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Abstract

We present an evaluation of the impact of transductive, inductive, aggregated and cross
inductive mondrian conformal prediction on the validity and efficiency of predictions. The
aim of the study is to give guidance to which methods perform best where there is limited
data. The evaluation has been made on a large public dataset of Ames mutagenicity data,
relevant for drug discovery, a spam dataset and a diverse set of drug discovery datasets.
When considering predictions only, the transductive conformal predictor performs the best
in terms of validity. If however more information is required, for example interpretation
of a prediction, then any of the methods that calculate an averaged p-value should be
considered.
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1. Introduction

In drug discovery a huge amount of virtual compounds, not yet synthesized, are generated.
Some of the virtual compounds are selected for synthesis and some of those compounds
are later tested in cell based assays to understand biological activity and alleviate safety
concerns. The biological endpoint for these assays varies from ion-channel and GPCR
inhibition to mutagenicity assessed through the Ames reverse mutation test. The bottom
line is that these tests are used to screen out compounds that have undesirable properties
for novel medicines.

The cost of synthesizing and testing compounds is high and in an effort to reduce
those costs machine-learning models are used to assess the compounds before synthesis.
In drug discovery this type of models is referred to as Quantitative Structure-Activity
Relationship (QSAR) models. The typical use case is that a project chemist has a set of
compounds in a graphical user interface (GUI) and submits the compounds to be predicted
by a set of QSAR models. When the computation is finished the GUI is updated with
the results. Since this is an interactive process there is a limitation to the time a user
can be expected to wait for the results. Traditionally, just giving a prediction from any
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machine learning model is fast but without any estimate of the associated confidence in
the particular prediction. One way to get an associated confidence is to use conformal
prediction (Vovk et al., 2005; Shafer and Vovk, 2008). The strongest theoretical guarantees
exist for transductive conformal prediction which is assumed to be as close to exact validity
as possible but at a high computational cost in terms of prediction time. Between the
simple machine-learning prediction case and the transductive conformal prediction there
is inductive conformal prediction of different flavours, including aggregated conformal and
cross conformal prediction. There is a need to analyze the efficiency of these methods both
with respect to the quality of the predictions, defined by validity and efficiency, and with
respect to the time to prediction to better understand the trade-offs between these two
aspects.

Conformal prediction (Vovk et al., 2005; Shafer and Vovk, 2008) is a method that use
existing data to determine valid prediction regions for new examples. Thus instead of giv-
ing a point estimate, a conformal prediction model gives a prediction region that contains
the true value with probability equal to or higher than a predefined level of confidence.
Such a prediction region can be obtained under the assumption that the observed data is
exchangeable (Vovk et al., 2005). Conformal prediction relies on a nonconformity mea-
sure that describes how different each example looks compared to the other examples. By
comparing the nonconformity measure of the predicted example with the ordered noncon-
formity measures of the known examples it is possible to obtain a p-value for each possible
label. A conformal predictor can then report the results in two ways, either predicting the
label of the largest p-value where the largest p-value is the credibility of the prediction and
one minus the second largest p-value is the confidence, describing how unlikely it is that
the prediction should contain another label. The other option is to give a prediction given
a user defined level of significance. In that case the prediction will be the set of labels
with a p-value larger than the significance. For clarity it should be noted that p-values
can be more difficult to interpret than probabilities, and one should consider using Venn
predictors (Vovk et al., 2005) when the latter are desired.

To build an ICP the training data is split into a proper training set, used to build a
model, and a calibration set. The calibration set is then used to compute the p-value for
each label by using the nonconformity measure. For this purpose, consider the prediction
setting where training examples (z1, .. ., 2;), where z; is composed of an object z; of arbitrary
description and a label y; that could be either 0 or 1. The problem is to predict the set
of labels, I'¢, of a new object x,, when a confidence, 1 — € is predefined. The training
data has been randomly split in to a proper training set (z1, ..., zy,) and a calibration set
(Zm+1, - - -, 21) of size n. The predicted set of labels of an ICP is,

I(z1,...,20) = {Y €[0,1] : py > €},
where
Hi=m+1,....l|a; < a¥}
- [l—m+1
The purpose of this study is to evaluate Inductive Conformal Prediction (ICP), Simpli-
fied Aggregated Conformal Prediction (SACP), Aggregated Conformal Prediction (ACP),

Cross Conformal Prediction (CCP) and Transductive Conformal Prediction (TCP) with
respect to computational effort, validity and efficiency. The study focuses on the boundary
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of predictive ability and computational effort for inductive methods versus a transductive
method where available data is limited. The setup of the study is made so that the only
difference between the various conformal predictors will be in how they use the training
data. In every other aspect they will use the same algorithms and datasets when evaluated.
Both the ACP and CCP are based on the ICP, but instead of only making one selection for
proper training and calibration set, sampling of the available data is applied. For CCP the
training set is split into k folds and then a model is built for each fold using one fold at a
time as a calibration set and the reminder as proper training set. In the ACP, a subset of
the training data is randomly sampled, without replacement, from the training set to obtain
a calibration set. The rest of the training data is used for proper training. The procedure
is repeated k times. Both CCP and ACP then averages the outcomes from the k p-values
for each label. The SACP is simplified in the sense that it uses a lower number of models
to average p-values than the ACP.

The remainder of this paper is organized as follows. In the methods section we present
the study procedure and the parameters that have been investigated. Next, we show results
when the procedure is applied to two different datasets. In the last section we conclude the

paper.

2. Method

We propose to compare different flavors of conformal prediction. From a prediction service
point of view the wall clock time to prediction is of high importance, but it is equally
important that the predictions obtained are as accurate as possible. The best model will
be the one that deviates the least from exact validity and has high efficiency. The deviation
from exact validity is measured as the Euclidean norm of the difference of the observed
error and the expected error for a given set of predefined significance levels. To measure
efficiency, the fuzziness or observed fuzziness (Vovk et al., 2014) of the predictions will be
calculated. Fuzziness is defined as the sum of all p-values except the largest p-value for
the predicted objects. In this case the true label of a predicted object does not need to
be known. When the true label is known it is possible to calculate the observed fuzziness
which is the sum of all p-values for the incorrect class labels. These measures will also be
compared to a qualitative estimate of the computational effort for training and testing.
The evaluation of conformal predictors have been limited to Mondrian conformal predic-
tors using support vector machines with a radial basis function kernel as described in Eklund
et al. (2013). The Mondrian taxonomy was based on the individual labels, thus ensuring
class specific validity. Furthermore, scikit-learn (Pedregosa et al., 2011) was used to im-
plement the Mondrian conformal predictor where the nonconformity measures were defined
as the decision function values of the C-SVC algorithm. Based on this setup five different
flavors of Mondrian conformal predictors were evaluated namely TCP, ICP, SACP, ACP
and CCP. The SACP, ACP and CCP are built on ICP but use averaging of results from
multiple ICPs for each prediction, in this case 10 models were used, for ACP and CCP,
and the average p-values were reported for both ACP and CCP. The difference between the
two is that the ACP uses stratified random sampling to obtain the calibration set whereas
CCP uses a 10 fold cross validation approach. Running the ACP in this fashion leads to
a computational cost equivalent to the cost of running the CCP. The simplified version of
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ACP, SACP, averages p-values based on two models in the same fashion as ACP by using
the same calibration set and proper training set sizes for each model as both the ACP and
the CCP. Thus, the SACP has a training and prediction computational cost which is five
times smaller than for the ACP or the CCP.

Given a dataset D, stratified random sampling without replacement was used to draw
a subset of 3000 examples from D which in turn was split into a training and a test set,
stratified sampling was used here as well and the test set equated to 500 of the examples in
the subset. Hyper-parameters for the SVM were preset, C' = 10.0 and v = 1073.

To evaluate the selected conformal predictors based on validity and efficiency eight
datasets were selected, one that describes activities (labels) of compounds (objects) in the
Ames mutagenicity test (Ames et al., 1973), the Spambase dataset (Bache and Lichman.)
and an additional six datasets taken from the ExCAPE DB (Sun et al., 2017). All datasets
were trained as outlined above. The procedure of training was repeated a large number of
times and both validity and efficiency, for all the different methods, were evaluated each time
using the alternative one-tail test of Wilcoxon signed-rank test in R (R Core Team, 2017)
to test whether one method would produce either larger or smaller values than another.
The tests were carried out pairwise with respect to the methods for validity and efficiency,
respectively. Significance was called at o = 0.01.

3. Results

The numerical experiments were all conducted on a standard Linux machine with an Intel
Core 17 processor running at 2.5 GHz for the results in the following two subsections. The
results in the last subsection were generated on Amazon EC2 using a c4.2xlarge. The
execution times for the TCP were much longer than for all the other ICP based predictors.
For all datasets a prediction with the TCP would take around six seconds, on the standard
Linux machine, whereas for all other methods it would take less than a tenth of a second,
disregarding the training time for the ICP based predictions.

3.1. Experimental results on Ames data

For Ames data there is a well established link between subgraphs of compounds and mu-
tagenicity. For that reason, the object used when applying the proposed method to Ames
data is the signature (Faulon and Churchwell, 2003; Faulon et al., 2003) descriptor. The
signature descriptor describes a compound by a set of strings and corresponding counts
where the strings represent subgraphs of the compound, centered at an atom (vertex) and
expanded to include all neighbor vertexes h bonds (edges) away from the centre vertex.
Each string is a canonical representation of a subgraph written as a directed acyclic graph.
Signature descriptors are calculated for all atoms in a compound. The signature descriptors
used in this work were generated by the Chemistry Development Kit (Steinbeck et al., 2003)
and the signatures were limited to h € [1,3] thus one to three bonds away from the centre
atom.

The Ames data used here is described in Hansen et al. (2009). The set consist of 6512
objects with a total number of 31831 features. The dataset has two labels, mutagen and
non-mutagen, describing the ability of the compound to induce reverse mutation in the
E-coli based cell lines.
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The results of the Wilcoxon signed-rank test are shown in Tables 1 and 2, based on 100

repeated runs.

Method | ICP SACP ACP CCP TCP
ICP - 6.4e-03 | 2.8e-05 | 5.6e-07 | 3.8e-11
SACP 9.9e-01 - 3.2e-02 | 8.6e-04 | 1.6e-05
ACP 1.0 9.7e-01 - 3.4e-02 | 2.2e-05
CCP 1.0 1.0 9.7e-01 - 3.7e-04
TCP 1.0 1.0 1.0 1.0 -

Table 1: Wilcoxon signed-rank test p-values for two alternative hypotheses concerning va-
lidity for the different methods applied to the Ames data. The p-values are shown
for the methods in the left column having greater validity values than the methods

in the first row. Bold face indicates significant results.

Method ICP SACP ACP CCP TCP
ICP - 3.6e-01 | 4.2e-01 | 4.9e-01 1.0
SACP 6.4e-01 - 6.1e-01 | 6.9e-01 1.0
ACP 0.8e-01 | 3.9e-01 - 6.3e-01 1.0
CCP 5.1e-01 | 3.1e-01 | 3.7e-01 - 1.0
TCP 9.2e-14 | 8.5e-14 | 8.5e-14 | 8.5e-14 -

Table 2: Wilcoxon signed-rank test p-values for two alternative hypotheses concerning fuzzi-
ness applied to the Ames dataset. The p-values are shown for the methods in the
left column having greater fuzziness values than the methods in the first row. Bold
face indicates significant results.

3.2. Experimental results on Spambase data

This dataset was used with the objects and labels provided at the UCI website. The classifi-
cation of spam e-mails is diverse, with examples from advertisements and chain letters. The
collection of data comes from personal e-mails and postmasters reporting individual e-mails
as being spam. The non-spam e-mails were retrieved from work and personal e-mails. The
results for comparing the different methods on Spambase data, by applying the Wilcoxon
signed-rank test, are shown in Tables 3 and 4, based on 100 repeated runs.
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Method | ICP | SACP ACP CCP TCP
ICP - 4.6e-06 | 2.8e-09 | 6.0e-09 | 5.2e-14
SACP 1.0 - 1.6e-03 | 1.8e-02 | 3.7e-08
ACP 1.0 1.0 - 8.0e-01 | 8.3e-06
CCP 1.0 | 9.8e-01 | 2.1e-01 - 4.0e-07
TCP 1.0 1.0 1.0 1.0 -

Table 3: Wilcoxon signed-rank test p-values for two alternative hypotheses concerning va-
lidity for the different methods applied to the Spambase dataset. The p-values are
shown for the methods in the left column having greater validity values than the
methods in the first row. Bold face indicates significant results.

Method ICP SACP ACP CCP TCP
ICP - 9.9e-01 1.0 1.0 1.0
SACP 1.5e-02 - 9.4e-01 9.6e-01 1.0
ACP 4.8e-04 5.7e-02 - 5.8e-01 1.0
CCP 1.8e-04 3.6e-02 4.2e-01 - 1.0
TCP <22e—-16 | <22e—-16 | <22e—-16 | <2.2e—-16 -

Table 4: Wilcoxon signed-rank test p-values for two alternative hypotheses concerning fuzzi-
ness applied to the Spambase dataset. The p-values are shown for the methods in
the left column having greater fuzziness values than the methods in the first row.
Bold face indicates significant results.

3.3. Experimental results on a diverse set of data

These datasets were collected from the ExCAPE DB (Sun et al., 2017). All of them are
representing binary classification with at least more than 3000 examples. Most of these
datasets are highly imbalanced with respect to the number of examples of each class. We
have chosen a subset of datasets where the imbalance is more moderate. A short description
of the datasets is shown in Table 5. The results for comparing the different methods on

Entrez ID | Nr of examples | Approx. nr of features
154 344186 6.8e+05
367 6739 5.0e+05
1576 19324 2.6e+05
1588 5767 2.1e+05
2908 6766 6.8e+05
3091 10303 6.8e+05

Table 5: A summary of some of the characteristics of the ExCAPE DB data.

these datasets by applying the Wilcoxon signed-rank test are shown in Tables 6, 7 and 8,
based on 40 repeated runs.
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Method [ ICP | SACP | ACP | CCP | TCP |
Spambase
ICP - 8.41e-02 1.45e-01 8.41e-02 | 2.39e-04
SACP 9.17e-01 - 6.89e-01 | 5.44e-01 | 3.19e-02
ACP 8.57e-01 3.14e-01 - 4.34e-01 | 9.52e-03
CCP 9.17e-01 | 4.60e-01 | 5.70e-01 - 2.38e-02
TCP 1.00 9.69¢-01 | 9.91e-01 | 9.77e-01 -
Ames
ICP - 7.27e-03 | 2.30e-04 | 5.44e-04 | 2.68e-06
SACP 9.93e-01 - 1.40e-01 | 2.55e-01 | 3.26e-02
ACP 1.00 8.62¢-01 - 6.37e-01 | 4.07e-01
CCP 9.99e-01 | 7.48e-01 | 3.66e-01 - 1.25e-01
TCP 1.00 9.68e-01 | 5.96e-01 | 8.77e-01 -
154
ICP - 2.92e-02 | 9.03e-03 | 1.17e-02 | 3.75e-07
SACP 9.71e-01 - 2.32e-01 | 3.60e-01 | 1.06e-03
ACP 9.91e-01 7.71e-01 - 6.07e-01 | 2.87e-03
CCP 9.89¢e-01 | 6.44e-01 | 3.96e-01 - 5.43e-04
TCP 1.00 9.99e-01 | 9.97e-01 | 9.99e-01 -
367
ICP - 1.75e-02 | 6.18e-03 | 9.53e-04 | 8.46e-01
SACP 9.83e-01 - 5.08e-01 | 4.26e-01 | 9.98e-01
ACP 9.94e-01 | 4.96e-01 - 3.07e-01 1.00
CCP 9.99¢-01 | 5.78e-01 | 6.97e-01 - 1.00
TCP 1.56e-01 | 1.74e-03 | 8.58e-05 | 1.09e-06 -
1576
ICP - 2.12e-01 1.51e-02 | 2.17e-02 | 3.28e-01
SACP 7.91e-01 - 5.47e-02 | 5.69e-02 | 5.89e-01
ACP 9.85e-01 | 9.46e-01 - 6.11e-01 | 9.88e-01
CCP 9.79e-01 | 9.44e-01 | 3.93e-01 - 9.72e-01
TCP 6.75e-01 | 4.15e-01 1.27e-02 | 2.85e-02 -
1588
ICP - 3.63e-04 | 2.90e-04 | 9.55e-05 | 5.91e-07
SACP 1.00 - 4.75e-01 | 4.26e-01 | 3.49e-01
ACP 1.00 5.29e-01 - 5.13e-01 | 3.74e-01
CCP 1.00 5.78e-01 | 4.90e-01 - 4.30e-01
TCP 1.00 6.54e-01 | 6.29e-01 | 5.74e-01 -
2908
ICP - 2.38e-03 | 2.54e-03 | 5.84e-04 | 2.72e-01
SACP 9.98e-01 - 5.17e-01 | 1.88e-01 1.00
ACP 9.98e-01 | 4.87e-01 - 2.38e-01 | 9.99e-01
CCP 9.99e-01 | 8.15e-01 | 7.65e-01 - 1.00
TCP 7.32e-01 | 3.37e-04 | 1.02e-03 | 4.08e-05 -
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3091
ICP - 2.02e-02 | 2.10e-03 | 3.40e-02 1.00
SACP 9.80e-01 - 2.17e-01 | 5.74e-01 1.00
ACP 9.98e-01 | 7.85e-01 - 8.84e-01 1.00
CCP 9.67e-01 | 4.30e-01 1.18e-01 - 1.00
TCP 1.58e-06 | 1.31e-13 | 2.36e-14 | 1.05e-13 -

Table 6: Wilcoxon signed-rank test p-values for two alterna-
tive hypotheses concerning validity for the different methods
applied to all datasets. The p-values are shown for the meth-
ods in the left column having greater validity values than
the methods in the first row. Bold face indicates significant
results.

| Method | ICP | SACP | ACP | CCP [ TCP |
Spambase
ICP - 4.68e-01 | 8.44e-01 | 8.36e-01 | 1.00
SACP 5.36e-01 - 9.37e-01 | 9.36e-01 | 1.00
ACP 1.58e-01 | 6.39¢e-02 - 3.59¢-01 | 1.00
CCP 1.67e-01 6.48e-02 6.44e-01 - 1.00
TCP 9.30e-24 | 9.30e-24 | 9.30e-24 | 7.17e-15 -
Ames
ICP - 8.97¢-01 | 9.88e-01 | 9.73e-01 | 1.00
SACP 1.05e-01 - 9.66e-01 | 8.10e-01 | 1.00
ACP 1.24e-02 | 3.52e-02 - 8.56e-02 | 1.00
CCP 2.79e-02 1.93e-01 9.16e-01 - 1.00
TCP 1.79e-16 | 4.20e-18 | 1.49e-20 | 1.77e-22 -
154
ICP - 9.43e-01 | 9.98e-01 1.00 1.00
SACP 5.80e-02 - 7.39e-01 1.00 1.00
ACP 2.14e-03 | 2.64e-01 - 1.00 1.00
CCP 7.78e-05 | 8.48e-08 | 9.41e-08 - 1.00
TCP 7.69e-15 | 7.17e-15 | 7.17e-15 | 9.30e-24 -
367
ICP - 7.01e-02 | 4.56e-01 | 3.18¢-01 | 1.00
SACP 9.31e-01 - 9.74e-01 | 9.61e-01 | 1.00
ACP 5.48e-01 | 2.67e-02 - 3.74e-01 | 1.00
CCP 6.86e-01 | 3.95e-02 | 6.29e-01 - 1.00
TCP 3.16e-11 | 4.19e-20 | 1.94e-20 | 3.72e-23 -
1576
ICP - 9.64e-01 | 9.45e-01 | 9.90e-01 | 1.00
SACP 3.71e-02 - 3.39e-01 | 5.63e-01 | 1.00
ACP 5.58¢-02 | 6.65e-01 - 8.02¢-01 | 1.00
CCP 1.06e-02 4.41e-01 2.01e-01 - 1.00
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TCP ‘ 1.69e-17 | 3.26e-20 | 4.73e-21 | 8.51e-21 -
1588
ICP - 9.67e-01 | 9.00e-01 | 9.70e-01 | 1.00
SACP 3.33e-02 - 7.45e-02 | 1.16e-01 | 1.00
ACP 1.02e-01 | 9.27e-01 - 7.80e-01 | 1.00
CCP 3.05e-02 | 8.86e-01 | 2.23e-01 - 1.00
TCP 2.38e-12 | 3.26e-20 | 9.30e-24 | 9.30e-24 -
2908
ICP - 9.57e-01 | 9.71e-01 | 9.69¢-01 | 1.00
SACP 4.38e-02 - 4.34e-01 | 3.89e-01 | 1.00
ACP 2.98e-02 | 5.70e-01 - 5.06e-01 | 1.00
CCP 3.16e-02 | 6.15e-01 | 4.98e-01 - 1.00
TCP 1.13e-15 | 2.35e-17 | 9.30e-24 | 9.30e-24 -
3091
ICP - 9.92e-01 | 9.86e-01 | 9.97e-01 | 1.00
SACP 8.33e-03 - 2.88e-01 | 4.64e-01 | 1.00
ACP 1.40e-02 | 7.16e-01 - 6.68e-01 | 1.00
CCP 3.05e-03 | 5.40e-01 | 3.35e-01 - 1.00
TCP 4.08e-19 | 1.77e-22 | 9.30e-24 | 9.30e-24 -

Table 7: Wilcoxon signed-rank test p-values for two alterna-
tive hypotheses concerning fuzziness for the different methods
applied to all datasets. The p-values are shown for the meth-
ods in the left column having greater validity values than
the methods in the first row. Bold face indicates significant

results.
| Method | ICP | SACP | ACP | CCP [ TCP |
Spambase

ICP - 8.12e-02 | 2.72e-01 1.73e-01 | 1.00

SACP 9.20e-01 - 8.07e-01 | 6.99¢-01 | 1.00

ACP 7.32e-01 1.96e-01 - 2.17e-01 | 1.00

CCP 8.30e-01 | 3.04e-01 | 7.85e-01 - 1.00

TCP 2.77e-17 | 1.13e-20 | 4.19e-22 | 9.02e-22 -
Ames

ICP - 6.47e-01 | 8.65e-01 | 7.56e-01 | 1.00

SACP 3.56e-01 - 7.92e-01 | 6.18e-01 | 1.00

ACP 1.37e-01 | 2.11e-01 - 2.58e-01 | 1.00

CCP 2.47e-01 | 3.85e-01 | 7.45e-01 - 1.00

TCP 2.22e-11 | 5.12e-12 | 2.25e-09 | 7.92e-13 -
154

ICP - 9.56e-01 | 9.98e-01 1.00 1.00

SACP 4.47e-02 - 7.53e-01 1.00 1.00

ACP 2.04e-03 | 2.50e-01 - 1.00 1.00




CARLSSON BENDTSEN AHLBERG

CCP 7.63e-05 | 1.12e-08 | 2.05e-08 - 1.00
TCP 8.28e-15 | 9.30e-24 | 9.30e-24 | 9.30e-24 -
367
ICP - 4.57e-02 | 2.53e-01 1.96e-01 | 1.00
SACP 9.55e-01 - 9.49e-01 | 9.08e-01 | 1.00
ACP 7.50e-01 | 5.16e-02 - 3.35e-01 | 1.00
CCP 8.07e-01 | 9.34e-02 | 6.68e-01 - 1.00
TCP 2.75e-09 | 2.00e-18 | 1.09e-19 | 2.53e-21 -
1576
ICP - 5.71e-01 | 5.32e-01 | 5.93e-01 | 1.00
SACP 4.33e-01 - 5.5%e-01 | 6.86e-01 | 1.00
ACP 4.71e-01 | 4.45e-01 - 5.89e-01 | 1.00
CCP 4.11e-01 | 3.17e-01 | 4.15e-01 - 1.00
TCP 8.97e-12 | 9.15e-11 | 3.35e-14 | 4.23e-14 -
1588
ICP - 9.67e-01 | 8.30e-01 | 9.35e-01 | 1.00
SACP 3.33e-02 - 8.56e-02 | 1.47e-01 | 1.00
ACP 1.73e-01 | 9.16e-01 - 7.80e-01 | 1.00
CCP 6.63e-02 | 8.55e-01 | 2.23e-01 - 1.00
TCP 3.85e-12 | 7.55e-19 | 4.19e-22 | 1.86e-23 -
2908
ICP - 9.26e-01 | 8.78e-01 | 8.42e-01 | 1.00
SACP 7.55e-02 - 2.94e-01 | 2.35e-01 | 1.00
ACP 1.24e-01 | 7.09e-01 - 3.82e-01 | 1.00
CCP 1.61e-01 | 7.68e-01 | 6.22e-01 - 1.00
TCP 1.60e-12 | 3.83e-17 | 2.84e-14 | 1.13e-20 -
3091
ICP - 8.17e-01 | 4.68e-01 | 5.44e-01 | 1.00
SACP 1.85e-01 - 8.26e-02 | 1.02e-01 | 1.00
ACP 5.36e-01 | 9.19e-01 - 5.78e-01 | 1.00
CCP 4.60e-01 | 9.00e-01 | 4.26e-01 - 1.00
TCP 1.31e-12 | 2.78e-16 | 1.13e-20 | 3.47e-21 -

Table 8: Wilcoxon signed-rank test p-values for two alterna-
tive hypotheses concerning observed fuzziness for the differ-
ent methods applied to all datasets. The p-values are shown
for the methods in the left column having greater validity
values than the methods in the first row. Bold face indicates

significant results.

4. Discussion

In this study five flavors of conformal prediction have been studied with respect to validity,
fuzziness and observed fuzziness. From the evaluation based on both datasets it is clear
that the validity of the TCP is better than all the ICP based methods. However, there
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is a significant difference in validity between all ICP based methods and the ICP method
itself. One reason may be that the datasets are relatively small and the information used
for calibration and nonconformity measures is more sensitive to the random partition for
the ICP which is reduced for the other ICP based methods. In contrast, all ICP based
methods, as well as ICP alone, are more efficient than the TCP. The possible explanation
for this is that when validity is compromised this results in smaller prediction sets. However,
sacrificing validity in terms of improving efficiency is not of interest when making predictions
within drug discovery. It is important to have a predictor that behaves as outlined by the
theory.

Given the size of the datasets studied and prediction times, TCP is the preferred method
if we would only consider predictions. But, when interpreting predictions, by for example
calculating a gradient (Ahlberg et al., 2015), the number of actual predictions increase with
at least the number of non-zero descriptors which makes it prohibitive to use a TCP. Recall,
that for the dataset sizes studied here, a single prediction using TCP will take around six
seconds. In this case all the methods averaging p-values of an ICP become viable options.

Furthermore, the use of different types of ICPs that combine p-values of a number of
individual ICPs is of great interest. These methods could be of potential interest in both
a distributed data environment as well as in making predictions on large datasets in a
parallel computing environment. We remark that the Spambase dataset is a not a dataset
of relevance for drug discovery. It was added as a reference so that this study could be
extended to other datasets by others of interest to this type of methods.
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