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Tuve Löfström tuve.lofstrom@hb.se
Dept. of Information Technology, University of Bor̊as, Sweden
Dept. of Computer Science and Informatics, Jönköping University, Sweden
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Abstract

The choice of how much money and resources to spend to understand certain problems is of
high interest in many areas. This work illustrates how computational models can be more
tightly coupled with experiments to generate decision data at lower cost without reducing
the quality of the decision. Several different strategies are explored to illustrate the trade
off between lowering costs and quality in decisions.

AUC is used as a performance metric and the number of objects that can be learnt from
is constrained. Some of the strategies described reach AUC values over 0.9 and outperforms
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strategies that are more random. The strategies that use conformal predictor p-values show
varying results, although some are top performing.

The application studied is taken from the drug discovery process. In the early stages of
this process compounds, that potentially could become marketed drugs, are being routinely
tested in experimental assays to understand the distribution and interactions in humans.

Keywords: Drug discovery, Conformal Prediction, ADME properties, Decision support

1. Introduction

Drug discovery is a costly and time consuming process that involves several steps (Bun-
nage, 2011; Gautam and Pan, 2016). First a biological pathway that is likely to affect a
certain disease needs to be identified. Secondly, a specific drug target has to be discovered,
a particular protein or enzyme within the pathway which function can be altered through
intervention with a chemical entity in a way to favourably influence and, ultimately, cure
the disease. One can identify a chemical entity that actually influences this target, i.e.,
a first compound that shows potency. However, such a hit is normally very far from the
final drug candidate, since other compound properties need to be considered as well: The
compound needs to be able to reach the place of action, i.e., it needs to be absorbed and
correctly distributed within the body. It also needs to stay long enough to have an ef-
fect, i.e., it should not be metabolized or otherwise eliminated too fast. Finally, it must
not have any adverse toxic effects. During lead identification and lead optimisation phases
these additional properties are optimised together with the potency in an iterative pro-
cess, the design-make-test-analyze (DMTA) cycle (Plowright et al., 2012). New chemicals
that fit a certain design hypothesis will be made, submitted to certain, primary, tests and
analysed. Results will be used in the design of the next set of compounds to be made.
Obviously, the analysis will also define whether a compound is of interest to be submitted
to additional, secondary assays, or, finally, be selected as drug candidate. The definition of
primary and secondary assays may vary, dependent on company, drug discovery project or
project stage. At AstraZeneca the primary assays used for all compounds are the respective
potency assay and a set of assays to give essential information about absorption, distribu-
tion, metabolism and excretion (ADME) (Ballard et al., 2012). These early ADME assays
include lipophilicity, solubility and metabolic stability screens and give a first insight into
whether a compound has good or bad ADME properties. All data typically also feeds into
machine learning algorithms that can be used to predict the property in question for new
compounds, (Davis and Wood, 2013) and thus can help in compound design as well as when
selecting which compounds to proceed further. The process described usually depends on
the synthesis and experimental testing of hundreds of compounds each month, with only
about 20% being of interest for further investigations. Thus, to confidently identify poor
compounds at the design stage is of great value. Previous work has shown that confor-
mal prediction can be useful in drug discovery using traditional machine learning based
evaluation criteria (Eklund et al., 2015; Ahlberg et al., 2015; Norinder et al., 2014). In this
work we want to evaluate several automated strategies to decide which compounds to make,
based on conformal predictions of ADME properties. At the same time we need to ensure
that the possibility to identify the optimal compound will be maintained.

This paper focus on the DMTA process and automated strategies for the selection of
compounds for synthesis and testing using machine learning and conformal prediction. The
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aim is to use cost as a more practical measure from a process point of view. The possibility
to reduce cost comes in two stages, one with just reducing testing of compounds in assays
where the activity of the compound can be predicted with sufficient confidence. Such a
decision has the potential of saving between 5 and 50$ per compound and assay depending
on the complexity of the assay etc. The second and preferred approach would be to intervene
prior to synthesis and thus remove the cost of making and testing the compound all together.
The cost for synthesizing a compound tends to exceed $1000, thus eliminating compounds
from synthesis potentially has big impacts on cost. If one would e.g. reduce the compounds
synthesized by 20% then savings in excess of $1M would be expected when considering only
five thousand compounds overall.

The aim of this study is to assess different strategies to select which compounds to
synthesize and ultimately test in ADME assays based on different types of conformal pre-
dictors. To evaluate possible reduction in synthesis, a desirability function has been created
that uses the results from the ADME assays and assigns a label Good or Bad to each com-
pound. All data have been ordered by the experimental test date, to mimic the actual data
generating process, and evaluations are made using teaching schedules (Vovk et al., 2005) in
batches of 500 compounds, which corresponds to a periodic updating schedule resembling
the DMTA process. Preset values of reduction of number of compounds to synthesize have
been set to [20, 40, 60]% and all methods are compared using area under ROC curve (AUC)
for each level of reduction.

2. Method

Each strategy will start with a set of initial training examples, TT , and select to learn from
subsequent objects by applying a choice function to the objects in the prediction set, TP .
The selected objects are then added to TT with an upper bound constraint on the final size
of TT . In this manner the training set will gradually grow as choices are made on which
compounds to test.

The updating procedure can be explained using a data set TD with examples ordered
by testing date, the number of examples in D (nD), the number of examples in the initial
training set nT , the number of examples to predict in each iteration nP , a choice function
Fc and nm the maximal number of examples that can be measured. Given these parameters
the updating procedure presented in Algorithm 1, generates a training set TT and starts
an iterative process of model building and subsequent prediction of new examples. The
predicted examples are evaluated using the choice function. If the prediction of an example
meets the criteria of the choice function, then the prediction is taken as sufficient. If the
example fails the criteria of the choice function, then the example is learned and added to
the training set.

2.1. Data

Data from four high throughput ADME assays routinely run for newly synthesized com-
pounds, (Ballard et al., 2012) are considered in the present study: lipophilicity, solubility
and metabolic stability in both human liver microsomes and rat hepatocytes. Lipophilicity is
an important compound property influencing both potency and pharmacokinetic properties
of a compound. Higher lipophilicity is associated, for example, with higher cell membrane
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Algorithm 1: Updating Procedure

Input: TD, nT , nP , nD, p
Output:
TT ← {z0, . . . , znT }, z ∈ TD;
while nT < nD do

TP ← {znT+1, . . . , znT+nP }, z ∈ TD;
build CP model on TT ;
predict on TP ;
TT ← TT ∪ {zi, i ∈ [nT + 1, . . . , nT + nP ]; If(Fc(zi))};
nT ← nT + nP ;

end

permeability, lower water solubility, lower metabolic stability, higher unspecific binding to
both plasma proteins and target proteins, higher volume of distribution and higher risk for
binding to other targets besides the intended. logD values between 1 and 3 are usually con-
sidered as favourable. Solubility is of interest to estimate compound absorption but also to
understand whether low solubility may impair other assay results. Lower Solubility, below
100 µM, will decrease a compounds chance to become a successful drug. Metabolic stabil-
ity is an essential property to estimate a compounds pharmacokinetic (PK) properties and
consequently the necessary therapeutic dose. At AstraZeneca both human liver microsomes
and rat hepatocytes are routinely used as part of this assessment. The former determine
the ability of human cytochrome P450 enzymes to break down a compound, whereas rat
hepatocytes indicate if additional types of metabolism such as glucuronidations can occur.
Intrinsic clearance values below 10µl/min/mg protein for microsomes and 10µl/min/million
cells for hepatocytes are here accepted as sufficient. All assays follow standard procedures:
shake-flask methods are used for lipophilicity (measured as n-octanol water distribution
coefficient at pH 7.4, log D) (Wenlock et al., 2011) and solubility (Wan and Holmn, 2009).
Metabolic stability in human liver microsomes and rat hepatocytes are determined as in-
trinsic clearance (CLint) from the compound disappearance rate in an incubation over 30
minutes and 2 hours, respectively (Sohlenius-Sternbeck et al., 2010; Temesi et al., 2010).
Test compounds are supplied in form of a 10 mM solution in dimethylsulfoxid (DMSO)
for all assays. In order to reduce the influence of the solvent for the solubility determina-
tion, DMSO is evaporated at assay start. The assays show good reproducibility over time,
with the solubility assay being the most variable (Winiwarter et al., 2015). The data set
consists of compounds measured over a period of five years and contains 53515 compounds
in total. Provided that 3 out of 4 targets were in their desired range a compound would
be categorized as Good else it would be categorized as Bad. The distribution between the
Good and Bad classes are 29% and 71% respectively. This dataset is not publicly available
which limits us to describe its exact nature. However, the compounds are described by
structural chemical descriptors, so called signature fingerprints. The initial training set is
39084 compounds and the test set is 14431 compounds.
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2.2. Strategies

In the following, several strategies are described that will be applied according to the up-
dating procedure outlined in Algorithm 1. Each strategy will start with the set of initial
training examples, TT , and select to learn from subsequent objects by applying a choice
function to the objects in the prediction set, TP with a lower bound constraint on the final
size of TT .

For all strategies, covered in this work, that produce a pair of p-values, these values are
combined into a final single valued score based on the credibility and the confidence (Vovk
et al., 2005) of the object. This score is

s =

{
−p0(1− p1)/2 + 0.5 if p0 > p1,
p1(1− p0)/2 + 0.5 if p0 ≤ p1.

(1)

Here the indices 0 and 1 represent the labels Bad and Good, respectively. Selection of
compounds was made using p-values and the score, s, was used for the evaluation.

2.2.1. Random choice, Mondrian Cross-Conformal Prediction

This strategy is added as a reference strategy to be compared to the two following strategies.
The underlying machine-learning algorithm is the C-SVC and a radial basis function kernel
as defined in Scikit-learn version 0.17 (Pedregosa et al., 2011). Here, we are using a Mon-
drian, label-conditional cross conformal predictor. The division of the training examples
is done by a stratified five fold sampling using the cross_validation.StratifiedKFold

function in Scikit-learn, using one fold as calibration examples and the remaining exam-
ples as proper training examples. The predicted p-values from each of the five inductive
conformal predictors are averaged for each prediction object, within each class label re-
spectively. The nonconformity measures are defined by the decision function values of the
underlying C-SVC model. The initial training examples are used to find the optimal val-
ues for the cost coefficient of the C-SVC, C, and the width of the radial basis function,
γ, by applying a grid search over the values C ∈ {10c : c = 3i/9 : i ∈ {0, 1, . . . , 9}} and
γ ∈ {10g : g = −3i/9 − 5 : i ∈ {0, 1, . . . , 9}} and selecting the pair that leads to the
highest accuracy when using GridSearchCV in Scikit-learn and five folds. For this strategy,
the choice function randomly selects a fraction of the predicted objects for each updating
step to be learnt and subsequently added to the training set for the next iteration of the
updating procedure. For example, when the constraint of learning from 80% of the objects
is applied, the choice function will randomly select 20% of the objects and these objects
will not be learnt at any stage in the following updating steps. This strategy is referred to
as random.

2.2.2. Largest p-values, Mondrian Cross-Conformal Prediction

The p-values for the different labels in this strategy are calculated in the same way as in
Section 2.2.1. At each updating step, the choice function selects the fraction, as specified
by the constraint, of objects with the largest predicted p-value of any class label not to be
learnt. This corresponds to the prescribed reduction in synthesis. This strategy is referred
to as both.
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2.2.3. Largest p-values bad labels, Mondrian Cross-Conformal Prediction

Also for this strategy, the p-values are calculated in the same way as in Section 2.2.1. The
difference for this strategy is in the choice function. Now we form a subset of objects for
which the p-value of the Bad class label is greater than the p-value for the Good class label.
The selection is taken to be the largest fraction of Bad class label p-values regardless of the
p-values for the Good class. This strategy would only consider to leave out objects based on
one of the class p-values and thus introducing a more conservative view for the other class
where many high credible predictions would be learnt. This strategy is referred to as bad.

2.2.4. Random forest, Largest p-values, Mondrian Cross-Conformal
Prediction

The p-values for the different labels in this strategy are calculated in the same way as in
Section 2.2.2 using the FEST1 Random Forest implementation with 100 trees instead of a
Support Vector Machine.

2.2.5. Random forest, Mondrian out-of-bag calibration

The underlying model is a random forest with 500 trees using a depth-limit of 500 levels and
200 randomly selected features, which is used together with a Mondrian (class-conditional)
approach to calculate p-values using out-of-bag instances for calibration; the other param-
eters are set according to the default of the used Julia implementation2.

The original training set is used to construct a first model and different selection strate-
gies are then employed for deciding what examples to synthesize and predict for each batch
of new examples, where synthesized examples are merged with the original training set
when training subsequent models.

The three considered selection strategies are:

random Randomly divide the new batch into examples to be synthesized and predicted.

confidence Select examples with the highest p-value (for any of the two classes) for prediction
and the remaining (low-confidence) examples for experimental testing, to learn the
true label.

half-each Select half of the examples for prediction based on the highest scores according to
Eq. 1 and half of the examples according to the lowest scores.

2.2.6. Random forest, Differences in confidence

A class-conditional conformal classifier is trained using a random forest classifier, using
500 trees and a max depth of 500. Training and calibration data consists of all previously
synthesized compounds, from all previous batches. For each batch, obtain pgood and pbad
for all test objects. For each batch, we expect to synthesize x% of compounds.

1. http://lowrank.net/nikos/fest
2. http://github.com/henrikbostrom/RandomForest
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diff Calculate pdiff = pgood − pbad for each test object. Reveal labels for all test objects
where pdiff < percentile(pdiff , x), and output predictions for the remaining test
objects. Pro: test objects belonging to the Good class are either synthesized or obtain
a prediction where the Bad class has a low confidence. Con: Bad objects with high
confidence predictions for the Good class are not revealed; i.e., many Good predictions
are Bad objects, and we do not learn to distinguish these by not revealing the labels.

absdiff Calculate pabsdiff = |pgood−pbad| for each test object. Reveal labels for all test objects
where pabsdiff < percentile(pabsdiff , x), and output predictions for the remaining test
objects. Pro: most Good objects are either synthesized or obtain a prediction with
a high confidence for the Good class and a low confidence for the Bad class. Con:
same as diff ; additionally, some Good objects obtain high confidence predictions for
the Bad class (and low confidence for the Good class).

rand For each test object calculate
wi = 1−mi + β, (2)

where mi is either diff or absdiff for the test object, and β is a parameter. Normalize
the weights using

wi =
wi∑n
j=1wj

. (3)

Randomly reveal the true labels for x% of test objects using w1, . . . , wn as a probability
distribution function.

2.2.7. Gradient Boosted Tree Classifier, Largest p-values, Mondrian
Conformal Prediction

A Mondrian class conditional conformal gradient boosted classifier is trained on all available
and predicted synthesized compounds, i.e., from all previous batches, where the predicted
labels are assumed to be correct. The base classifier ”GradientBoostingClassifier” (http:
//scikit-learn.org), version 0.17 (Pedregosa et al., 2011) with all parameters at default
was used for model building. The original number of attributes (105781) was filtered down
to attributes that occured at least 30 times in the training set. After filtering 7988 attributes
remained for modeling. At each updating step, the choice function selects the fraction, as
specified by the constraint, of objects with the largest predicted p-value of the Good class
label to be synthesized. The risk of hurting performance by systematically including low-
confidence compounds is hopefully alleviated by including high-confidence predictions.

3. Results

In the following, the performance metric, AUC, has been calculated only on the examples
that the different strategies did not learn from and using the s score defined in Section 2.2.
The predictions on all objects that were not selected for learning have been compared to
their true labels through the calculation of AUC using the roc function (Robin et al., 2011).
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3.1. Mondrian Cross-Conformal Predictors

The results for the Mondrian cross-conformal predictors refers to the strategies presented in
Sections 2.2.1,2.2.2 and 2.2.3. The results in Table1 show that the both strategy achieves
the highest AUC for all constraints. It is also noticeable that the bad strategy performs
worse than the random strategy.

Table 1: AUC for Mondrian cross-conformal predictors
Predict fraction 0.20 0.40 0.60
Strategy

random 0.7967 0.7963 0.7964
both 0.9041 0.8749 0.8424
bad 0.5961 0.6591 0.6875

In Table 2, the results for using random forests with Mondrian cross-validation-calibration
for the three considered fractions of each batch that are to be predicted, i.e., 0.2, 0.4 and
0.6, are shown. The results are similar to those, for the same strategy, using SVM instead
of RF.

Table 2: AUC for Mondrian cross-conformal predictors using FEST RF
Predict fraction 0.20 0.40 0.60
Strategy

both 0.9059 0.8529 0.7846

3.2. Mondrian out-of-bag calibration

In Table 3, the results for using random forests with Mondrian out-of-bag-calibration to-
gether with the selection strategies random, confidence, half-each and absdiff (as described
in Sections 2.2.5 and 2.2.6, respectively) or the three considered fractions of each batch that
are to be predicted, i.e., 0.2, 0.4 and 0.6.

Table 3: AUC for random forests with Mondrian out-of-bag calibration
Predict fraction 0.20 0.40 0.60
Strategy

random 0.7585 0.7527 0.7586
confidence 0.8550 0.8400 0.8004
half-each 0.8453 0.8222 0.7935
absdiff 0.8627 0.8430 0.8008
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3.3. Differences in confidence

In table 4, the results for the strategies based on differences in confidence are presented, for
the three considered fractions to be predicted. The absdiff strategy performs the best.

Table 4: AUC for gradient boosted trees
Predict fraction 0.20 0.40 0.60
Strategy

absdiff 0.9202 0.8727 0.8363
diff 0.6146 0.6529 0.6729

3.4. Gradient Boosted Tree Classifier

In Table 5 the results from using a gradient boosted tree classifier (GBT) for the three
fractions are shown.
The performance of GBT, with respect to AUC, is not as good as some of the Mondrian
cross-conformal or Random Forest results.

Table 5: AUC for gradient boosted trees
Predict fraction 0.20 0.40 0.60

GBT 0.6561 0.6376 0.6508

4. Concluding remarks

The possibility to reduce the number of synthesised compounds in early stages of drug dis-
covery discovery has been evaluated using strategies for automated compound prioritization
based on early ADME data. The results show that there is a clear possibility to reduce
the number of synthesized compounds with minimal reduction in the quality of data that
decisions are taken on. The gold standard in this work is the assay data, hence measuring
all compounds would return an AUC of 1.0. In that respect, obtaining AUC values for the
proposed methods above 0.9 is very promising, like in Tables 4 and Table 1. The results
show that it is possible to reduce testing by 20% and significantly lower the development
costs for projects. One of the drivers behind this work is cost and under a limited budget
these methods can be used instead of assay data for early decisions. For later stages of
candidate drug selection it is advised to generate the assay data if it is needed.

The results in this work are very encouraging and any future work in establishing better
strategies with potential theoretical support would be very useful in the process of discov-
ering potential drugs.

In future work, it will be important to more carefully define the problem statement
and to review appropriate measures of success. The benefits of using AUC as performance
metric, in contrast to e.g., lift, accuracy, precision or recall, are that it does not require any
threshold to be set for determining class membership for the predicted instances and that it
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is insensitive to differences between the underlying class distributions from which training
and test instances are sampled. However, similar to the other standard performance met-
rics, the AUC does not incorporate misclassification costs, which in the considered domain
typically are distributed unevenly, e.g., the cost of incorrectly predicting a bad compound
as good is often much higher than for the opposite type of error. An evaluation of the in-
vestigated approaches with respect to performance metrics that do include misclassification
costs, as well as the cost of obtaining labels through synthesis and testing, is hence one of
the most important directions for extending this work.
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