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Abstract

The need for inspecting (ir)rationality in decision making (DM) — the observed discrep-
ancy between real and prescriptive DMs — stems from omnipresence of DM in individuals’
and society life. Active approaches try to diminish this discrepancy either by changing
behaviour of participants (DM subjects) or modifying prescriptive theories as done in this
text. It provides a core of unified merging methodology of probabilities serving for knowl-
edge fusion and information sharing exploited in cooperative DM. Specifically, it unifies
merging methodologies supporting a flat cooperation of interacting self-interested DM par-
ticipants. They act without a facilitator and they are unwilling to spare a non-negligible
deliberation effort on merging. They are supposed to solve their DM tasks via the fully
probabilistic design (FPD) of decision strategies. This option is motivated by the fact that
FPD is axiomatically justified and extends standard Bayesian DM.

Merging is a supporting DM task and is also solved via FPD. The proposed merging
formulation tries to be as general as possible without entering into technicalities of measure
theory. The results generalise and unify earlier work and open a pathway to systematic
solutions of specific, less general, problems.
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1. Introduction

Decision making (DM), seen as a purposeful choice among available options, covers a sub-
stantial portion of human activities as well as of institutions and devices created by people.
DM almost always runs under uncertainty and with incomplete knowledge. This makes DM,
by its nature optimising, extremely demanding on cognitive resources of any participant —
the DM subject. Among a range of DM methodologies those based on Savage’s DM concept,
Savage (1954), seem to be the most promising and they are permanently generalised and
refined. The fully probabilistic design of decision strategies (FPD), Kárný (1996); Kárný
and Guy (2006); Kárný and Kroupa (2012), on which this paper relies, is of a Savage’s
type. The space limitations prevent us to discuss very rich related work even immediate
predecessors as Kárný et al. (2009); Sečkárová (2013). The next characterisation of the
used FPD is an exception enforced by its weak penetration to DM communities.

FPD, as all Bayesian solution, models probabilistically the closed-loop behaviour — the
collection of all considered and opted variables within the DM task. Unlike its predecessors,
FPD probabilistically describes the DM preferences through an ideal closed-loop model.
FPD selects the optimal strategy — the sequence of randomised decision rules mapping the
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knowledge on actions — minimising the KLD divergence, Kullback and Leibler (1951), of
the closed-loop model to its ideal counterpart.

DM is always performed with limited resources — the time-span devoted to the solved
DM task, the extent of the manageable knowledge, physical and computational resources.
This naturally led to a division of DM tasks. In it, the involved participants (individuals
or groups formed both by people, technical and organisational tools they use) solve smaller
DM sub-tasks and select actions — irreversibly implemented decisions. This allows groups
of participants to function but at substantial costs expended on cooperation — goods and
knowledge exchanging, sharing, making concessions with respect to participant’s aims, etc.

Governance of the cooperation process by a participant at a higher hierarchical level
(facilitator, coordinator, institutional or legal authority, etc.) is a DM on its own. It can
make the multi-participants’ DM efficient but with increasing complexity of the addressed
DM tasks demands on governance resources quickly increase and its efficiency strongly
drops. Due to this, the need arises for distributed DM (almost) without a facilitator — a
sort of democratic scenario arises, Kárný and Guy (2004).

The democratic scenario essentially lets individual DM subjects to act in a selfish way.
The selfish (self-centered) participant cares about her own DM tasks only. She possibly
cooperates with her neighbours — the participants with which she interacts and about
which she is able and willing to care. The DM aims, however, persist: each participant tries
to optimally reach her “personal” DM objectives under the given circumstances.

Note that the term selfish lacks here a moral dimension. For instance, it can be perceived
as a quite positive if the care about societal welfare is adopted by the participant as her
personal aim. Also note that real limited cognitive resources of any participant imply that
the number of her neighbours will remain relatively small.

This paper aims to equip any selfish participant having limited cognitive resources with
a tool supporting her DM by taking into account influence of neighbours. In the quest for an
applicable prescriptive DM methodology, the constructed “advisor”: i) is to be impersonal
and implementable as a feasible algorithm, which adds as little as possible (ideally none)
additional options (parameters, tuning knobs); ii) must not require from the supported
participants more than what they handle anyway; iii) must offer its support in a way
understandable to individual participants: as a by-product this guarantees privacy of the
respective participants; iv) must let the supported participants decide whether they accept
the advise or not.

The proposed solution assumes that all involved participants use FPD as the tool for
solving their DM tasks. This is the most general prescriptive DM methodology, which is
feasible for realistic but sufficiently small DM tasks. It also covers Bayesian participants.

Section 2 prepares the problem formulation and solution presented in Section 3. The
solution depends on unwanted options (parameters), which are unambiguously specified in
Section 4. The solution operates on joint probabilities acting on the same collection of
variables. Section 5 describes the way how to cope with this restrictive condition. Section
6 adds remarks on conversions of non-probabilistic elements into the merged probabilities,
recommends when to accept the gained advices and outlines open problems.
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2. Preliminaries

We use the following notions and conventions.

DM subjects: A participant P belongs to a group of her neighbours (Pp)p∈p? , |p?| <∞.
The term advisor A refers to the cooperation-supporting algorithm serving to this group.

Sets, mappings, finite collections: Sets of entities a,X,R, . . . are denoted a?, X?,R?, . . .
|X?| means cardinality of the set X?. Sets are subsets of separable spaces, typically, finite
sets of integers, finite-dimensional real spaces or sets of probability densities (pd, Radon-
Nikodým derivatives with respect to counting or Lebesgue’s measure — both denoted d•).
Pds and other mappings are distinguished by san serif fonts. A finite collection of entities,
say real scalars (λp)p∈p? , is often referred as λ = (λp)p∈p? . Inequalities like λ > 0 are then
understood component-wise.

Behaviour, ignorance, action, knowledge: Each supported participant Pp, p ∈ p?,
operates on a specific (closed-loop) behaviour bp ∈ b?p, which is adopted name for all variables
that Pp considers, opts or knows. The opted action splits the behaviour as follows1

bp = (gp, ap, kp) = (ignorance, action, knowledge) behaviour parts (1)

= (considered but inaccessible, opted by Pp,used for the action choice) parts.

The performed minimisation of any expected loss over randomised decision rules reduces
to the minimisation of the expected loss conditioned on the knowledge available for the
action choice, Berger (1985). This allows us to simplify presentation by (mostly) not spelling
explicitly the used knowledge in conditions of the involved pds. This formally reduces
behaviours to

bp = (gp, ap) = (ignorance, action) behaviour parts (2)

= (considered but inaccessible, opted by Pp) parts, p ∈ p?.

Simplifying assumptions: The following concessions from full generality will be made.

• The cardinalities of the behaviour sets of all participants are finite

bp ∈ b?p = {1, . . . , |b?p|}, 2 ≤ |b?p| <∞, p ∈ p?. (3)

The theory of the numerical representation of DM preferences, Debreu (1954), implies
that the considered, numerically representable, behaviour spaces have to be separable.
Then, the considered finite sets of behaviours can be seen as images of finite projections
(discretisations) of the underlying separable spaces of infinite cardinalities.

• Static DMs are considered. Each participant selects a single action, i.e. she selects and
applies a single randomised decision rule described by a pd r(ap) = r(ap|kp), p ∈ p?.

1. While terms “knowledge” and “action” (an irreversibly adopted decision) are common and well-accepted,
the unusual term “ignorance” (linguistically opposite to knowledge) is often felt as inappropriate. We
ask patient reader to take it as technical term describing the part of the closed-loop behaviour differing
from the action and knowledge.
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FPD: Each participant Pp, p ∈ p?, within a group of neighbours deals with her closed-loop
model, see e.g. Kárný and Guy (2006), which is a joint pd,

crp(bp)︸ ︷︷ ︸
closed−loopmodel

= m(gp|ap)︸ ︷︷ ︸
environmentmodel

× r(ap)︸ ︷︷ ︸
decision rule

, bp ∈ b?p. (4)

The factorisation (4) is implied by the chain rule for pds. The first factor on the right-hand
side relates action to ignorance, i.e. to the considered but (yet) unknown reaction of the
participant’s environment. This motivates its interpretation. The second factor already has
been recognised as the model of the decision rule.
Pp applying FPD possesses a preference-expressing ideal counterpart cIp(bp) of crp(bp),

which determines her FPD-optimal decision rule rop = rop(ap)

rop ∈ Arg min
rp∈r?p

∫
b?p

crp(bp) ln

(
crp(bp)

cIp(bp)

)
dbp = Arg min

rp∈r?p
KL(crp ||cIp), p ∈ p?, (5)

i.e. the optimal decision rule rop minimizes the KLD KL(crp ||cIp) of crp from cIp.

3. Merging Problem Formulation and Solution

We assume that a participant seeks for support and her abilities delimit a group of neigh-
bours. This defines a group of supported participants. Any participant can be a member
of many groups, each with its advisor. Groups act in an asynchronous way and advices are
offered for exploitation when created. The following design concerns a fixed group with a
fixed knowledge processed by the group members having a single fixed advisor A.

The required support: Each group member Pp, p ∈ p?, provides the advisor A her
closed-loop model with the aim obtaining an advice about a non-void factor of her closed-
loop model (4), which she is willing to change according to the A advice.

The group behaviour, A action: The group behaviour2 B ∈ B? has the structure

B = (G,A) = (ignorance, action) of the group behaviour parts (6)

G = the group ignorance consists of behaviours (2) of all participants

G? = ∪p∈p?b?p
A = A(G) = the A action is a pd on G? merging pds cr = (crp)p∈p?

A? = all pds with the domain G? of a finite cardinality

K = the A knowledge consists of the pds cr and possibly cI .

Verbally, the advisor action A is the pd A(G) = A(G|K) modelling the group ignorance G
formed by (gp, ap)p∈p? — the advice is offered to any participant Pp before she makes her
action ap. Knowledge K is insufficient for a unique specification of the pd A ∈ A?, and a
randomised decision rule R(A) = R(A|K) is to be designed. This is the factor of the group
closed-loop model CR

CR(B) = CR(G|A)CR(A) = A(G)R(A). (7)

2. The mathematical entities related to the supported participants are marked by small letters while the
group quantities, handled by A, are denoted by their capital counterparts.
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The first equality in (7) uses the definition of the group behaviour B = (G,A) ∈ (G?, A?)
(6) and the chain rule for pds. The second equality in (7) is implied by the definition of the
advisor action A = A and of the decision rule R. The knowledge implicit in conditions of
processed pds (cf. simplified version (2) of (1) is uninfluenced by the optimised rule R.

The desired merger: Let ep(G) be a model of the group behaviour G ∈ G? from the
Pp point of view. Section 5 discusses the construction of these pds from the processed pds
cr(G) = (crp(bp))p∈p? . It contains factors, which the cooperating participants are ready to
replace according to the A advice. Of course, Pp may be inclined to accept the replacement
if the merger — the advisor action — A = A is not too far from ep. The approximation
quality from the participant view point should be measured by the KLD, Bernardo (1979);
Kárný and Guy (2012),

KL(ep||A) =

∫
G?

ep(G) ln

(
ep(G)

A(G)

)
dG, p ∈ p?. (8)

The decision rule R is to provide mergers A ∈ A?, which make the KLD (8) small ∀p ∈ p?.

The supporting DM task: The choice of R is the DM task, which is here formulated as
FPD of the advisor decision rule entering the group closed-loop model (7). The ideal group
closed-loop model described by a pd CI(B) quantifies the A DM aim

CI(B) = CI(G|A)CI(A) = A(G)RI(A), G ∈ G?, A ∈ A?. (9)

The first equality in (9) follows the definition of the group behaviour (6) and the chain rule
for pds. The second one expresses the wish to get such a merger A, which describes well the
group ignorance G ∈ G?. The ideal decision rule RI(A) is one of the design options (tuning
knob) through which the merging aim is fed into the solved group DM task.

For options (7), (9), the optimal decision rule Ro = Ro(A), A ∈ A?, is

Ro ∈ Arg min
R∈R?

KL(CR||CI) = Arg min
R∈R?

KL(R||RI), (10)

where the equality follows from cancelling the common factor A and integrating out the
group ignorance G ∈ G?.

The set of admissible DM rules: The optimisation task (10) is determined by the set
R? of admissible DM rules R and by the ideal decision rule RI . They are gradually selected
with the selection finalised in Section 4.

The KLD KL(R||RI) is finite iff the support of R

supp[R] = {A ∈ A? : R(A) > 0} (11)

is included in the support of RI . Thus, meaningful choices for R? are

∅ 6= R? ⊂ {R : supp[R] = supp[RI ]}. (12)

A specific choice of the set R? should primarily reflect the already formulated wish to
deal with such Rs, which generate mergers A ∈ A?, which make KLDs (8) small. This
singles out the rules R, for which the expectations (with respect to R(A)) of divergences
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KL(ep||A), p ∈ p?, (8) are finite and small. This wish and non-negativity of the inspected
KLDs delimit

R? =

{
R :

∫
A?

R(A)KL(ep||A)dA (13)

=

∫
A?

R(A)

[∫
G?

ep(G) ln

(
ep(G)

A(G)

)
dG

]
dA ≤ φp <∞, p ∈ p?

}
,

where the positive scalars φ = (φp)p∈p? should be chosen as small as possible. This intuitive
wish is given the precise meaning in Section 4. The limits φ serve us a technical tool for
determining the structure of the FPD-optimal decision rule Ro (10). Section 4 removes
these undesirable tuning knobs of the advisor A.

The next proposition determines the FPD-optimal merger selected from (13).

Proposition 1 (The Form of the FPD-Optimal Merger) Let us consider a fixed ideal
decision rule RI and a non-empty set R? (13) of optional A decision rules. Then, the FPD-
optimal decision rule Ro(A) solving (10) on this set is proportional to

RI(A) exp

∑
p∈p?

λp

∫
G?

ep(G) ln (A(G)) dG

 (14)

= RI(A)
∏
G∈G?

(A(G))νλ(G) , νλ(G) =
∑
p∈p?

λpep(G),

where the non-negative Kuhn-Tucker multipliers λ = (λp)p∈p? are chosen so that inequalities
in (13) are satisfied.

Proof We use the Kuhn-Tucker functional, Kuhn and Tucker (1951), respecting the con-
straints (13) on the optimised rules R ∈ R? and rearrange it into the KLD of the optimised
R to Ro (10), which is minimised by equating these arguments. The factor independent of
A cancels and the final form of (14) uses simple operations relying on |G?| <∞. �

4. Choice of the Tuning Knobs

The usefulness of the solution described by Proposition 1 is strongly influenced by the
optional tuning knobs in them. They are gradually and unambiguously specified here.

The replacement of φ by the choice λ: A good advisor A should make the approxi-
mation of all processed pds e = (ep)p∈p? in (13) as tight as possible. It primarily means that
all inequalities are to be active and thus λ > 0. In this case, the choice of φ > 0 becomes
formally equivalent to the choice of λ > 0.

A desired impartial A must not prefer any Pp. This implies the basic requirement on
possible λ > 0, cf. Sečkárová (2015),∫

A?
Ro(A)KL(ep||A)dA = Φ, ∀p ∈ p?, (15)

where the finite constant Φ is common for all p ∈ p?.
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This specify |p?| − 1 conditions on |p?| Kuhn-Tucker multipliers λ > 0. The quest for
tightness of the approximation (8) implies that the advisor A, which uses the ideal decision
rule RI leading to a Φ in (15), is preferable against the advisor Ã with R̃I leading to a
Φ̃ ≥ Φ. This provides the needed |p?|-th condition for an unambiguous choice of λ > 0.

The ideal decision rule RI : The ideal decision rule RI(A) is chosen as a finite mixture
of Dirichlet pds D(·|·), which can arbitrarily-well approximate any RI(A), Antoniak (1974),

RI(A) =
∑
k∈k?

αkD(A|νIk), k? = {1, . . . , |k?|}, |k?| <∞, where (16)

α ∈ α? =
{
αk ≥ 0,

∑
k∈k?

αk = 1
}
, νIk = (νIk(G))G∈G? > 0, k ∈ k?,

D(A|ν) =

∏
G∈G? A(G)ν(G)−1

B(ν)
, B(ν) =

∏
G∈G? Γ(ν(G))

Γ
(∑

G∈G? ν(G)
) , ν = (ν(G))G∈G? ,

where the gamma function Γ(x) =
∫∞

0 tx−1 exp(−t)dt, for x > 0.

The ideal decision rule (16) leads to an optimal rule (14) with the Dirichlet mixture
form

Ro(A) =
∑
k∈k?

αkD(A|νIk + νλ). (17)

The specific choice of α, |k?| and νI follows from the required impartiality of the advisor
A and from the following simple uncontroversial requirement: An impartial A chooses its
ideal decision rule beforehand for all possible e = (ep)p∈p? . It means that it has to process
well even the special case e1 = . . . = e|p?| 6= νIk, k ∈ k?. In this case, the expected values∫

A(G)?
A(G)Ro(A(G))dA(G) = e1(G) = . . . = e|p?|(G), ∀G ∈ G?, (18)

represent the only meaningful option. The optimal rule (17) has the expected values∫
A(G)?

A(G)Ro(A(G))dA(G) =
∑
k∈k?

αk
νIk(G) + νλ(G)∑

G∈G?(νIk(G) + νλ(G))
, ∀G ∈ G?, (19)

for which the equality (18) is reachable iff (νIk(G))k∈k?,G∈G? = 0. Thus, only identical
improper components D(A|νIk = 0) in (16) meet (18). For them, the mixture (16) reduces
to the single-component improper ideal decision rule RI(A) = D(A|νI = 0). This ideal
decision rule always gives the proper optimal rule Ro (14) for the considered λ > 0, which
makes νλ > 0. Indeed, in the linear combination νλ (14) at least one ep assigns a positive
value to any G ∈ G? as G? is delimited by this requirement.

The choice of Φ (15): The above considerations uniquely specified the improper ideal
decision rule RI and the form of the optimal rule Ro

RI(A) = D(A|νI = 0) ∝
∏
G∈G?

A(G)−1

(17)︷︸︸︷⇒ Ro(A) = D(A|νλ). (20)
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It also provided |p?| − 1 conditions (15) for |p?| Kuhn-Tucker multipliers λ > 0. Thus, it
remains to specify the constant Φ in (15).

For a given νλ > 0 (14), and arbitrary p ∈ p?, the left-hand side of (15) reads

Φp =

∫
A?

Ro(A)KL(ep||A)dA (21)

= −
∑
G∈G?

ep(G)

∫
A?

D(A||νλ) ln(A(G))dA−
∑
G∈G?

ep(G) ln(e−1
p (G))︸ ︷︷ ︸

H(ep)

= −
∑
G∈G?

ep(G)

[
Ψ(νλ(G))−Ψ

( ∑
G̃∈G?

νλ(G̃)
)]
− H(ep),

where Ψ is the digamma function, the derivative of logarithm of the gamma function,
Abramowitz and Stegun (1972). The formula for the expectation of ln(A(G)) with respect
to Dirichlet pd is, e.g., in Kárný et al. (2006). The λ-independent summand H(ep) is the
entropy of the processed pd ep. For a simple presentation, let us denote3

µ =
∑
p∈p?

λp, ζp =
λp∑
p∈p? λp

, eζ(G) =
∑
p∈p?

ζpep(G)

(14),(21)︷︸︸︷⇒ (22)

Φp = −
∫
G?

ep(G)Ψ(µeζ(G))dG+ Ψ(µ)− H(ep).

There, the pd eζ on G? is the mixture of the pds supplied by the respective participants.
Given (22), the choice of λ > 0 is equivalent to the choice of the free p−1 positive weighting
probabilities ζ = (ζp)p∈p? and the scaling factor µ > 0. For a given pd ζ > 0, determined
so that all Φp = Φ, the choice of Φ is equivalent to the choice of µ > 0.

The value Φp is a decreasing function of µ and its absolutely smallest value −H(ep) is
reached for µ = ∞. Thus, µ is found by solving (15) with the biggest µ < ∞, for which
its solution exist. With the introduced notations and performed evaluations, (15) gets the
form of |p?| − 1 equations for the probabilistic weights ζ > 0∫

G?
(ep(G)− e1(G))Ψ(µeζ(G))dG = H(e1)− H(ep), ∀p ∈ p?, (23)

and the scalar µ > 0 is selected according to the above dictum.

Remark An analysis is needed for whether a solution of (23) exists, i.e. whether R? 6= ∅.
Also uniqueness is to be inspected and an efficient algorithm for its construction designed.
All these important tasks are out of the paper scope.

5. Extension of Processed PDs cr to PDs e Acting on Group Behaviour

The proposed merging works with the collection of pds e = (ep)p∈p? defined over the group
ignorance G ∈ G?, but participants Pp, p ∈ p?, provide their closed-loop models crp assigning

3. The integral notation used hereafter underlines the conjecture that the results hold for |B?| = ∞.
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probabilities to b?p only. The needed extension cr = (crp)p∈p? → e = (ep)p∈p? is to be done
the advisor A. Altogether, A has to select a decision rule RE : cr → (A,E), generating the
action pair consisting of the derived merger A and the pd E ∈ E? on the possible extensions
e = (e(G)p)p∈p?,G∈G? of cr = ((crp(bp))bp∈b?p)p∈p? . The subscript E stresses that the discussed
decision rule extends that treated in previous sections.

The randomised rule RE(A,E) describes action pairs (A(G|E),E(e)) occurring in the
chain-rule factorisation

RE(A,E) = RE(A|E)RE(E). (24)

The (extended) group behaviour is B = (G, (A,E)) = (group ignorance, (action pair)) parts
and the closed-loop model

CRE (B) = CRE (G|A,E)CRE (A|E)CRE (E) = A(G|E)RE(A|E)RE(E), (25)

where the plain chain rule gives the first equality and the second one directly follows from
the definitions of individual factors. The ideal closed-loop model is

CIE(B) = A(G|E)RIE(A|E)RIE(E), (26)

where the chain rule is used and the wish that A should describe well group ignorance is again
applied. With this, the FPD-optimal extended decision rule RoE(A,E) = RoE(A|E)RoE(E)
is the minimising argument in

min
RE∈RE

?
KL(CRE ||CIE) = min

RE∈RE
?

KL(RE ||RIE) (27)

= min
RE(E)

∫
E?

RE(E)

[
ln

(
RE(E)

REI(E)

)
+ min

RE(A|E)

∫
A?

RE(A|E) ln

(
RE(A|E)

RIE(A|E)

)
dA︸ ︷︷ ︸

Φ(E)

]
dE,

where again A(G|E) has cancelled and G integrated out.
As demonstrated below, the treatment of the second summand in (27) reduces to that

specified and optimised in previous sections. Thus, the ideal pd RIE(E) determining the
first summand only needs to be chosen. Its support has to allow only the extensions, which
preserve the closed-loop models cr provided by individual participants, i.e.

supp[RE(E)] = {E : supp[E] = {e = (ep)p∈p? : ep(G) = ep(G−p|bp)cr(bp)}} , (28)

where G−p complements bp to G, i.e. G = (G−p, bp), ∀p ∈ p?.
The following adopted leave-to-the-fate option, Kárný et al. (2006),

RIE(E) = RE(E) on supp[RE(E)] (29)

respects that no other requirements exist with respect to RE(E). Under (29), the minimised
functional (27) is linear in the optimised RE(E) and minimum is reached by the deterministic
rule RoE(E) concentrated on a minimiser Eo of Φ(E) defined in (27).

For a fixed E concentrated on a point e in supp[E] (28), the second minimisation in (27),
defining Φ(E), coincides with the optimisation in Section 3, Proposition 1. Also, the choice
of the tuning knobs, Section 4, is the same when taking into account the correspondence

R(A)↔ RE(A|E), RI(A)↔ RIE(A|E). (30)
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This uniquely determines RIE(A|E) = D(A|νI = 0) and the optimal RoE(A|E) = D(A|νλ)
and the function Φ(E) to be minimised with respect to free factors (e(G−p|bp))p∈p? coincides
with the common value Φ (15).

A general pd E in the support of RIE(E) (28) is a convex combination of pds E con-
centrated on pds e ∈ e? = supp[E]. The complete analogy of reasoning made in Section 4
recommends the ideal decision rule RIE(A|E) = D(A|νI = 0). The set e? defined by con-
straints on possible e (28) is the convex set. Thus, the optimisation over E ∈ E? reduces
to optimisation over those concentrated on points e = (e(G−p|bp)crp(bp))p∈p?,G∈G? . This
finalises the solution of the general merging case summarised now for reference purposes.

Proposition 2 (General Merging) Let the closed-loop models of neighbours4 cr(G) =
(crp(bp))p∈p? be given and the group ignorance G ∈ G? be the concatenation of all variables
occurring in bp, p ∈ p?, while for each G ∈ G? at least one crp(bp) is positive. Then, the
FPD-optimal (extended) advising rule of an impartial advisor A respecting (18) is described
as follows. Among pds of the form ep(G) = e(G−p|bp)crp(bp), p ∈ p?, G = (G−p, bp), find

min
(e(G−p|bp))p∈p?

Φ(e) = (31)

min
(e(G−p|bp))p∈p? , µ>0, ζ∈ζ?

∫
G?

e1(G)Ψ(µeζ(G))dG+ Ψ(µ)− H(e1)

with the optimised µ > 0 and the probabilistic weights ζ > 0 entering

eζ(G) =
∑
p∈p?

ζpe(G−p|bp)crp(bp) and∫
G?

(ep(G−p|bp)crp(bp)− e1(G−1|b1)cr1(b1))Ψ(µeζ(G))dG = H(e1)− H(ep), ∀p ∈ p?,

with Ψ(µ) being digamma function and the entropy H(ep) defined

H(ep) = −
∫
G?

ep(G−p|bp)crp(bp) ln(ep(G−p|bp)crp(bp))dG. (32)

The minimiser (eo, µo, ζo) determines the optimal advisory rule with RoE(E) concentrated
on eo and RoE(A|E) = RoE(A|eo) = D(A|µoeoζo), with eoζo =

∑
p∈p? ζopeop(G−p|bb)crp(bp).

6. Concluding Remarks

The contribution to a prescriptive DM theory, which respects constraints of real DM par-
ticipants in knowledge sharing, is the main message brought by this paper. The proposed
merging of probabilistic knowledge of neighbours is based on a systematic use of FPD and
the impartiality requirement suppressing undesirable tuning knobs. Limited space prevents
us in describing how to support participants in transforming their non-probabilistic knowl-
edge into probabilities (crisp values as measures concentrated on them, marginal pds and
deterministic relations, Sečkárová (2015), extended by minimum cross-entropy principle,
Shore and Johnson (1980), re-interpretation of fuzzy rules as conditional pds, etc.)

The paper described how to construct advices but does not guide when accept them. It
has, however, a relatively clear conceptual solution. After merging, the advisor A generates

4. The same procedure applies even when factors of crp(bb) are communicated to A only.
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an advice Ao either via sampling from RoE(A|eo), Proposition 2, or by taking Ao as the
expected value of the optimal advising rule. Then the advice cAp is simply the marginal pd
of Ao(G), G ∈ G?

cAp(bp) =

∫
G?−p

Ao(G−p, bp)dG−p. (33)

It operates on variables known to the participant Pp and as such it is understandable to
her. If the participant replaces crp or its factor by the corresponding factor of the advice Ao
she gets the modified closed-loop model cAp. Naturally, she takes it as a good advice iff

D(cAp||cIp) ≤ D(crp ||cIp). (34)

Thus, Pp evaluates the quality of the advice according to her original selfish aim. The
improvement (34) leading to advice acceptance is possible due to the fact that the advisor A
operates on a wider knowledge and may respect supportive as well as competitive tendencies
in the group interactions.

Specialisations to subclasses of our general solution, like Quinn et al. (2016), theoretical
analysis of the proposed solution and its steps as well as the conversion of the conceptual
solution into a practical tool are obvious directions to be addressed.

Good news are that preliminary brute-force numerical experiments (made without ex-
tensions only) indicate desirable properties of the merger: i) the average is the optimal
merger iff the merged pds have identical entropy but its weight µ < |p?|; ii) the weight ζp
assigned to ep increases with entropy H(ep), which makes the merger robust; iii) the Bayes’
rule is the optimal merger if the merged pds are concentrated on crisp values.

It remains to discuss the concessions made, see Section 2. The obtained results are
conjectured to be amendable to unbounded refinements of the discretisation mappings.
This makes the assumption about finite cardinality of the behaviours’sets (3) non-restrictive.
Also, dynamic DM is expected to be solvable in the exactly the same way as the considered
static case. Note that whenever an external decision layer provides relative importance
degrees of the respective participants within a group then the advisor can respect them by
making the value Φ (15) the participant-specific.
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feedback from anonymous reviewer help to improve significantly the presentation. Finally, I
would like to apologise to all on whose shoulders this paper stands: starting from A. Wald,
G.N. Saridis, V. Peterka up to communities dealing with KL control, compromise or goal
programming. The available space did not allowed me even to mention them.

References

M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover Publications,
New York, 1972.

C.E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. The Annals of Statistics, 2(6):1152–1174, 1974. ISSN 00905364.

29



Kárný
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