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Abstract

The aggregation of available information is of great importance in many branches of eco-
nomics, social sciences. Often, we can only rely on experts’ opinions, i.e. probabilities
assigned to possible events. To deal with opinions in probabilistic form, we focus on the
Kullback-Leibler (KL) divergence based pools: linear, logarithmic and KL-pool (Seckdrové,
2015). Since occurrence of events is subject to random influences of the real world, it is
important to address events assigned lower probabilities (unlikely events). This is done by
choosing pooling with a higher entropy than standard linear or logarithmic options, i.e.
the KL-pool. We show how well the mentioned pools perform on real data using absolute
error, KL-divergence and quadratic reward. In cases favoring events assigned higher proba-
bilities, the KL-pool performs similarly to the linear pool and outperforms the logarithmic
pool. When unlikely events occur, the KL-pool outperforms both pools, which makes it a
reasonable way of pooling.

Keywords: Opinion Pooling, Combining Probability Distributions, Minimum Kullback-
Leibler Divergence

1. Introduction

Problem of information aggregation from multiple sources is of interest in decision making
and its applications in areas such as social sciences, economics and business. The choice
of the final decision is a delicate process and if an unexpected situation occurs, it can
have big psychological or financial impact. In this contribution, we address this problem
by considering statistical and information-theoretic techniques and show that, if necessary,
impact of the final decision in unexpected situations can be softened.

In applications of decision making (elections, information markets) we often rely on
information formulated as an opinion. The process of aggregating this type of information
is then referred to as (expert) opinion pooling. By the term expert we not only mean a
person, who has knowledge about the variable of interest based on previous experience. We
also include sources which, by investing reasonable time and energy, exploit the today’s
amount of information distributed by media into their advantage. Some of the experts
may be certain about the decision (event), some prefer to express the uncertainty among
possible events. To include the uncertainty in predicting possible events, we consider the
expert opinion in the form of probability distribution. We assume, that experts are able to
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form probability distribution as a probability vector and we will not include the details of
its elicitation; an extensive discussion about elicitation of probability distributions can be
found in (Garthwaite et al., 2005).

Although sources form their opinion to their best knowledge and abilities and assign high
probability to the most probably event, the occurrence of the described event is subject to
the random influences of the real world such as nature, political situation, ... Then, an
event assigned lower probability (an unlikely event) causing non-negligible loss may occur.
Thus, the pool admitting unlikely events should assign more uncertainty in events; but still
give a reasonable result in the regular case, when event assigned high probability from ex-
perts occurred. To measure the amount of uncertainty for probability distribution resulting
from combining experts’ opinions we exploit information theory, i.e. the Shannon entropy
(Shannon and Weaver, 1963). To measure the utility of resulting probability distribution
we consider the Kullback-Leibler (KL) divergence as recommended in (Bernardo, 1979).

There are many algorithms for combining probability distributions available and being
developed in areas such as risk analysis (Clemen and Winkler, 1999), weather forecasting
(Ranjan and Gneiting, 2010), economics (Chen et al., 2005), parameter estimation with
knowledge elicitation (Karny et al., 2014), knowledge sharing with deliberator (Azizi and
Quinn, 2016). We focus on the basic combining algorithms used for opinion pooling: linear
and logarithmic pool. Both can be obtained via unconstrained optimisation, i.e., minimi-
sation of the KL-divergence (Abbas, 2009). We also consider more sophisticated version
of linear pool (KLp) inspired by (Kérny et al., 2009) and introduced in (Seckarova, 2015),
arising from the constrained minimisation of the KL-divergence. The result of any pool-
ing can be viewed as a compromise among considered sources; the compromise is usually
derived to satisfy group aims and every included individual has to sacrifice its own aims.
Consequently, when majority of experts’ opinions are similar, the influence of an expert
with different (opposite) opinion is suppressed.

We address these shortcomings by focusing on a combining approach KLp that yields
combination with higher entropy than, e.g., linear or logarithmic pool. In particular, we
consider constraints on acceptance of the resulting combination of opinions by individual
sources, again in the sense of the KL-divergence. KLp, being a conservative compromise,
is thus an appropriate pool when unlikely event occurs, especially if reward for formulated
opinion is included.

The aim of this contribution is to verify our hypothesis, that the KLp behaves similarly
to standard pooling options (linear, logarithmic) in regular case, but outperforms these in
case of unlikely events. For comparison purposes, we use the absolute error and the KL-
divergence with respect to the perfect prediction (probability 0 for the losing team) together
with the quadratic reward.

Next section contains the overview of the construction of the KL-divergence pool KLp
and shows behavior of the linear, logarithmic and KLp pools in terms of the entropy of
pooled probabilities. In the third section we apply considered opinion pools on the real
data obtained from contest for National Football League in USA (NFL games). The fourth
section concludes the work.
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2. Combining Experts’ Discrete Distributions

Consider a finite number of experts labeled by j = 1,..., s providing discrete probability
distributions represented by n-dimensional probability vectors:

n
p]:(p]hap]n) p32207 ijlzl’ n < 090, ]:1;33
i=1

where n denotes the number of possible events, i.e., outcomes of an underlying random
variable.

Let q denote an unknown probability vector representing the combination of p1, ..., ps-
Its estimator q is chosen as the minimiser the expected Kullback-Leibler divergence (Bernardo,
1979):

q € arg min Epqp,...p.)KLD(ql[q). (1)
(i(p17"'7p5)

The minimisation task (1) follows the theory of Bayesian decision making (Savage, 1972)
and yields:

q= (lea oo 7@71) = Ew(q\pl,...,ps)[q|pla ce aps]- (2)

The expectation in (2) depends on the conditional probability density function (pdf)
m(q|p1,- .., Ps), which we specify in two consequent steps:

1. We assume that each expert, if considered as the ‘best’ representation of value of
unknown q, has a finite expected divergence from q

Eralp1,...ps) [KLD(PjllQ)[P1, .., Ps] <00, j=1,...,5, (3)

and he is willing to include other experts’ opinions in the final combination if they
represent q equally or worse in terms of (3). Applying this condition to every expert
in the group we obtain that conditional pdfs have to satisfy:

Ex(alpi....po) [KLD(Pjl[@)|P1; - .., Ps] = En(qip,,...po) [KLD(Psl|@)[P1, - ... Ps],  (4)

j =1,...,s — 1. Previous attempts in terms of the bounded Kerridge inaccuracy
(Kerridge, 1961) can be found in (Seckarova, 2013).

2. We assume that the set of all pdfs satisfying (4) is non-empty. We exploit the minimum
cross-entropy principle (Shore and Johnson, 1980) and choose the pdf solving the
following optimisation task

min KLD(w(q|p1,---,Ps)||lmo(q)), (5)
m(q|p1,...,Ps) satisfying (4)

with
70(q) = mo(alp1, - - -, Ps)

being the prior guess on the conditional pdf 7(q|p1,...,Ps)-
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The constrained optimisation task (5) yields

SN (i)
(alpy, ., ps) < mo(a) [J g, (6)

=1

where ); are the Lagrange multipliers resulting from the minimisation of (5) with respect
to (s — 1) equations in (4).

To obtain more specific form of the combination (2) we next specify prior pdf in (5).
This pdf is defined over (n — 1)-dimensional probability simplex - a set of all p;. Based
also on the relation given in (6), we exploit numerically appealing Dirichlet distribution.
We then obtain that pdf 7(q|p1,...,Ps) is also the pdf of the Dirichlet distribution. Its
parameters have the following form:

s—1
U = vpi + Z)\j(pji —Dsi), t=1,...,n,
j=1
where vg1, ..., 1y, are parameters of the prior Dirichlet distribution, A1,..., As—1 are the

Lagrange multipliers from the constrained optimisation task.
Based on the properties of the Dirichlet distribution

Ui
E ; - = =,
7(q|p1,---,Ps) [%\Pla ) ps] Z?:l ﬁz
the estimator (2) is
U s—1
] 0i j .
Gi = LB = Pji —psi), i=1,...,n. (7)
1 ZZ:1 Yok o 2221 Yok Jt S1) )
Equation (7) represents the KL-pool (KLp) of expert opinions py, ..., ps.

In many real-life inspired cases (elections, betting predictions), there is very little or
no prior information available before processing expert opinions. We are thus forced to
exploit given opinions in prior guess for parameters of the Dirichlet distribution. Since no
new information is included in combining, it is natural that the sum of prior parameters
vo; and parameters after combining ; to be equal (see (2)). In particular, we set this sum
of parameters to be equal to the number of opinions (or generally observations). Each
parameter vy; is then assigned value relative to the arithmetic mean of the given opinions

S S

VOiZSZ%:Zpﬁ, i:1,...,n. (8)

j:l j:l
For comparison purposes, we use

e linear pool (linp):
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Figure 1: Values of pooling for ¢; and amount of uncertainty (entropy) for the linear (9),
logarithmic (10) and KL-pool (7).

e logarithmic pool (logp):

S
ax[] »}7, (10)
j=1

in this contribution, with w; denoting weights, i.e., subjective preferences among experts
1,...,s. These two combining approaches arise from the minimisation of both versions of
asymmetric KL-divergence without constraints (Abbas, 2009).

2.1 KL-pool as Treatment for Unlikely Events

We expect the experts posses certain level of expertise when assigning the probability to
possible events. However, they often have incomplete information about random influences
in real world such as nature, political situation, physical and mental abilities of others.
Even minor changes in these factors can have huge impact on the occurrence of improbable
events. Thus, it is important to reflect also events with lower probabilities assigned by
experts — by allowing more uncertainty in the set of probable events. To measure the amount
of uncertainty allowed by the combination in (7) we focus on the entropy (Rényi, 1961),
exploited in environmental scenarios, e.g., methane emissions from wetlands (Sabolova et al.,
2015). Higher values of entropy indicate that more uncertainty is present and that unlikely
events should be assigned higher probability.

The formula (7) is not closed; the values of @ = (41, .. ., ¢, ) are obtained numerically via
optimisation with respect to either Ai,...,As_1 or v1,...,v,. The direct theoretical com-
parison of KLp with linp and logp, by exploiting constraints (4) rewritten for the Dirichlet
distribution or by using an approximation of q, is a part of the future research.
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Figure 2: Left column Results for pooling based on the linear (linp), logarithmic (logp)
and KL-pool (KLp), the absolute error (11) of the pools and the KL-divergence (13) for
randomly picked games. Right column Results for pooling based on the linp, logp and
KLp, the absolute error of the pools and the KL-divergence for the subset of games to which
the players assigned low probabilities to the winning team.

We now consider a numerical example to see that the proposed KL-pool has this desirable
property: let us thus combine two opinions p; = (pj1,pj2), 7 = 1,2, where

p1 =(0,1),...,(1,0) and py=(0.5,0.5),

i.e., p1 varies in the above range with increments in p1; equal to 0.02. Figure 1 shows how
KLp, with vg1, ..., v, given by (8), behaves in comparison with linear (9) and logarithmic
(10) pools arising for unit weights w;, j = 1,2. In Figure 1 on the left we see the outcomes of
considered pools for the first event (i = 1). On the right, we see that the KL-pool has equal
or higher entropy than linear and logarithmic pool for low-probability events (p11 < 0.5)
and thus fits better for the treatment of unlikely events.

3. Real Data Application

In this section we demonstrate that the behaviour of the KL-pool, illustrated on the toy
example in the previous section, is favourable when processing real data. We obtained data
from http://probabilityfootball.com/2005/, an online football contest also referred to
as “a game of skill”, where the players “estimate, for each football game, the probability
that each NFL team will win based on how strong they believe each team to be”. Players
pick a probability of winning for each team, ranging from 0 to 1 (according to webpage in
percentile ranging from 0% to 100%), which they think accurately describes the strength of
teams.
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Figure 3: Left column Results for the linear (linp), logarithmic (logp) and KL-pool (KLp)
in terms of cumulative absolute error (12) and cumulative quadratic reward (14) for ran-
domly chosen games. Right column Results for the linp, logp and KLp in terms of CAE
and CQR for games, when players assigned low probabilities to the winning team.

We apply previously mentioned linp (9), logp (10) and KLp (7) to demonstrate their

behaviour and compare:

e values of pooling for the first event (the team that eventually won),

e absolute error measuring the difference between perfect prediction (probability 0 for
losing team) and the actual prediction (Chen et al., 2005)

AE = |0 - quosing team|7 (jlosing team € {hnpa 1ng7 KLp} (11)
and its cumulative version
CAEt - CAEt—l + ’0 - qu0$ng team,t|7 dlosing team,t S {hnpa logp7 KLP} (12)

where CAE;_; is the sum of absolute errors from (t—1) previous games and Giosing team.t
is the pooling of opinions for current game,

and KL-divergence
KLDiv = KLD(qperfect||4), @ € {linp, logp, KLp} (13)
where qperfect is @ perfect prediction (probability 0 for losing team),

cumulative quadratic reward

CQR = CQRt,1 + 100 — 400(@105ing team,t)27 (jlosing team,t € {hnp, lnga KLP} (14)

with quadratic reward used in the contest (Chen et al., 2005).
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Firstly, focus on the first 6 weeks of NFL in 2005 for 7 successful players, each week 6
games were chosen. Results in the left column of Figure 2 show, that KL-pool performs
similarly to the linear pool in terms of absolute error (11) and KL-divergence (13). This
result is expected because of the additive nature of the KL-pool. The performance of the
logarithmic pool is due to its multiplicative form oscillatory - it performs either very good
Or Very poor.

Secondly, we focus on 18 games, when the majority of picked players put more believe
into a team, which eventually lost the game. Figure 2 (in the right column) shows that in
such case our method performs better than the linear pool, as intuitively expected.

Because of the design of this example, i.e., the variability in playing football teams, it is
difficult to study the properties of considered pools sequentially (based on estimates from
the previous game). Thus, we next exploit performance of these pools with respect to the
cumulative versions of the absolute error (12) and the quadratic reward (14). The results
depicted in Figure 3 are similar to the non-cumulative case: for randomly chosen games, the
KL-pool performs similarly to the linear pool and both pools outperform the logarithmic
pool (their CAE is lower and CQR is higher). In case of games, where the losing team was
assigned lower probability by the players, the KL-pool outperforms both, the linear and the
logarithmic pool.

4. Conclusion and Future Work

In this contribution we focused on problem of pooling expert opinions when events assigned
lower probabilities occur (unlikely events). This is especially important in cases when
also a reward for formulated opinion is also included: the higher probability assigned to
the event that did not occur can yield huge loss. To treat this we need an opinion pool
resulting in a combination with a higher entropy than standard pooling ways, so that
unlikely events obtain reasonable probability. We considered the Kullback-Leibler based
opinion pool (Seckarova, 2015), values of which were obtained via constrained non-linear
optimisation. This pool was constructed as the compromise for group of experts a) without
sacrificing their own aims and b) without suppressing opinion which significantly differs
from other opinions.

We showed on numerical example that KL-pool reaches higher values of entropy than
generally known pools: (equally weighted) linear pool and logarithmic pool. We then
applied these pools on real data and compared them using following performance measures:
the absolute error, the KL-divergence and the quadratic reward. Because of the additive
form of the KL-pool, its performance was similar to the performance of the linear pool for
regular data (not many unlikely events occurred). In case of unlikely events, the KL-pool
outperformed the linear and the logarithmic pool in terms of cumulative version of the
absolute error and the quadratic reward and thus is a reasonable tool for pooling expert
opinions. The future work includes the theoretical comparison of KL-pool with other opinion
pools by using its approximation. Also, the application of the KL-pool on other sets of real
data including betting with knowledge of fixed-odds, handling financial contracts, weather
forecasts, is of interest.
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