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Abstract

Prediction of drug metabolism is an important topic in the drug discovery process, and we
here present a study using probabilistic predictions applying Cross Venn-ABERS Predictors
(CVAPs) on data for site-of-metabolism. We used a dataset of 73599 biotransformations,
applied SMIRKS to define biotransformations of interest and constructed five datasets
where chemical structures were represented using signatures descriptors. The results show
that CVAP produces well-calibrated predictions for all datasets with good predictive ca-
pability, making CVAP an interesting method for further exploration in drug discovery
applications.

Keywords: Venn-ABERS, Cross Venn-ABERS Predictor, Site-of-Metabolism, Drug dis-
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1. Introduction

Computational methods are widespread throughout the various parts of the drug discov-
ery process. One important component is predictive modeling of experiments on chemical
compounds, where the chemical structure of the compound is represented numerically (al-
gorithms for such representations are called ‘descriptors’ in the field of cheminformatics).
The descriptor values constitute the input data, and the dependent variable is the measured
value from a biological experiment (e.g. activity, toxicity or inhibition). This methodol-
ogy is referred to as QSAR (Quantitative Structure-Activity Relationships)(Hansch, 1969),
and the objective is normally to predict the outcome for an unseen chemical structure, to
provide e.g. an early warning, indication of potential problems, or an estimate of the ef-
fect the compound might have on a protein target (receptor). The learning methods used
include SVM (Burbidge et al., 2001) and Random Forest (Svetnik et al., 2003). QSAR
models are commonly used in the early stages of drug discovery, for example to provide
decision aid about carcinogenicity (Helma, 2006), toxicity (Spycher et al., 2008), solubil-
ity (Johnson et al., 2007) and for ADME (Absorption, Distribution, Metabolism, Excretion)
profiling (Munteanu et al., 2010; Gedeck and Lewis, 2008).
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Drug metabolism is an important topic in drug discovery, as the rate of metabolism
determines the duration and intensity of a drug’s pharmacologic action. Another reason is
that the compounds formed in the metabolic processes might be biologically active them-
selves, so called reactive metabolites. It is therefore crucial to understand how drugs are
processed by the body in order to excrete them.

One approach is to predict which sites in a molecule are likely to be where the body
starts to modify the compound, so called site-of-metabolism (SOM) (Rydberg et al., 2010;
Carlsson et al., 2010). These methods in many cases build on a knowledge base of es-
tablished biotransformations and use data mining approaches to predict SOM for a query
compound. To define reaction centers in reactions one can use Maximum Common Sub-
structure (MCS) searches like in the MetaPrint2D method (Carlsson et al., 2010), or using
SMIRKS (DAYLIGHT, 2008). In both cases, differences between the query molecule and
the metabolite are used to define type of reaction and reaction centers.

Most contemporary approaches in QSAR do not report valid confidence measures or
class probabilities. In some cases, confidence in predictions is very valuable, where in
other cases knowing the probabilities of e.g. the predicted classes is desirable. Conformal
Prediction is a statistical learning theory proposed by Vovk et. al (Vovk et al., 2005), where
predictions incorporate a valid indication of their own accuracy and reliability. Conformal
Prediction has recently been introduced in the QSAR field (Norinder et al., 2014) offering a
compelling alternative to the concept of applicability domain. However, studies on the use of
probabilistic prediction with e.g. Venn-ABERS Predictors have so far not been extensively
described.

The aim of this paper is to evaluate the applicability of Cross Venn-ABERS Predictors
(CVAPs) within the field of predictive metabolism. To the best of our knowledge there does
not exist any previous studies using CVAPs on SOM predictions, making it an interesting
case study. If CVAP can produce well-calibrated results, it would be useful in the drug
discovery process, making it possible to make more informed decisions and weigh decision
making based in found risks and costs. One of the potential use cases would be SOM of po-
tential drug candidates, were a predictor can be trained for each biotransformation type of
interest and the probability for each transformation can be found. Thus giving the possibil-
ity to find candidates that might be degraded too rapidly or result in e.g. toxic metabolites,
and potentially avoid further expensive in vitro or in vivo test of poor candidates.

2. Methods

2.1. Data

Data was extracted from the 2005 version of MDL Metabolite Database (Elsevier MDL
(2005)), containing 73599 chemical reactions describing biotransformations. Each record
contains an experimentally determined biotransformation, mapping a substrate to a product
(or compound to metabolite). Experiments are performed in different experimental settings,
i.e. in rabbit, mouse, in vitro or human. A single substrate can be tested in several settings
and have multiple resulting products, possibly due to different experimental settings.

Preprocessing The preprocessing needed prior to training and evaluation of the CVAPs
is outlined in Figure 1, with reaction types defined using SMIRKS.
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Figure 1: The workflow for preprocessing of data. Workflow A (left) was performed once
for the complete dataset, calculating the Maximum Common Substructure (MCS)
for each biotransformation. MCS performs an exhaustive search for finding the
atom-atom mapping between two chemical compounds. This calculation is com-
putationally very costly but it is only required to be performed once. Workflow B
(right) was performed once for every SMIRKS of interest and results in a numer-
ical dataset that can be used for training and validating the CVAPs. SMIRKS
filtering was performed using the pseudo code in Algorithm 1. The SMIRKS
dataset was then converted to a numerical dataset by using signatures descrip-
tors (Faulon et al., 2003). There is also a filtration needed as some substrates
are present in multiple biotransformations, the filtration is performed by keeping
response value 1 in case there is any record having a response value of 1, otherwise
the response value 0 is kept.
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SMIRKS is a language used for describing chemical reaction transformations in a generic
way (DAYLIGHT, 2008). The basic syntactics of SMIRKS is written on the form substrate

>> product, where substrate and product are generic representations of the reaction
centers of a substrate and product (in our case a compound and its metabolite). As an
illustrative example, see Figure 2, where two biotransformations are matched against the
SMIRKS [$([c:1])]>>[c:1][OH], which express a hydroxylation of an aromatic carbon
atom.

Figure 2: SMIRKS matching for two biotransformations A and B. In both transformations
the substrate part of the SMIRKS, $([c:1]), matches every carbon atom that
is aromatic, i.e. part of a ring structure, and they are highlighted in yellow.
Only transformation A also has a match in the product part of the SMIRKS,
[c:1][OH], representing an aromatic carbon atom covalently bound to a hy-
droxy group, atom highlighted in red. Biotransformation A thus has a complete
SMIRKS match, giving a response value of 1, whereas transformation B only
match in the substrate part, giving a response value of 0.

Processing was split up in two steps, step A was performed once for the complete
dataset and could then be reused for all later computations. Step B was then performed
once for each SMIRKS of interest. Step A involves the computationally demanding task
of finding the Maximum Common Substructure (MCS) for every biotransformation in the
original dataset, trying to map individual atoms in the substrate to the same preserved
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or altered atoms in the product. MCS was performed using the Isomorphism class in the
Chemistry Development Kit (CDK) version 1.5.13 (Steinbeck et al., 2003, 2006), using
algorithm CDKMCS.

Step B was performed once for every SMIRKS of interest (five chosen for this paper),
where the SMIRKS filtering task relies on the atom-atom mapping generated in the MCS
algorithm. The SMIRKS filtering is described in Algorithm 1 and results in a new dataset
only comprising the substrate molecules and the found response, which is either 0 (SMIRKS
not matching) or 1 (SMIRKS matching). The second task of step B was converting molecule
data into numerical data in LibSVM format, which was done by using signatures descrip-
tors (Faulon et al., 2003). This task also filtered the produced records so that every substrate
was only represented once in the final dataset. Filtration was done in a fashion so that if
there was any record having response 1 the final response was set to 1, otherwise the final
response was set to 0. The motivation behind this is that several biotransformations can
be possible for any given substrate, having evidence of another possible biotransformation
should not influence the prediction of the current SMIRKS.

Algorithm 1: SMIRKS filtering - converting a set of biotransformations into only sub-
strates which matches in the substrate part of the SMIRKS and their respective response
values

Function Filter(reactions, reactionType)
filteredResult← empty list
foreach reaction in reactions do

singleResult← FilterReaction(reaction, reactionType)
if singleResult != null then

filteredResult.append(singleResult)
end

end
return filteredResult

Function FilterReaction(reaction, reactionType)
substratePart← reactionType.getSubstratePart()
substrate← reaction.getSubstrate()
if substrate matches substratePart then

response← 0
if reaction matches reactionType then

response← 1
end
return (substrate, response)

end
else

return null

end

Five SMIRKS of interest were chosen and picked for analysis in this paper, see Table 1.
Four of these datasets were skewed towards a higher representation of class 0, except for
one which instead was skewed towards class 1 with a 4:1 ratio.
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Table 1: Overview of the data used within this paper. The datasets were predominantly
skewed towards class 0 except for the Aromatization dataset where only 25% of
the samples were part of class 0.

Dataset name SMIRKS Biotransf-
ormations

Class 0 Class 1

Alkyl hydroxylation [$([C:1])]>>[C:1][OH] 17793 12064 (68%) 5729 (32%)
Aromatic hydroxylation [$([c:1])]>>[c:1][OH] 14691 12476 (85%) 2215 (15%)
Carboxylation [$([CH3:1])]>>[C:1](=O)O 12580 8047 (64%) 4533 (36%)
Oxidation of tertiary amine [$([N;X3:1])]>>[N+:1][O-] 11040 10715 (97%) 325 (3%)
Aromatization [$([*;R;!a:1])]>>[a:1] 9518 2357 (25%) 7161 (75%)

2.2. Algorithms

The algorithms employed in this paper are based on the theory and ideas previously pub-
lished by Vovk et al. (2015). This section will contain the basics needed for grasping the
concepts and making this paper self-contained, mostly following the notations introduced in
the cited paper. First we introduce the concept of observations z = (x, y), each consisting
of an object x and a binary label y ∈ {0, 1}. The labels used throughout this paper are
0=“no SMIRKS match” (no reaction present) and 1=“SMIRKS match” (reaction present).

Venn Predictor The Venn-ABERS predictor used in this paper is a subclass of Venn
predictors. Venn predictors have the desired property of always producing well-calibrated
probability predictions (Vovk et al., 2015). By calibration we refer to the following property:

P {y = 1|ppred(x) = p} = p (1)

Informally, this means in the long term the relative frequency of objects with the desired
property among those with predicted probability p of having that property is indeed p. If
we limit ourselves to the binary classification case of the Venn-ABERS predictors used in
this paper, two probabilities are output for each test object; one of these two predicted
probabilities is the one that is calibrated, but which one it is depends on the test object.
While this might seem not helpful, in practice the two probabilities are close enough not
to affect the result. If they do differ, then this is diagnostic of inherent uncertainty in the
prediction.

It is often far more practical to deal with a point probability rather than multiprobabil-
ities or probability intervals. One principled way to merge the two probabilities p0 and p1 is
by calculating the combination that minimizes a chosen loss function. In the case of log loss,
this occurs for p = p1

1−p0+p1
. Formally, this point probability no longer enjoys the calibration

property of the multi probabilistic prediction; however, experimental evidence (Vovk et al.,
2015) suggests that the point predictions still exhibit high accuracy.

Inductive Venn-ABERS Predictor The Inductive Venn-ABERS Predictor (IVAP)
is inductive in the sense that a model or prediction rule can be built using a batch of
training observations and the model or prediction rule can be reused for predicting all test
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objects. IVAPs are based on an underlying scoring algorithm, which could be any standard
machine learning algorithm. In this paper we have used the Support Vector Machine (SVM)
implementation SVC in Scikit-learn (Pedregosa et al., 2011) using the Radial Basis Function
kernel. The steps needed to train an IVAP are outlined in Algorithm 2, where Dc denotes
the calibration set and Dp denotes the proper training set. The result of a trained IVAP is
both the trained underlying algorithm, which is trained on the proper training set, and two
arrays of numbers, scores s and true values y for all observations in the calibration set.

Algorithm 2: Training an IVAP

Input: D, the training dataset with l observations
Result: A trained IVAP

1 Split D into two mutually exclusive subsets, Dp and Dc, each with lp and lc observations
respectively and l = lp + lc.

2 Train the underlying scoring algorithm on all observations in Dp.
3 Predict all objects from Dc, giving scores s1, . . . , slc .
4 Save the scoring algorithm and the tuples (yi, si) for each calibration observation i, where
i = 1, . . . , lc.

The steps performed when predicting new objects using an IVAP are outlined in Algo-
rithm 31. In Line 3 and 4 isotonic regression is fitted to two series, each assuming either
of the two hypothetical labels of the new prediction object. This results in two prediction
values produced, p0 and p1, respectively. As previously declared, either p0 or p1 is the
true prediction value, but it is not possible to know which one. However, p0 and p1 satisfy
p0 < p1 and they can be considered as the lower and upper boundaries of a probability
interval. The authors of the original paper (Vovk et al., 2015) claim that p0 and p1 in
practice are close, a claim that was confirmed herein where the mean interval width was
ranging between 0.014 and 0.022 and the median was between 0.006 and 0.013 in the five
datasets.

Cross Venn-ABERS Predictor The Cross Venn-ABERS Predictor (CVAP) is built
up by combining the results from k IVAPs, where k is a definable parameter of the CVAP
algorithm. We used CVAP as described by Vovk et al. (2015), converting the k probability
intervals (p10, p

1
1), . . . , (p

k
0, p

k
1) generated by the IVAPs into a single probability prediction p.

The training procedure is as follows:

• Randomly split the training set into k folds.

• For each of the k IVAPs: use k − 1 folds as proper training set and the remaining
fold as calibration set. Shift the fold used for calibration set for each IVAP in such
way that each observation will be part of the calibration set once and in the proper
training set the k − 1 other times.

1. Algorithm 3 is computationally intensive because it requires computing two isotonic regressions on the
calibration set plus test completion (test object plus hypothetical labels) for every test object. Indeed
all those isotonic regressions operate on similar data sets; this fact can be exploited to drastically reduce
the computational cost of computing Inductive Venn-ABERS on the same calibration set for many test
objects (Vovk et al., 2015).
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Algorithm 3: Predict a new object using an IVAP

Input: (IVAP, x), A trained IVAP using Algorithm 2 and a new object x
Result: (p0, p1), lower and higher probability for x to be of class 1

1 Load scoring algorithm and the tuples (yi, si) for each object i in i = 1, . . . , lc of the
calibration set

2 Predict the score snew for object x using the scoring algorithm.
3 Fit isotonic regression to the series (s1, y1), . . . , (slc , ylc), (snew, 0), generating a function
f0(s).

4 Fit isotonic regression to the series (s1, y1), . . . , (slc , ylc), (snew, 1), generating a function
f1(s).

5 (p0, p1) := (f0(snew), f1(snew)).

Producing single probabilistic predictions follows these steps:

• For a new object x, predict the p0 and p1 values using each IVAP.

• Let GM(p1) stand for the geometric mean for the sequence of k p1 values given from
the IVAPs and GM(1− p0) stand for the geometric mean for the sequence of k (1− p0)
values. The probabilistic prediction is then p = GM(p1)/(GM(1− p0) + GM(p1)).

We also underline that the result from a CVAP does not have to be a precise probability
prediction, but instead combining k IVAPs could be performed in order to calculate more
accurate probability intervals, e.g. by calculating the mean or median value of the p0 and
p1 predictions. The CVAP would then not lose the desired validity guarantee of Venn
Predictors, but would on the other hand still produce imprecise probabilities. The interval
width of the probability predictions from a Venn-ABERS predictor give a measure of the
uncertainty in the prediction, it is thus a good idea to take it into account even if precise
probability prediction are calculated and used.

3. Results

In the evaluation of the CVAPs an outer k-fold cross validation was performed on top of the
inner k folds of the CVAPs. Each record was thus part of the test set once and part of the
training set the remaining k − 1 times, the results presented hereafter are the aggregation
of all k test sets. k = 10 was used in both the inner loop, i.e. training 10 IVAPs per CVAP,
and outer loop, i.e. training 10 CVAPs per dataset. Consequently the total number of
trained IVAPs was 100 for each dataset. The folds were picked randomly at both levels,
not considering the class label of the records.

Parameter height used for computing signatures descriptors in the preprocessing step
was set to 1 to 3, resulting in 112710 features. SVM parameters C was set to 50 and γ
was set to 0.002, all according to previously found optimal default values (Alvarsson et al.,
2014).

The performance of the CVAPs was evaluated by producing calibration plots, Figure 3,
which plots the observed probabilities, frequency of true labels being of class 1, against the
expected probabilities, the predicted probability from the CVAPs. For a perfectly calibrated
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predictor one would expect the Pearson’s correlation coefficient to be 1, and the slope to be
1. Figure 3 shows the Pearson’s ρ to be between 0.967 to 0.997 and that most of the plots
produce one-to-one correlation between expected and observed probability. Some of the
datasets show more jagged curves, which seems to be linked to the number of test examples
of a given expected probability (the red line). The plot for dataset Oxidation of tertiary
amine, with only 3% of the examples being of class 1 (Table 1), stops around 0.8, meaning
that it did not predict any test example to be of class 1 with a higher probability than 0.8.

Figure 3: Calibration plots for all datasets, showing how well-calibrated the predictions are
compared to expected outcome. The plots have been generated by picking 100
points linearly distributed between 0 and 1, forming the expected probability on the
x-axis. Observations predicted with a probability p of ±0.05 from each expected
probability point are used when calculating the observed probability (blue dots)
and occurrence (red line). The observed probability is the fraction of observations
that belong to class 1. ρ indicates the Pearson’s correlation coefficient.

Another important factor in the evaluation of the models is the width of the predicted
probability intervals (of the IVAPs), right column in Figure 4. Width of the probability
interval give a measure of the uncertainty of the predictions, were a small interval width
means that the prediction is well fitted and there is a smaller uncertainty in the prediction.
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The mean interval width was between 0.014 and 0.022 and the median was between 0.006
and 0.013 in the five datasets, the histogram also shows that almost all intervals are less
than 0.1.

Figure 4, left column, shows the distribution of the predicted probabilities. The desired
result is that predictions are either close to 0 or close to 1, giving informative results that
indicate either of the two classes. Only the last plot has two clear peaks close to 0 and
1 and producing ‘optimal results’. The forth plot has a clear peak close to 0, mostly
indicative of the skewed class distribution, actually only predicting a probability over 0.5
for 77 molecules, which should be compared to the 325 molecules known to belong to class
1. Clearly this dataset did not perform well and a different sampling strategy should be
tested to try to improve the results. The Carboxylation dataset also have a histogram that
approaches having two peaks, but has a lot of molecules predicted somewhere in the middle.
The two first plots also looks affected by the skewed class distribution, even though not as
extreme as in the forth plot, producing undesired distribution of the predicted probabilities.

Further evaluation was performed by calculating the log loss and area under the receiver
operating characteristic curve (AUC), Table 2. Log loss is calculated using:

log loss = − 1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)] (2)

To help in the interpretation of the log loss value, we can observe that a perfect prob-
abilistic predictor would of course have log loss equal to 0, where a predictor that always
predicted probability 0.5 would result in log loss of 0.693. Log loss penalizes harshly extreme
predictions that turn out to be wrong, as log(p)→ −∞ as p→ 0+. Difficult datasets that
are hard to model are penalized, which can be seen when combining the histogram plots
in Figure 4 and the log loss values in Table 2. For the three largest dataset the histogram
shows many samples that are predicted in the “gray zone” and not producing predictions
close to either 0 or 1. The log loss value for these datasets was also significantly higher than
the two other datasets. The worst dataset, considering log loss, was the biggest dataset,
which was next to best considering the Pearson’s ρ and visual interpretation of the calibra-
tion plots in Figure 3. These measurements are thus complementary in the evaluation of
the predictions.

AUC numbers ranging from 0.753 to 0.964 indicate that the predictions are good, al-
though we emphasize that well-calibrated predictions is a more important feature and AUC
measures are mostly included here due to being the de facto standard evaluation measure
for classification predictors.

4. Conclusion

In this paper we have produced results that show that the CVAP framework works well
for SOM predictions. The results are promising, showing well-calibrated results for most
of the datasets, only producing poor results for the extremely skewed dataset were only
3% of data belonged to class 1. We hypothesize that the poorer result mostly depend
upon study design and the dataset to be more difficult because of the imbalance in class
distribution. Incorporation of stratified fold-splits, over sampling of the minority class or
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Figure 4: Histogram plots showing the distribution of the predicted values (left). The
desired result is clear predictions, close to either 0 or 1, thus indicating high
probability for one of either of the classes. The last dataset produced very clear
predictions were almost all probabilities was predicted close to 0 or 1. Also the
third dataset produced a higher frequency of probabilities close to 0 or 1, even
though there is a background of predictions all over the spectra. Histogram plots
over probability interval width (right) showing that most intervals are small,
indicating that there is high certainty in most of the predictions.
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Table 2: The log loss computed for each of the datasets using the log loss function in
Scikit-learn version 0.18.1 (Pedregosa et al., 2011) and area under the receiver
operating characteristic curve (AUC).

Dataset name Log Loss AUC

Alkyl hydroxylation 0.538 0.753
Aromatic hydroxylation 0.348 0.793
Carboxylation 0.410 0.881
Oxidation of tertiary amine 0.093 0.904
Aromatization 0.173 0.964

boosting might help improving the predictive performance in this case. The interval widths
and AUC measures also indicate that the models perform well on the given dataset, whereas
the distribution of the predictions in left column of Figure 4 tells us that not all models are
as informative as desired, a result likely more depending on the datasets than the CVAP
framework itself. Producing probability based predictions is a desired property within drug
discovery applications and machine learning in general, making CVAP a framework worth
exploring further.
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