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Abstract

Developing theories of when and why simple predictive models perform well is a key step
in understanding decisions of cognitively bounded humans and intelligent machines. We
are interested in how well simple models predict in regression. We list and review existing
simple regression models and define new ones. We identify the lack of a large-scale empirical
comparison of these models with state-of-the-art regression models in a predictive regression
context. We report the results of such an empirical analysis on 60 real-world data sets.
Simple regression models such as equal-weights regression routinely outperformed state-of-
the-art regression models, especially on small training-set sizes. There was no simple model
that predicted well in all data sets, but in nearly all data sets, there was at least one simple
model that predicted well.
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1. Introduction

The study of simple predictive models is an important topic in decision making and machine
learning. High predictive accuracy seems to be the main focus of most current research. Yet
low time complexity, robustness to small sample sizes, and interpretability are also desirable
properties of a useful model. In this article, we study simple models which are much faster
to estimate and easier to understand than their current state-of-the-art peer algorithms.
Their advantage in computation time and interpretability will be obvious. We are mainly
interested in how much predictive power is lost when using simple models, if any.

Predictive models can be simple in many different ways. One seemingly extreme ap-
proach is to take only one predictor into account. Another approach is to take all predictors
into account but to combine them in simple ways, for example, by giving them equal or
random weights. Such simple models have been shown to predict remarkably well in tasks
such as classification (Holte, 1993), paired comparison (Czerlinski et al., 1999; Brighton,
2006; Simgek and Buckmann, 2015), and portfolio optimization (DeMiguel et al., 2009).
Less attention has been given to simple models in a predictive regression context, that is,
when the problem under consideration is to estimate the value of a continuous response
variable on previously unseen data.

Simple regression models such as equal weights and random weights regression have
been examined empirically and theoretically in the psychological literature. Collectively,
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such models were termed improper linear models to distinguish them from proper linear
models whose weights are obtained by optimizing some objective function. For example,
ordinary least squares are obtained by minimizing the residual sum of squares.

Wainer (1976) argued that “it don’t make no nevermind” if optimal weights are replaced
by equal weights, as the loss in explained variance is small if predictors are directed properly
(see also Laughlin, 1978; Wainer, 1978). Similar findings, commonly known as the flat
mazximum effect, show that the space of nearly optimal weights for linear models is large
(Ehrenberg, 1982; von Winterfeldt and Edwards, 1982; Lovie and Lovie, 1986). Dawes and
Corrigan (1974) and Dawes (1979) concluded that optimal weighting of predictors would
therefore be less important than choosing the right predictors and knowing their directional
relationship with the response.

Moreover, Einhorn and Hogarth (1975) argued that improper models suffer from smaller
estimation error compared to proper models (or no estimation error) because the weights of
improper models do not have to be estimated from the data. Because they combine a small
loss in accuracy with increased robustness due to smaller estimation error, the common
message of these studies was that improper models would be superior to multiple linear
regression in some situations and not greatly inferior in others when the aim is out-of-
sample prediction.

These surprising results showed that improper models can match the performance of
more complex models or even outperform them. However, existing work on simple regres-
sion models did not study these models in a regression context. Some of them used loss
functions that are not regression adequate (Wilks, 1938; Dawes and Corrigan, 1974; Dawes,
1979; Einhorn and Hogarth, 1975; Dana and Dawes, 2004). For example, Dawes (1979)
used the correlation coefficient between predicted and true response values to assess the
prediction performance of different models. Other studies evaluated improper regression
models in a fitting rather than in a prediction context (Wainer, 1976; Waller and Jones,
2009). Furthermore, many results were presented relative to the performance of multiple
linear regression (Einhorn and Hogarth, 1975; Wainer, 1976; Graefe, 2015), which is known
to have severe estimation issues under a large variety of conditions. It is unclear whether
the results still hold relative to more recent proper models, such as the elastic net (Zou and
Hastie, 2005) or other regularized linear models.

In this article, we examine how well simple regression models predict in a regression
context when compared with state-of-the-art statistical models in a large, diverse collection
of real-world data sets. In doing so, we complement and contrast findings from other
domains such as classification and paired comparison, building toward a more general theory
of when and why simple models perform well.

Our results show that simple regression models such as equal weights regression routinely
outperformed not only multiple linear regression but also state-of-the-art regression models,
especially on small training-set sizes. There was no simple model that predicted well in all
data sets, but for nearly all data sets, there was at least one simple model that predicted
well.

In Sections 2 and 3 we review existing simple regression models, define new ones, and
describe how to estimate their parameters. In Section 4 we report the results of a large
empirical study that compared simple models with state-of-the-art regression algorithms on
60 data sets using a regression-adequate loss function.
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2. Simple regression models

Let us assume that we have some data (y;, x;), ¢ = 1,...,n, where &; = (2;1,...,25) is a
p-dimensional vector of predictors and y; a real-valued response for the ith observation. A
regression model f is a model that makes a prediction ¢ of y for a potentially new input
vector x, that is,

j=fx)

The simple models we consider are special instances of the linear regression model®
p
J=0B0+v D wjay,
j=1

and share the following properties: (a) weights a; are chosen heuristically (for example,
equal weights), and (b) weights a; can be estimated or determined independently of the
location parameter 5y and the scale parameter . Intuitively, the weighted sum determines
the nature of how the predictors are combined or selected. The two parameters 5y and -~y
then determine the location and scale of this weighted sum, respectively. Different simple
models correspond to different ways of determining «;. Estimation of 3y and 7 is the same
for all considered simple models and is explained in the following section.
We assume that predictors and responses are centered, that is,

1 < 1<
g:ﬁZyi:O and ij:gZxU:Oforalljzl,...,p,
=1

=1

and scaled, that is,

1< 1< ,
sy:ﬁZyiQ:l and smj:EZx?jzlforalljzl,...,p.
i=1 i=1

A centered and scaled variable is called standardized. Scaling the response is not necessary
for the simple models to function well but simplifies the analysis across different data sets.
Furthermore, predictors are said to be directed if they correlate non-negatively with the
response. We now define each of the considered simple models. Table 1 points to existing
literature for each model.

Mean prediction. This is the simplest available model and always predicts the mean
value of the response calculated on the training data. The corresponding model can be
written as

7 = Bo.

Mean prediction is appropriate when no predictor is available. Typically, data sets that do
not contain predictive predictors are not considered. Therefore, mean prediction does not
play a role in supervised learning in general. Yet the model can still serve as a baseline.
Random weights. This is perhaps the most improper model one could imagine. Once
standardized and directed, each predictor is assigned a random weight stemming from a

1. Setting ; = ya;, we obtain the classic formulation of linear regression: § = fo + Z§:1 x5 05;.
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Model Literature
Random weights Wilks (1938); Dawes and Corrigan (1974)

Wesman and Bennett (1959); Schmidt (1971); Dawes and Corrigan
Equal weights (1974); Einhorn and Hogarth (1975); Wainer (1976); Dawes (1979);

Dana and Dawes (2004); Davis-Stober et al. (2010); Graefe (2015)

Correlation weights Dana and Dawes (2004

Waller and Jones (2009)
Davis-Stober et al. (2010)

)
Single-cue regression  Dana and Dawes (2004);
Correlation ranks Wesman and Bennett (1959)

Table 1: Literature on simple regression models.

uniform distribution, that is,

§=B0+7 ) wizj,
j=1

where w; ~ U(a,b). Different authors used different values for a and b. We used a = 0
and b = 1. Nearly 80 years ago, Wilks (1938) showed that the correlation of predictions of
two independent random-weights models tends to 1 with an increasing number of positively
intercorrelated variables. Random weights should be outperformed by equal weights because
of the smaller variance of the latter (Dawes, 1979). We include random weights as a lower
benchmark model in our empirical analysis.

Equal weights. This model takes all standardized predictors into account and weights
them equally, that is,

P
g:/BO+'}/Z$j. (1)
j=1
Under the assumption that all predictors are directed, equal weights has only two free
parameters, location and scale.

Equal-weighting has been discussed in a large variety of settings resulting in slightly
different models: If By = 0 and v = 1 in Equation (1), the resulting model is called
unit weights (Einhorn and Hogarth, 1975). In a paired comparison context, where equal-
weights models have been called tallying or Dawes’s rule, these models have been shown
to outperform more complex models, especially on small sample sizes (Gigerenzer et al.,
1999; Simsgek and Buckmann, 2015). An equal-weights model has been found to compete
well with state-of-the-art portfolio theory models in a portfolio allocation problem, where
it is called the 1/N rule (DeMiguel et al., 2009).

Correlation weights. This model weights all predictors by their correlation with the
response, that is,

P
9= Po+ '}’Zrymjx]ﬁ

j=1
where 1y, is the sample correlation coefficient between the response and predictor x;.
Correlation weights has to estimate p+ 2 parameters. However, these coefficients are easier
to calculate than ordinary least squares (OLS) weights in terms of both computational
complexity and numerical stability issues. Whereas the OLS model suffers, for example,
from the multicollinearity problem, the correlation coefficients are calculated independently
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of each other and independently of 5y and 7. The correlation-weights model thus scales
favorably with the number of predictors when compared to the OLS model and its matrix
inversions.

Single-cue regression. This model considers only the predictor that has the highest
correlation with the response among all available predictors. The corresponding model can
be written as

Q = 60 + vz,

where x7 is the cue that is most correlated with the criterion y. To determine the single
cue, the correlations between all predictors and the response are estimated and the one
with the highest absolute value is chosen. Estimation of single-cue regression is not less
complex than estimation of correlation weights as it is necessary to calculate all p predictor—
response correlations in order to determine the single cue. Yet there may be simpler ways
to (approximately) determine the single cue, and single-cue regression is simpler at decision
time, where it requires only the information of one predictor.

Correlation ranks. This model does not need the exact values of the correlation
weights but only their ranks, that is, their relative order. The corresponding model can be
written as

P
§=Po+7 pjwj, where p;=rank(ry,).

j=1
The lowest correlated cue has rank 1 and the highest correlated cue has rank p. Ties are
assigned the average rank.? Correlation ranks might be easier to estimate and thus more
robust than correlation or OLS weights but still allow for differential weighting of multiple
predictors, as opposed to equal-weighting or single-cue strategies. Our implementation of
correlation ranks actually first estimates all correlations and then assigns ranks. However,
there may be simpler ways to (approximately) determine the ranking of correlations. Models
similar to correlation ranks have been compared to true-weights and equal-weights models
in the context of multiattribute decision making® in Barron and Barrett (1996). We know
of no study that compares the prediction accuracy of correlation-ranks models to other
regression models in a regression context.

3. Parameter estimation from training data

Unless specifically stated otherwise, we assume that Sy and v are calculated using simple
linear regression (SLR). Estimation of the weights «; depends on the respective algorithm
and is done before the estimation of 8y and .

SLR is much easier to estimate than OLS regression in general as it involves no inversion
of matrices but only simple estimates of scale and covariation. Defining c(x;) = Z?Zl L0

and ¢ = (c(x1),...,c(x,))T, the SLR estimates for model (2) are given by

S _ _
Y= Tycsl and [y =19 — ¢,

[

where ry. is the sample correlation coefficient between y and ¢, and s, and s. are the
standard deviations of y and ¢, respectively.

2. For example, the vector (7,4, 4,2) has ranks (4,2.5,2.5,1).
3. Find the alternative with the highest response value among a set of n > 2 alternatives.
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ID Name Obs. Predictors Id Name Obs. Predictors
1 Abalone 4,177 8 31 Land 67 4
2 AFL 41 5 32 Lung 654 4
3 Air 41 6 33 Mammal 58 7
4 Airfoil 1,503 5 34 Medical expenditure 5,574 14
5 Algae 340 11 35 Men 34 3
6  Athlete 202 8 36 Mileage 398 7
7 Basketball 96 4 37 Mine 44 4
8 Birth weight 189 8 38 Monet 430 4
9 Body fat 252 13 39  Mortality 60 15

10 Bone 42 6 40 Movie 62 12
11 Car 93 21 41  Mussel 44 8
12 Cigarette 528 7 42  News 39,644 52
13 Concrete 1,030 8 43 Obesity 136 11
14  Contraception 152 6 44 Occupations 36 3
15 CPU 209 6 45  Pinot 38 6
16  Crime 47 15 46  Pitcher 176 15
17  Diabetes 442 10 47 Plasma 315 12
18 Diamond 308 4 48  Prefecture 45 5
19  Dropout 63 17 49  Prostate 97 8
20 Excavator 33 4 50 Reactor 32 10
21 Fish 413 3 51 Rebellion 32 6
22 Fuel 51 5 52  Recycle 31 7
23  Gambling 47 4 53 Rent 2,053 10
24  Highway 39 11 54  Salary 52 5
25  Hitter 263 19 55 SAT 50 4
26 Home 3,281 4 56  Schooling 3,010 22
27  Homeless 50 7 57 Tip 244 6
28 Infant 101 3 58  Vote 159 5
29 Labor supply 5,320 5 59  Wage 4,360 10
30 Lake 69 10 60 White wine 4,898 11

Table 2: Data sets used in the empirical comparison.

Note that 5y can be omitted (set to 0) for all models when predictors and responses are
standardized. Some authors do not include the scale parameter v when the loss function is
invariant under scaling. In this article, we are interested in regression under squared error
loss, which is not invariant under scaling. Inclusion of v is therefore crucial.

4. Empirical analysis

We examined the predictive accuracy of simple regression models on a large collection of
real-world data sets. We assessed the predictive accuracy of different algorithms using root
mean squared prediction error (RMSE).

Data sets. We used 60 publicly available data sets from varying domains. Sources
included online data repositories, statistics and data-mining competitions, packages for
R statistical software, textbooks, and research publications. The number of observations
ranged from 31 to 39,644, the number of predictors from 3 to 52. Table 2 shows the number
of observations and the number of predictors in each data set. Many data sets are from
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earlier studies (Czerlinski et al., 1999; Simsek, 2013). Detailed information about the data
sets can be found in the Online Appendix.

We had difficulties finding data sets for regression where p > n. Although regularized
linear models have been developed primarily for problems where p > n, such data nat-
urally mostly seem to occur in (binary) classification contexts in biology and genomics.
Nonetheless, p > n situations occurred in our learning curve analysis for small training-set
sizes.

For each data set, the response was standardized and all predictors were standardized
and directed. Missing predictor values were mean imputed and observations with missing
response values were removed from the data set.

Benchmark models. We chose to include three benchmark models, described below.
Two are state-of-the-art regression models. We included the OLS model for historic reasons.

(1) The OLS model minimizes the mean squared error between predicted and true values
on the training data. We used the R (R Core Team, 2015) built-in function /m for estimating
OLS. Whenever there were p predictors, n observations, and p > n, we used only the n — 1
predictors that were most correlated with the response.

(2) The elastic net (Zou and Hastie, 2005) is a state-of-the-art regularized linear regres-
sion model. Regularized linear models were originally developed to overcome the estimation
difficulties of OLS (Hoerl and Kennard, 1970). They attempt to optimize prediction ac-
curacy by finding the happy medium between simplicity and complexity. The elastic net
has two main parameters. Parameter A > 0 controls the overall strength of regularization.
The elastic net reduces to OLS for A = 0. Parameter 0 < o < 1 controls the amount of
ridge versus Lasso characteristics. The elastic net reduces to two other regularized linear
models, ridge regression (Hoerl and Kennard, 1970) when o = 0 and the Lasso (Tibshirani,
1996) when o = 1. We used the R package glmnet (Friedman et al., 2015) to estimate the
elastic net. The parameters a and A\ were jointly optimized using 10-fold cross-validation
on a two-dimensional grid with a € {0,0.25,0.5,0.75,1} and A on the built-in search path
of glmnet, which uses a log-spaced grid with a maximum of 100 candidate values. We also
tested ridge regression and the Lasso in our empirical study and found their results to be
very similar to those of the elastic net.

(3) Random forest regression (Breiman, 2001) is a non-parametric and non-linear re-
gression model. It optimizes prediction accuracy by fitting an ensemble of regression trees.
We used the R package randomForest (Liaw and Wiener, 2002) with ntree = 500 trees per
forest.

Results. We show three sets of results. Figure 1 shows the mean RMSE of each
algorithm across 60 data sets, computed using 10-fold cross-validation. These estimates of
the prediction error correspond to large training-set sizes relative to the total size of the
data set (90% of available observations).

Figure 2 shows learning curves averaged across 60 data sets, as the training set varied in
size from 4 to 100. The figure shows learning curves for all models except mean prediction,
random weights, and OLS.* The test set consisted of 10% of the total number of observations
in the data set and did not overlap with the corresponding training set. The estimation
procedure was repeated 100 times for each training-set size and algorithm. There is a slight

4. OLS overfits for small ratios of n/p. Resulting average RMSEs were outside the figure boundaries because
some data sets had a large number of predictors p.
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Figure 1: 100 x 10-fold cross validated root mean squared error (RMSE) across 60 data
sets. OLS = ordinary least squares.

increase toward the end of the learning curve because the means were calculated on fewer
data sets for higher training-set sizes. The number of data sets large enough to be eligible
for a given training-set size is indicated at the top of the figure.

Finally, we present learning curves of various algorithms in individual data sets. Figure
3 shows learning curves in the data sets Diabetes, Prostate, and SAT. Figures A.1 to A.3 in
the Online Appendix present the learning curves in all remaining data sets.

We first compare simple regression models to benchmark models collectively. We then
comment on results within the groups of simple and benchmark models, respectively.

Averaged across 60 data sets, simple models were collectively outperformed by all bench-
mark models for larger training-set sizes.” However, equal weights and correlation ranks
outperformed all competing models for training-set sizes below 15 on the mean learning
curve. In addition, the learning curves in individual data sets show that for many data sets,
there is at least one simple model that performed well across large parts of the learning
curve. Let us define the minimum error curve as the algorithm with minimum error among
all algorithms as a function of training-set size. Then, in 22 of 60 data sets, simple models
occupied the entire minimum error curve except for possibly one training-set size. In an-
other 21 data sets, simple models occupied at least half of the minimum error curve. The
17 remaining data sets were dominated by benchmark models.

On many data sets some simple models performed very well while others performed
very poorly, rather than all simple models performing equally well. A good example is the

5. The end of the learning curve shows the average across all 30 data sets that were large enough for
training-set sizes of 100. The cross-validation-based analysis of Figure 1 shows the average across all 60
data sets for training-set sizes ranging from 27 to 35,679 observations, corresponding to 90% of the total
size of the respective data sets. The two analyses show similar results.
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Figure 2: Learning curves across 60 data sets. The number of large-enough data sets per
training-set size is indicated on top of the graph. Mean RMSEs for OLS are
beyond the plot range and have not been plotted.

SAT data set shown in Figure 3, which is one of the few data sets for which both equal
weights and correlation ranks perform poorly, but for which single cue is the best-performing
algorithm across the entire learning curve.

The data sets Prostate and Diabetes have been used to illustrate the favorable predic-
tion performance of the elastic net and other sophisticated regression models in the past
(Tibshirani, 1996; Efron et al., 2004; Zou and Hastie, 2005). Figure 3 shows that correlation
weights outperformed the elastic net in both data sets in training-set sizes smaller than 30.

On the mean learning curve, correlation ranks outperformed all other simple models
across the entire curve. However, on individual data sets, correlation ranks was often
outperformed by one or more of the other simple models. In fact, in almost all data sets,
the learning curve of correlation ranks lay in between those of equal weights and correlation
weights, independent of which of the two latter models performed better. This confirms the
intuition that correlation ranks is an intermediately complex model that is able to perform
well in situations of scarce information (similar to equal weights) but can also exploit the
benefits of weighting predictors differently when there is enough information to reliably
estimate the ranking of predictors.

Both equal-weights and single-cue regression share the property of performing either
very well or very poorly on many data sets. Single-cue regression was the second-worst or
worst model over the entire range of training-set sizes in 23 of the 60 data sets. Yet it was
also the best-performing model across the entire learning curve in SAT and across large
parts of the learning curve in Body fat. Equal weights outperformed all other models across
the entire learning curve in data sets Bone, Fuel, Pinot, Reactor, Rent, and Wage. But it
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Figure 3: Individual learning curves for data sets Diabetes, Prostate, and SAT. Mean RM-
SEs above 1.2 have not been plotted. OLS = oridnary least squares.

was by far the worst model on large parts of the learning curve in Diamond, Ezcavator,
Fish, and SAT.

Among benchmark models, OLS was outperformed by random forest regression and the
elastic net, both on average and individually on most of the data sets. Elastic net generally
outperformed random forest regression, especially on small training sets.

5. Discussion

Our analysis shows that simple regression models, for example, equal-weights regression,
routinely outperform not only multiple linear regression but also state-of-the-art regression
models, especially on small training sets.

None of the simple models we examined predicted well in all data sets. But in nearly
all data sets, there was at least one simple model that predicted well.

Because OLS has severe estimation difficulties with small training sets, it would be
reasonable to expect simple regression models to perform better than OLS on small training
sets. However, we did not expect the simple models to be able to compete with state-of-
the-art regularized linear models such as the elastic net.

Regularized linear models attempt to optimize prediction accuracy by searching through
a possibly infinite-dimensional hypothesis space of linear models, ranging from a sparse
linear model to the full, complex OLS solution. All simple models considered here are
special cases of the linear regression model. Even though we tested only four of them,
these simple models could sometimes outperform the carefully-optimized elastic net. These
results indicate that it may be possible to substantially reduce the size of the hypothesis
space of linear models needed to make good inferences. In other words, it is possible to
make good inferences based on simple models if one only knows which simple model to
choose.

Future work could examine models that adaptively choose between a few but maximally
different simple models. For example, a model that chooses between single cue, equal
weights, and correlation ranks using only information in the training data could be a fast
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and robust alternative to current state-of-the-art models, while being computationally less
challenging. The main question will be whether this algorithm can choose an appropriate
simple model on the basis of only a small number of training examples.

An important research direction is to examine whether people can intuitively pick an
appropriate simple model for a given problem. Such a finding may explain how people often
make good decisions despite their bounded cognitive capacities.
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