1)

up to the horizon N

πopt ∈ argmax
π

∑
t∈T

Eπ[r(st, at, st−1)]. (2)

2.2 Deliberation-Aware Multi-Proposer Ultimatum Game

The considered multi-proposer N -round UG assumes a group of K ∈ N proposers P ∈ P =
{P1, . . . ,PK} and one responder R. The responder’s goal is the same as in the traditional
UG, i.e. to influence her accumulated profit Rt, see (4), while accepting or rejecting the
offers. The main difference is that at the beginning of each round t ∈ T the responder
chooses a proposer Pt ∈ P = {P1, . . . ,PK} to play with. The choice of a proposer Pt at
round t ∈ T is the first responder’s action a1t = Pt ∈ P = A1. To model deliberation
costs, the choice of a proposer different from that in the previous round is penalized by a
deliberation penalty d ∈ N. This leads to the accumulated deliberation cost of the responder

Dt = d
t∑

τ=1

(1− δ(Pτ ,Pτ−1)). (3)

Then, as in the original UG (Rubinstein (1994)) the chosen proposer Pt offers a split ot ∈
O = {1, 2, . . . , q − 1}, q ∈ N, for the responder and (q−ot) for herself. Money split according
to the proposal if the responder accepts the offer, if she chooses the action a2t = 2. None of
the players get anything if the responder rejects the offer, if she chooses the action a2t = 1.
The accumulated responder’s (economic) profit, Rt, at round t ∈ T, is

Rt =
∑
P∈P

PPt, PPt =
t∑

τ=1

oτ (a2τ − 1)δ(a1τ ,P), P ∈ P . (4)

Proposers play a passive role whenever they are not selected in the round. The accumulated
proposers’ (economic) profits are

ZPt =
t∑

τ=1

(q − oτ )(a2τ − 1)δ(a1τ ,P), ∀P ∈ P . (5)

In the multi-proposer UG, the responder R can be modelled as an agent in MDP, which
tries to maximize her accumulated profit while minimising her accumulated deliberation
cost.

Definition 1 The multi-proposer UG in the MDP framework, with epochs t ∈ T identified
with game rounds, is described through

• the environment state at t ∈ T

st = (ot, σt) with σt = (Pt,Dt,Rt, ZP1t, ZP2t, ..., , ZPKt), where (6)

ot ∈ O is an offer made by the proposer Pt. The accumulated deliberation cost Dt, the
accumulated responder’s (economic) profit Rt and the accumulated (economic) profits
of proposers ZPt, P ∈ P, are defined by (3), (4) and (5), respectively.
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• the two-dimensional action a = (a1, a2) ∈ A1×A2 consists of the selection a1 ∈ A1 =
P of the proposer to play with and of a2 ∈ A2 = {1, 2} = {reject, accept} the offered
split made by the selected proposer.

The selection of the proposer a1t = Pt ∈ P is based on the state st−1 (6), while the
action a2t ∈ A2 also depends on the offer ot ∈ O of the selected proposer Pt ∈ P.
Thus,

p(at|ot, st−1) = p(a1t, a2t|ot, st−1) = p(a1t|st−1)p(a2t|ot, a1t, st−1). (7)

Consequently, the optimal policy πopt is searched among sequences of functions

π =
(
p(a1t|st−1), p(a2t|ot, a1t, st−1)

)
t∈T. (8)

• The reward function with the penalty for the deliberation costs and respecting also
self-fairness (Guy et al. (2015)) is considered

r(st, at, st−1) = w(Rt − Rt−1)− (1− w)(ZPtt − ZPt(t−1))− (Dt − Dt−1), w ∈ [0, 1]. (9)

• The transition probabilities p = p(st|a1t, st−1) are assumed to be known, possibly as
point estimates resulting from recursive estimation (H̊ula et al. (2016)).

For the inspection of the influence of deliberation costs, the risk neutral economic re-
sponder, caring about pure economic profit balanced with deliberation costs, is of interest.
It is a special case of (9) with the weight w = 1. The results in Hůla et al. (2016), were
adaptive proposer was studied, indicate that the economic player generates insufficiently
exciting actions causing non-convergence of parameter estimates. In the cited case, the
economic proposer generated very narrow range of offers and could not learn reactions of
the responder to values out of this range. To avoid it, the self-fair modification of the re-
sponder’s policy with weight w 6= 1 in (9), was used, but the results were judged according
to the responder’s profit.

2.3 Optimal Deliberation-Aware Responder Policy

Dynamic programming (Bellman (1957); Bertsekas (2001)) is used to solve (2). The special
structure of policies (8) calls for a specific construction of the optimal policy. The following
theorem — a tailored dynamic programming presented in Ruman et al. (2016) — provides
the optimal strategy of the responder.

Theorem 2 (Optimal policy of the deliberation-aware responder) The optimal pol-
icy πopt constrained by (7) is formed by the sequence of decision rules

{
(popt(a1t|st−1), popt(a2t|ot, a1t, st−1))

}N
t=1

,

54



Influence of Deliberation Costs

with st = (ot, σt) (6), which are evaluated against game course, starting with the value
function ϕN (sN ) = 0, ∀sN ∈ S,

ϕt−1(st−1) = E[r(ot, σt, a
?
1t, a

?
2t, st−1) + ϕt(st)|a?1t, a?2t, st−1]

a?1t(st−1) ∈ argmax
a1t∈A1

E [r(ot, σt, a1t, a2t, st−1) + ϕt(st) | a1t, st−1]

popt(a1t|st−1) = δ(a1t, a
?
1t(st−1))

a?2t(ot, a
?
1t, st−1) ∈ argmax

a2t∈A2

E [r(ot, σt, a
?
1t, a2t, st−1) + ϕt(st) | a?1t, a2t, ot, st−1]

popt(a2t|ot, st−1) = δ(a2t, a
?
2t(ot, a

∗
1t, st−1)). (10)

For the reward (9), the action a?1t in (10) describes the optimal, deliberation-aware, choice
of the proposer and a?2t the optimal response to her offer.

3. Experiments

Successful simulation experiments of the optimal responder’s policy πopt (described by The-
orem 2) were presented in Ruman et al. (2016). Its usefulness in real life has not been tested.
This section presents results of experiments performed to fill this gap. The assumption that
real proposers use time-invariant proposal policies describable by known or well-estimated
probabilities p = p(st|a1t, st−1) is the key potential weakness of the theoretically optimal
responder’s policy. Thus, the experiments mainly checked this assumption. In this exper-
iment human-participants played roles of proposers against a virtual responder that was a
computer programme implementing the deliberation-aware policy as described in Section
2.3.

3.1 Experimental Setup

Thirty three university students (mostly males, age range 19-25 years) participated in the
study. The participants had no or minimal knowledge of the UG. The human-proposers
could not interact/communicate during the game as the game ran through a web interface
on personal computers. The keyboard was used as a response device. The participants
were instructed about the UG rules and their role in the experiment. At each round a
participants action was to propose an integer split of q = 10CZK. Participants were told
to play trying to maximize their profit. The real money was at stake. The participants
played with virtual money but they were paid their profits won in the game block (see
below) at the end of experiment. The virtual responder always played with a group of three
human-proposers P ∈ P = {P1,P2,P3}. While playing, the virtual responder recursively
learned the parameters αP , βP > 0, αP + βP < 1 of the simplified proposer’s model

p(st|at, st−1, αP , βP) = p(ot|ot−1, αP , βP) =


αP for offers ot > ot−1
βP for offers ot < ot−1
1− αP − βP for offers ot = ot−1

. (11)

Learning essentially consists of evaluating the relative frequencies α̂P , β̂P corresponding to
(11).
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Interaction with a human group was split into learning block and game block. In the
learning block, the virtual responder played N = 20 game rounds with each proposer P ∈ P
(fixed a1t = P) while maximizing the expected accumulated reward with the reward function
(9) and with the transition probabilities p(st|at, st−1) = p(ot|ot−1, α̂Pt , β̂Pt). This made the
virtual player adaptive. The learning block also helped the participants familiarize with
their task.

In the game block, the virtual responder played N = 20 game rounds with all three
human-proposers at once P ∈ P (a1t = Pt was also optimized), while maximizing the
expected accumulated reward with the reward function (9) and with the transition prob-
abilities p(st|at, st−1) = p(ot|ot−1, α̂Pt , β̂Pt), where the point estimates (α̂P , β̂P ) of (α, β)
were permanently updated. Thus, during each round the virtual responder had selected
one of the human-proposers, who offered a split. Then the virtual responder decided on the
acceptance/rejection of the split. The deliberation cost was set to d = 1CZK.

The results presented in Hůla et al. (2016) indicated that the economic player mostly
generates insufficiently exciting actions, which result into divergence of parameter estimates.
In the case of economic proposer, studied in Hůla et al. (2016), the player generated very
narrow range of offers and could not learn reactions of the responder to values out of this
range. To suppress this effect in our case, the self-fair modification of the virtual responder’s
policy with the weight w = 0.6 in (9) (Guy et al. (2015)) was used. The results were,
however, judged according to the responder’s profit.

3.2 Results

The achieved results are summarized in Table 1. It contains the profits Pk = PPkN , (4),
when playing with the proposer Pk, k = 1, 2, 3, in the learning block. The average

RM =
1

3

3∑
k=1

Pk (12)

of these profits is comparable with the virtual responder’s profit R = RN (4) in the game
block. Switching between proposers is profitable if and only if the difference R − RM > 0.
The results in the table are ordered according to this difference. Sample descriptive statistics
are provided.

The ordered differences are also presented in Figure 1. Figure 2 presents two more
detailed samples of the game results related to games with the worst and the best responder’s
results (1 and 11, Table 1).

4. Discussion

The experimental results confirm the potential applicability of the proposed responder’s
policy based on MDP in real life. Table 1 shows that the average and median of responder’s
profits increased by switching in spite of the relatively high switching cost, see boldface
numbers. The increase realized in experiments with seven human groups from the performed
eleven experiments, see Figure 1. Three experiments led to quite bad results and the
difference of the average and median indicates that the distribution of differences R − RM
has heavy tail at negative profit differences. Thus, there is a space for improvement of the
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Game P1 P2 P3 RM R R− RM

1 70.00 25.00 117.00 70.67 51.00 -19.67

2 95.00 119.00 137.00 117.00 102.00 -15.00

3 163.00 130.00 121.00 138.00 131.00 -7.00

4 81.00 87.00 75.00 81.00 80.00 -1.00

5 96.00 80.00 106.00 94.00 96.00 2.00

6 140.00 94.00 60.00 98.00 101.00 3.00

7 79.00 69.00 58.00 68.67 77.00 8.33

8 76.00 88.00 91.00 85.00 94.00 9.00

9 63.00 76.00 83.00 74.00 86.00 12.00

10 75.00 93.00 76.00 81.33 95.00 13.67

11 64.00 103.00 120.00 95.67 110.00 14.33

mean 91.09 87.64 94.91 91.21 93.00 1.79

median 79.00 88.00 91.00 85.00 95.00 3.00

minimum 63.00 25.00 58.00 68.67 51.00 -19.67

maximum 163.00 130.00 137.00 138.00 131.00 14.33

standard 32.10 27.47 26.80 20.96 20.32 11.52
deviation

Table 1: Pk is the virtual-responder’s profit when playing with proposer Pk with no switch-
ing, RM is the average (12), R = RN (4) is the virtual responder’s profit in the game block
(with penalized switching).
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Figure 1: Profit differences in the game block and the average profit (12).

applied policy. Primarily, it has to improve the environment modelling, i.e. modelling of
the proposers. Specifically:

• The assumed structure (11) should be refined by making probabilities of offers de-
pendent on the values of differences ot − ot−1. A geometric change can still provide
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Figure 2: Left column concerns game 1, right column game 11 . First row shows the
average profit RM (12), the virtual responder’s profit R = RN (4) in the game block, and
profits Pk = PPkN while playing with proposers Pk in the learning block. Second row
shows switching between proposers Pk in the game block. Third row presents offers (•) and
decisions Accept/Reject (∗) within the game course played in the game block.

parsimonious parametrization when considering constant (possibly asymmetric) de-
crease rates of probabilities p(ot|ot−1).
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• Carefully selected prior probabilities of estimated parameters, based, for instance,
on the already run games, may speed up estimation and increase the responder’s
profit. This is the main advantage of the adopted Bayesian estimation (Berger (1985);
Garthwaite et al. (2005)), which is confirmed in the UG context in Hůla et al. (2016).

• The adopted exploitive strategy, definitely influenced the results as seen in Figure
2. The exploration-supporting “trick” based on optimization of non-economic profit
reward (assuming self-fair virtual responder (Guy et al. (2015)) should be replaced by
a more systematic treatment based on approximate dynamic programming (Si et al.
(2004)) needed when dealing with learnt environment models (Feldbaum (1960)).

5. Concluding Remarks

This paper experimentally examined the influence of deliberation costs of the virtual re-
sponder in a multi-proposer Ultimatum Game with human proposers. It confirmed that
the use of the MDP machinery while taking proposers as a part of environment is an ef-
ficient tool for solving game-like situations. This solution is close to the Bayesian games
(Harsanyi (2004)). Our paper supports the claim that the approach caring about dynamics
and incomplete knowledge of players makes the adopted theory applicable in real life. It
offers extreme flexibility in modelling player’s aims. In our case, it respects the influence
of deliberation costs on decision making. This makes it not only a useful design tool but
also an analytical tool. The analysis concerns a real decision maker, whose acting differs
from “rational”, purely economic, behaviour. We can analyse it as an inversion problem:
assuming that she is rational but uses a different than economic reward, we can learn it
from her actions. This idea was successfully used in learning of self-fairness in Guy et al.
(2015). This paper opens the way of learning laziness, the personal penalty of deliberation
effort. This is one direction of future work, which has to deal with others aspects like: i)
extension of the presented experimental study to more groups of proposers with improved
learning; ii) fighting with the curse of dimensionality inherent to the Bayesian games; iii)
joint modelling of non-profit influences (deliberation costs, fairness, emotions, etc.).
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