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Abstract

Conformal prediction is a learning framework that produces models that associate with
each of their predictions a measure of statistically valid confidence. These models are typi-
cally constructed on top of traditional machine learning algorithms. An important result of
conformal prediction theory is that the models produced are provably valid under relatively
weak assumptions—in particular, their validity is independent of the specific underlying
learning algorithm on which they are based. Since validity is automatic, much research on
conformal predictors has been focused on improving their informational and computational
efficiency. As part of the efforts in constructing efficient conformal predictors, aggregated
conformal predictors were developed, drawing inspiration from the field of classification and
regression ensembles. Unlike early definitions of conformal prediction procedures, the va-
lidity of aggregated conformal predictors is not fully understood—while it has been shown
that they might attain empirical exact validity under certain circumstances, their theo-
retical validity is conditional on additional assumptions that require further clarification.
In this paper, we show why validity is not automatic for aggregated conformal predictors,
and provide a revised definition of aggregated conformal predictors that gains approximate
validity conditional on properties of the underlying learning algorithm.

Keywords: Confidence Predictions, Conformal Prediction, Classification, Ensembles

1. Introduction

Conformal predictors (Gammerman et al., 1998; Gammerman and Vovk, 2007; Vovk et al.,
2006) are predictive models, e.g., classifiers or regression models, that output predictions
with a measure of statistically valid confidence. Given a test object, a conformal predictor
outputs a multi-valued prediction (i.e., a set or an interval) that contains the true output
value with a user-specified predefined probability. This property of statistical validity re-
quires only that the training examples and test objects are exchangeable—a requirement
that is weaker than the common i.i.d. assumption.
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Conformal predictors are very flexible in that we can construct them on top of any tradi-
tional classification or regression algorithm. Formally, we define a so-called nonconformity
measure, that ranks possible labels of a test object according to their level of (dis-)agreement
with an observed distribution, and such nonconformity measures are typically based on tra-
ditional machine learning methods. The nonconformity measure chosen does not affect the
validity of the conformal predictor, however, our choice of underlying model may affect the
informational efficiency of the conformal predictor (in essence, the size of the predictions
it outputs). There exists a natural confidence-efficiency trade-off, such that predictions
necessarily grow larger when the user expects a greater level of confidence, however, dif-
ferent instantiations of conformal predictors (using different nonconformity measures) may
differ in terms of informational efficiency even when applied to the same learning prob-
lem, at the same confidence level. Hence, much effort has been spent in assessing the
informational efficiency of conformal predictors utilizing nonconformity measures based on
different kinds of machine learning algorithms, e.g., support vector machines (Gammerman
et al., 1998; Saunders et al., 1999; Toccaceli et al., 2016), ridge regression (Burnaev and
Vovk, 2014), neural networks (Papadopoulos, 2008; Papadopoulos and Haralambous, 2011;
Löfström et al., 2013; Johansson et al., 2015), random forests (Devetyarov and Nouretdi-
nov, 2010; Bhattacharyya, 2013; Johansson et al., 2014; Boström et al., 2017), decision trees
(Johansson et al., 2013) and k-nearest neighbors (Papadopoulos et al., 2011).

Due to the fact that conformal predictors exist on top of standard machine learning
methods, computational efficiency is also of concern. Early specifications of conformal
predictors (Gammerman et al., 1998) defines them in a transductive manner, where the un-
derlying model must be retrained each time a new test object is obtained. The intractability
of transductively computing prediction regions for a sequence of test objects motivated the
development of inductive conformal predictors, that require only that the underlying model
is trained once (Papadopoulos et al., 2002; Vovk et al., 2006; Papadopoulos, 2008; Vovk,
2013). A significant drawback of inductive conformal predictors, however, is that they re-
quire some training examples to be left out from training the underlying predictor, and
instead set aside for calibration of the conformal predictor. This is in contrast to transduc-
tive conformal predictors, where all available training data can be used for both training
and calibration, and leads to inductive conformal predictors having a lower informational
efficiency than transductive versions on finite sequences, particularly when the total amount
of available training data is relatively small.

As such, not only might a user of conformal prediction need to trade-off confidence for
informational efficiency, but also informational efficiency for computational efficiency. A
suggested solution for this dilemma are a kind of conformal predictor ensembles, proposed
by Vovk (2015) as cross-conformal predictors and generalized by Carlsson et al. (2014) as
aggregated conformal predictors. Here, several underlying models are constructed, each time
leaving out a different subset of the training data using a suitable resampling method (e.g.,
cross-validation, bootstrap sampling or random subsampling), so that training examples
may be used for both training and calibration (albeit for different members of the conformal
predictor ensemble). This procedure has been shown to be able to improve informational
efficiency compared to inductive conformal prediction, while maintaining a relatively low
computational cost (Vovk, 2015; Carlsson et al., 2014). However, in contrast to transductive
and inductive conformal predictors, aggregated conformal predictors have not been shown
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to obtain automatic validity—at least not without imposing additional requirements that
are not yet fully understood (Vovk, 2015; Carlsson et al., 2014).

This paper aims to provide a comprehensive analysis of aggregated conformal predic-
tors, in order to ascertain under what circumstances—if any—we can consider them valid
conformal predictors.

2. Conformal Prediction

Given a test object xn+1 ∈ X and a user-specified significance level ε ∈ (0, 1) a conformal
classifier outputs a prediction set Γεn+1 ⊆ Y that contains the true output value yn+1 ∈ Y
with confidence 1− ε (Vovk et al., 2006).

In order to output such prediction sets, conformal predictors utilize a nonconformity
function f : Z∗ × Z → R, where Z : X × Y , and αi = f(ζ, zi) is a measure of the
nonconformity (we can think of nonconformity as strangeness, unlikelihood or disagreement
with respect to a particular problem space) of an object xi and label yi (together referred
to as a pattern) zi = (xi, yi) ∈ Z in relation to the sequence ζ ∈ Z∗. Conformal predictors
are automatically well-calibrated regardless of the choice of f , but in order to produce
informationally efficient (i.e., small) prediction sets, it is necessary that f is able to rank
patterns based on their apparent strangeness sufficiently well. As such, a standard method
of defining a nonconformity function is to base it on a traditional machine learning model,
according to

f (ζ, (xi, yi)) = ∆ (h (xi) , yi) , (1)

where h is a predictive model—often referred to as the underlying model of the conformal
predictor—trained on the sequence ζ, and ∆ is some function that measures the prediction
errors of h. Intuitively, the prediction error for nonconforming (uncommon) patterns (xi, yi)
will be large (since, if they are uncommon, h will not have seen many similar training
examples), and thus, such patterns are assigned larger nonconformity scores than more
common patterns.

Given a sequence of training examples, Zn = {z1, . . . , zn}, a test object xn+1, and a
tentative test label ỹ ∈ Y , we construct the extended sequence Zn+1 = Zn ∪ {(xn+1, ỹ)}.
We then compute the nonconformity scores of the training patterns zi ∈ Zn as

αỹi = f
(
Zn+1 \ zi, zi

)
, (2)

and the nonconformity score for the tentatively labeled test pattern as

αỹn+1 = f
(
Zn+1 \ zn+1 = Zn, (xn+1, ỹ)

)
. (3)

The corresponding (smoothed) conformal predictor is then defined as the set predictor

Γεn+1 =
{
ỹ ∈ Y : pỹn+1 > ε

}
, (4)

where

pỹn+1 =

∣∣∣{zi ∈ Zn+1 : αỹi > αỹn+1

}∣∣∣+ θn+1

∣∣∣{zi ∈ Zn+1 : αỹi = αỹn+1

}∣∣∣
n+ 1

, (5)
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where θn+1 ∼ U [0, 1]. If the sequence {z1, . . . , zn+1} is exchangeable, the probability of
making an erroneous prediction, i.e., excluding the true target label yn+1, is asymptotically
ε as limn→∞.

Definition 1 (Exchangeability) A sequence {z1, . . . , zn+1} is exchangeable if the joint
probability distribution P ({z1, . . . , zn+1}) = P

({
zπ(1), . . . , zπ(n+1)

})
is invariant under any

permutation π on the set of indices i = 1, . . . , n + 1, i.e., all orderings of the observations
z1, . . . , zn+1 are equiprobable. Exchangeable sequences can be obtained through sampling
observations (with or without replacement) from stationary processes, e.g., drawing numbers
x ∈ Z according to a fixed, arbitrary, probability distribution X ∼ P.

2.1. Inductive Conformal Prediction

In the definition of conformal predictors given in the previous section, we calculate the
nonconformity αỹi of a pattern zi = (xi, yi) ∈ Zn+1, where Zn+1 = Zn ∪ {(xn+1, ỹ)},
relative to the sequence Zn+1 \ zi; see Equations (2) and (3). This has two important
consequences. First, we note that the nonconformity of any training example zi ∈ Zn is
dependent on the specifics of the tentatively labeled test pattern (xn+1, ỹ), meaning the
nonconformity scores for all training examples must be recomputed when either xn+1 or ỹ
changes. Consequently, these nonconformity scores must be recomputed |Y | times for each
test object (once for every possible value of ỹ). Second, we note that each nonconformity
score αỹi ∈ α

ỹ
1, . . . , α

ỹ
n+1 is computed from a unique sequence ζi ⊂ Zn+1. If f is dependent

on an underlying machine learning model h, see Equation (1), this means that h must be
retrained once for every pattern z1, . . . , (xn+1, ỹ), for every specific test pattern (xn+1, ỹ). In
total, this process of transductive conformal prediction (TCP) requires that the underlying
model h is retrained (n + 1)|Y | times for each test object xn+1, which incurs a very large
computational cost when the computation of h is non-trivial.

It is possible to reduce the computational complexity by simply computing the noncon-
formity scores αỹ1, . . . , α

ỹ
n+1 from a common sequence Zn+1 as

αỹi = f
(
Zn+1, zi

)
, (6)

where zi ∈ Zn+1, however, this still requires that the model is recomputed |Y | times for
each test object. Additionally, the informational efficiency of a conformal predictors defined
using Equation (6) might suffer when the underlying model is unstable, i.e., the learning
algorithm is highly variant with respect to the specific example patterns used during training
(Linusson et al., 2014).

An alternative approach is to define an inductive conformal predictor (Papadopoulos
et al., 2002; Vovk et al., 2006), ICP, where the underlying model only needs to be computed
once. Here, the training set Zn is divided into two non-empty disjoint subsets: the proper
training set Zt and the calibration set Zc. The underlying model h is inferred from the
training examples in Zt, and nonconformity scores are computed for the calibration set and
the test pattern (but not the proper training set), as

αi = f
(
Zt, zi

)
, (7)

where zi ∈ Zc, and
αỹn+1 = f

(
Zt, (xn+1, ỹ)

)
, (8)
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respectively.
The p-value for a test object (xn+1, ỹ) is then defined as

pỹn+1 =

∣∣∣{zi ∈ Zc : αi > αỹn+1

}∣∣∣+ θn+1

(∣∣∣{zi ∈ Zc : αi = αỹn+1

}∣∣∣+ 1
)

c+ 1
, (9)

i.e., the p-value of a test pattern is calculated only from the nonconformity scores of the
calibration examples and the test pattern itself. Since the nonconformity scores of examples
in the calibration set are independent of the test pattern (regardless of the label being
tested), only αỹn+1 needs to be updated during prediction.

While inductive conformal predictors are much more efficient than transductive confor-
mal predictors in a computational sense, their informational efficiency is typically lower,
since only part of the data can be used for training and calibration respectively (this differ-
ence is accentuated in particular when the available data is small).

2.2. Cross-Conformal Predictors

As a means to alleviate the computational inefficiency of transductive conformal predic-
tors, and the (relative) informational inefficiency of inductive conformal predictors, cross-
conformal predictors (CCP) were developed by Vovk (2015). Here, the training set Zn is
divided into k non-empty disjoint subsets, Z1, . . . , Zk, and a predictive model hl is induced
from each set Z−l = ∪r=1,...,kZr \ Zl (much like the well-known cross-validation method).
Nonconformity scores are computed for the calibration examples in each fold using hl as

αi,l = f (Z−l, zi) , (10)

where zi ∈ Zl. For the test pattern (xn+1, ỹ), k separate nonconformity scores are obtained
according to

αỹn+1,l = f (Z−l, (xn+1, ỹ)) , (11)

where l = 1, . . . , k, and the corresponding p-value is then calculated as

pỹn+1 =

∑k
l=1

[∣∣∣{zi ∈ Zl : αi,l > αỹn+1,l

}∣∣∣+ θn+1,l

(∣∣∣{zi ∈ Zl : αi,l = αỹn+1,l

}∣∣∣)]+ θn+1

n+ 1
.

(12)
As noted by Vovk (2015), if a separate p-value is defined for each fold as

pỹn+1,l =

∣∣∣{zi ∈ Zl : αi,l > αỹn+1,l

}∣∣∣+ θn+1,l

(∣∣∣{zi ∈ Zl : αi,l = αỹn+1,l

}∣∣∣+ 1
)

|Zl|+ 1
, (13)

then

pỹn+1 = p̄ỹn+1 +
k − 1

n+ 1

(
p̄ỹn+1 − 1

)
≈ p̄ỹn+1 , (14)

where p̄ỹn+1 = 1
k

∑k
l=1 p

ỹ
n+1,l, given that k � n.

Papadopoulos (2015) provides further details on constructing cross-conformal predictors
for regression problems.
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2.3. Bootstrap Conformal Predictors

Also introduced by Vovk (2015) are bootstrap conformal predictors (BCP), where the un-
derlying models h1, . . . , hk are trained using a bootstrap sampling procedure. Here, a set
of samples Z−1, . . . , Z−k are drawn (with replacement) from Zn, each sample of size n.
For each bootstrap sample, an underlying model is induced, and nonconformity scores are
computed using a particular model hl analogously to cross-conformal predictors, i.e.,

αi,l = f (Z−l, zi) , (15)

where zi ∈ Zl and Zl = Zn \ Z−l, and

αỹn+1,l = f (Z−l, (xn+1, ỹ)) , (16)

where l = 1, . . . , k. The p-values are then defined by

pỹn+1 =

∑k
l=1

[∣∣∣{zi ∈ Zl : αi,l > αỹn+1,l

}∣∣∣+ θn+1,l

(∣∣∣{zi ∈ Zl : αi,l = αỹn+1,l

}∣∣∣)]+ t
nθn+1

t+ t
n

,

(17)
where t is the total size of the calibration sets, i.e.,

∑k
l=1 |Zl|.

2.4. Aggregated Conformal Predictors

Carlsson et al. (2014) provide a generalization of conformal predictors constructed from
multiple inductive conformal predictors (e.g., cross-conformal predictors and bootstrap con-
formal predictors), dubbed aggregated conformal predictors (ACP).

Given a collection of k proper training sets Z−1, . . . , Z−k and their complementary cali-
bration sets Z1, . . . , Zk, nonconformity functions for the calibration examples and test pat-
terns are defined in the same manner as bootstrap conformal predictors (and cross-conformal
predictors); see Equations (15) and (16), respectively.

The p-values are defined as

pỹn+1 =
1

k

∑
pỹn+1,l , (18)

using the same definition of pỹn+1,l as given in Equation (13).
The definition of ACP thus closely resembles that of CCP, in particular when we take

into consideration Equation (14), however, here we are not explicitly bound by some par-
ticular sampling scheme in constructing the k calibration sets (e.g., cross-validation or
bootstrap sampling). Instead, the definition of ACP puts a more general constraint on the
procedure of constructing calibration sets Zl (and their corresponding training sets Z−l),
called consistent resampling (Carlsson et al., 2014, Definition 1-2). For completeness, we
restate these definitions here.

Definition 2 (Exchangeable resampling) Let Zn+1 = {z1, . . . , zn+1} be a sequence of
examples drawn from the problem space Z ∼ P, and let Z∗ = {z∗1 , . . . , z∗m} ⊆ Zn+1 be a
sequence resampled from Zn+1. We call this resampling exchangeable if

P ({z1, . . . , zm}) = P
({
zπ(1), . . . , zπ(m)

})
,

for any permutation π of the indices 1, . . . ,m.
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Definition 3 (Consistent resampling) Let T = T (z1, . . . , zn+1,P) be a statistic and
T ∗ = (z∗1 , . . . , z

∗
m,Pn+1) be an exchangeably resampled version of T . Further, let Gn+1 and

G∗n+1 be the probability distributions of T and T ∗, respectively. We call this resampling
consistent (with respect to T ) if

sup
z

∣∣Gn+1 −G∗n+1

∣∣→ 0 as n→∞ and m→∞ .

Carlsson et al. (2014, Proposition 1) finally conclude that an ACP is valid when the
calibration sets Z1, . . . , Zk are consistently resampled from Zn with respect to αt, where αt
is

argmax
αt ∈Zc

|{zi ∈ Zc : αi ≥ αt}|+ 1

c+ 1
> ε, (19)

i.e., the threshold nonconformity score defining the border p-value pt+1 < ε < pt < pt−1.
(Arguably, since p ∼ U [0, 1] is discrete for a finite c in a non-smoothed inductive conformal
predictor, averaging a repeated sampling of p∗t > ε might provide us with a smoother
decision border, given that the sampling is performed with care. Consult Carlsson et al.
(2014, Section 2.1) for a more detailed discussion.)

We note here that while Carlsson et al. (2014) state that a consistent resampling of the
calibration set is a sufficient criterion for obtaining valid aggregate p-values, no prescriptions
are provided as to how such a consistent resampling might be obtained. We will return to
this line of thought in Section 3.2.

3. Calibration of Conformal Predictors

A key insight regarding conformal predictors regards the distribution of the p-values gen-
erated within the process. We can express two particularly interesting criteria regarding
these p-values (Vovk et al., 2006):

I If a sequence z1, . . . , zn+1 is exchangeable, then pyii ∼ U [0, 1], and

II Criterion I is not dependent on the choice of f .

The first criterion is a necessary condition for conformal predictors to be well-calibrated,
i.e., make errors at a frequency of exactly ε. A conformal predictor rejects any label ỹ for
which pỹn+1 ≤ ε, hence, in order to make errors at a frequency of ε, it must hold that

lim
n→∞

P
(
p
yn+1

n+1 ≤ ε
)

= ε , (20)

for an exactly calibrated conformal predictor. As illustrated in Figure 1(a), this becomes
true exactly when the p-values are uniformly distributed (whenever we are testing the true
output label yn+1) since

∫ ε
0 p/

∫ 1
0 p = ε. To provide some further intuition regarding criterion

I, we can restate it in two different manners:

1. Given two exchangeable sequences of examples—a calibration set Zc, and a test set
Zr—the nonconformity scores αr : zr ∈ Zr are distributed identically to the noncon-
formity scores αc : zc ∈ Zc. This is illustrated in Figure 1(b).
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2. Let Zn+1 be an exchangeable sequence of examples, and α1, . . . , αn+1 be the non-
conformity scores computed from z1, . . . , zn+1. Let z1, . . . , zn be the calibration set
examples, and π(1), . . . , π(n) denote a permutation of the indices such that απ(i) ≤
απ(i+1). If αn+1 is the nonconformity score of the test pattern, zn+1, then all values
of π(n + 1) ∈ {1, . . . , n+ 1} are equiprobable, unconditional on zn+1. We can view
this in terms of a ranking problem: if we rank each pattern z1, . . . , zn+1 (using the
nonconformity measure as our ranking function), then all ranks 1, . . . , n+1 are equally
likely for the test pattern zn+1.

(a) P-value distribution (b) Nonconformity score distribution

Figure 1: Distributions of p-values and nonconformity scores for 1000 test patterns from the
spambase dataset for an inductive conformal predictor. The underlying model is
a support vector machine, trained to produce class probability estimates, and
the corresponding inductive conformal predictor is calibrated on 999 calibration
examples using f(ζ, zi) = 1− P̂h(yi | xi).

The second criterion ensures that a conformal predictor is automatically well-calibrated
(i.e., valid). If the property of being well-calibrated is independent on the choice of f , then
the validity of the predictions made by a conformal predictor is dependent only on the
assumption of the sequence being exchangeable (Vovk et al., 2006).

In the following sections, we will show that aggregated conformal predictors (including
cross-conformal predictors and bootstrap conformal predictors) can indeed fulfill criterion
I, in that they may be well-calibrated, but do not fulfill criterion II. We also provide a
revised definition of aggregated conformal predictors, that shows an approximate validity
given certain constraints.

3.1. Cross-Conformal Predictors and Bootstrap Conformal Predictors

Let H∗ = {h1, . . . , hk} be the underlying models generated through the cross-conformal
prediction procedure described in Section 2.2, and let Z∗ = {Z1, . . . , Zk} be the calibration
sets corresponding to each of these models. If we choose any pair (hl ∈ H∗, Zl ∈ Z∗), we
can define a simple inductive conformal predictor, using hl as the underlying model, Zl
as the calibration set and Equation (9) to compute the p-values. We know from previous

8
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(a) Errors rate of an inductive conformal
predictor

(b) Nonconformity score rank distribution

Figure 2: Calibration plot (empirical error rate) of an inductive conformal predictor on the
spambase dataset, and distribution of ranks of the test patterns’ nonconformity
scores. The same type of conformal predictor was used as in Figure 1.

work that this inductive conformal predictor is valid (i.e., automatically well-calibrated),
and fulfills both criteria regarding p-values given in the previous section (Vovk, 2013).
Figure 2(a) shows the well-calibrated nature of such an inductive conformal predictor; for
any value of ε, the observed error rate (rejection rate of true class labels) is very close to
ε. Figure 2(b) shows the distribution of ranks of the test patterns’ nonconformity scores,
when testing for their correct label (a rank of r denotes that r−1 calibration examples had
a larger nonconformity score than the test pattern, i.e., the rank effectively corresponds to
the numerator of the p-value equation).

We now move to a (partial) cross-conformal predictor, by selecting two pairs of predictive
models and calibration sets, (hl ∈ H∗, Zl ∈ Z∗) and (hm ∈ H∗, Zm ∈ Z∗), where m 6= l, and
use Equation (12) to compute the p-values. Since any of the two pairs, (hl, Zl) or (hm, Zm),
can be used to construct an inductive conformal predictor, we know that both of them will
produce uniformly distributed ranks of the test patterns’ nonconformity scores, as shown
in Figure 2(b). Let rln+1 ∈ Z and rmn+1 ∈ Z denote the ranks produced by each pair (we will
denote these pairs as ICP components of the cross-conformal predictor), respectively, for the
test pattern zn+1. For a cross-conformal predictor to be well-calibrated, it is necessary that
all sums 2 ≤

(
rln+1 + rmn+1

)
∈ Z ≤ l + m + 2 are equiprobable, unconditional on zn+1—in

Equation (12), we are effectively summing the ranks of the individual ICP components of the
cross-conformal predictor in order to compute the p-value—only then is p

yn+1

n+1 distributed
according to U [0, 1].

Since we wish for r∗ = rl + rm to be uniformly distributed, we are required to put
constraints on the joint distribution of

(
rl, rm

)
. If we allow rl and rm to be distributed

uniformly on the rectangular surface defined by l and m, i.e., the two ranks obtained from
the ICP components are independent of each other, their sum r∗ is no longer distributed
uniformly, but instead distributed according to the Irwin-Hall (uniform sum) distribution
(Irwin, 1927; Hall, 1927). p-values are then distributed according to the unimodal Bates
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distribution (Bates et al., 1955) rather than U [0, 1], such that p-values closer to the mean
(i.e., 0.5) are more likely than extreme values (i.e., p-values closer to 0 or 1). Including
more inductive conformal predictor components, by combining several pairs (h∗, Z∗), further
increases this effect, as the variance of the Bates distribution decreases. This leads to a
conformal predictor that is conservative for low values of ε (since small p-values are overly
rare) and invalid for large values of ε (since large p-values are also rare).

(a) Cross-conformal predictor errors (ran-
dom forest of 5 trees)

(b) Nonconformity score rank sum distri-
bution (random forest of 5 trees)

(c) Miscalibration rate depending on forest
size

Figure 3: Calibration plot (empirical error rate) of a cross-conformal predictor (k = 10)
on the spambase dataset, and distribution of rank sums of the test patterns’
nonconformity scores. A random forest using 5 trees was used as the underlying
model.

Figure 3 shows a poorly calibrated cross-conformal predictor (k = 10), where the un-
derlying model in each fold is a weak random forest (containing only 5 trees). Since the
underlying models are fairly unstable (i.e., highly variant depending on their particular
training data), the sum of their ranks is far from uniformly distributed as shown in Figure
3(b). The calibration plot shown in Figure 3(a) illustrates the expected behaviour, with the
cross-conformal predictor being conservative at low values of ε and invalid at large values of
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ε. Figure 3(c) shows how the miscalibration rate—area between error curve and expected
error rate (diagonal line) in Figure 3(a)—reduces with an increasing forest size; adding
additional ensemble members to the random forest models reduces their variance, and the
10 random forest models (over the 10 folds) become more similar each other, resulting in
the nonconformity rank sums approaching a uniform distribution.

(a) Cross-conformal predictor errors (svm) (b) Nonconformity score rank sum distri-
bution (svm)

Figure 4: Calibration plot (empirical error rate) of a cross-conformal predictor (k = 10)
on the spambase dataset, and distribution of rank sums of the test patterns’
nonconformity scores. A support vector machine was used as the underlying
model.

In Figure 4, a well-calibrated cross-conformal predictor (k = 10) is displayed, using
support vector machines as the underlying models. With this setup, the rank sums, Figure
4(b), appear uniformly distributed. The error rates, Figure 4(a), are close or equal to ε over
the entire range ε ∈ (0, 1), similar to the results obtained by Vovk (2013) using MART to
construct the underlying models.

Figure 5 shows the distribution of nonconformity ranks and nonconformity rank sums
from of pairs ICP components, i.e., rln+1 and rmn+1, from cross-conformal predictors (k = 10)
created using various underlying models: random forests with 5, 100 and 500 trees, as well
as a support vector machine. It is clear that: (1) regardless of the stability of the underlying
models, a single ICP component provides uniformly distributed nonconformity ranks (top
and rightmost histogram in each plot); and (2) the stability of the underlying models has a
large impact on the joint distribution of

(
rl, rm

)
, with the most unstable underlying model

(random forest using 5 trees) shows a near-uniform joint distribution of nonconformity ranks
(middle scatter plots), resulting in an approximate Irwin-Hall distribution of nonconformity
rank sums.

3.2. Aggregated Conformal Predictors

In Section 2.4, we provided the general definition of aggregated conformal predictors origi-
nally given by Carlsson et al. (2014), arguing that such aggregate models (including CCP

11
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(a) Nonconformity ranks (rf, 5 trees) (b) Nonconformity ranks (rf, 100 trees)

(c) Nonconformity ranks (rf, 500 trees) (d) Nonconformity ranks (svm)

Figure 5: Distribution of ranks from two inductive conformal predictor components of a
cross-conformal predictor (k = 10). In each plot, the top and right-side his-
tograms show the rank distributions of two individual components, rl and rm,
while the middle scatter plot shows the joint distribution of

(
rl, rm

)
.

12
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and BCP) might provide valid aggregate p-values given a certain condition: that the cal-
ibration sets are consistently resampled with respect to a particular nonconformity score
αt. We noted also that, while the definition of consistent resampling is clear, how to obtain
a consistent resampling is not. Finally, we argued—and showed—in Section 3.1 that the
sought-after well-calibrated nature of conformal predictors is not automatically guaranteed
for aggregate models; we must note also that the results in Section 3.1 are in accordance
with the empirical results provided by Carlsson et al. (2014), where the ACP models were
shown to be notably conservative for significance levels ε ≤ 0.4.

To shed some light on the nature of consistent resampling, we restate the condition
under which aggregate conformal predictors are valid, using some additional definitions.

Definition 4 (Approximately ranking invariant) Let Zn be a sequence of examples
drawn from the problem space Z ∼ P and let Zm ⊆ Zn be an exchangeable resampling of
Zn. Let H be a learning algorithm, and let fn and fm be nonconformity measures on the
form

fs (Zs, (xi, yi, )) = ∆
(
h−s (xi) , yi

)
, (21)

where h−s = H (Z−s), i.e., a predictive model trained using a proper training set Z−s ⊂ Z
such that Z−s ∩ Zs = ∅. Let rnn+1 and rmn+1 be the ranks produced by fn and fm for a test
pattern (xn+1, yn+1), using Zn and Zm as calibration sets respectively. fs is approximately
ranking invariant if, for any such fn and fm,

r̄mn+1 =
rmn+1

m+ 1
≈

rnn+1

n+ 1
= r̄nn+1,

for finite m ≤ n.

Definition 5 (Consistent mapping) Let Zn be a sequence drawn from the problem space
Z ∼ P, let Zm ⊆ Zn be an exchangeable resampling of Zn, and let f be a nonconformity
measure. f is a consistent mapping of Z if Zm is a consistent resampling of Zn with respect
to r̄nn+1.

Remark 6 Approximately ranking invariant nonconformity measures and consistent map-
pings are not interchangeable. We can think of rankings that appear similar in the finite
case, but do not converge asymptotically. Similarly, we can think of rankings that start off
dissimilar in the finite case but eventually converge in the limit.

Proposition 7 Aggregated conformal predictors are approximately valid when f is an ap-
proximately ranking invariant consistent mapping of Z.
Proof Let Z1, . . . , Zk be calibration sets exchangeably resampled from Zn such that ∀l ∈
(1, k) : Zl ⊂ Zn, and let f1, . . . , fk be approximately ranking invariant consistent mappings
constructed using the complementary proper training sets Z−1, . . . , Z−k where ∀l ∈ (1, k) :
Z−l = Zn \Zl. Each mapping fl consists of an underlying model hl and a calibration set Zl.
Define an aggregate conformal predictor using the pairs {f1 = (h1, Z1), . . . , fk = (hk, Zk)}
as the ICP components.

13
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Let Zl and Zm be two distinct ICP components. Since Zl and Zm are, by definition,
exchangeably resampled from Zn, fl and fm are valid ICPs that output py+1

n+1-values dis-
tributed according to U [0, 1]; by extension, fl and fm output valid ranks rn+1 for the true
class yn+1 distributed according to U [0, |Zl| + 1] and U [0, |Zm| + 1] respectively. fl and
fm are both approximately ranking invariant and consistent mappings with respect to r̄n+1,
i.e., r̄ln+1 ≈ r̄mn+1 ≈ r̄n+1 for finite l,m ≤ n and liml,m,n→∞ r̄

l
n+1 = r̄mn+1 = r̄n+1. Since

r̄n+1 = py+1
n+1, fl ∪ fm represents an asymptotically exact aggregate conformal predictor that

approximates a valid conformal predictor for finite calibration sets.

Remark 8 We are unable to provide a formal definition of approximate validity. From
Definition 4, we ask that the nonconformity measures f1, . . . , fk produce similar rankings of
the test pattern; since the condition is stated loosely (the ranks produced are approximately
equal), we can only state the conclusion loosely in the finite case: the error rate of the
aggregated conformal predictor is approximately equal to that of an inductive conformal
predictor, i.e., it is close to ε.

We note that we could just as well state in Definition 5 that a consistent resampling
is required with respect to pn+1

n+1, however, we wish to make explicit the restrictions that
are put on f , and by extension, h. Given a test object xn+1, an exchangeably resampled
calibration set Zl, and a predictive model hl trained on Z−l, the performance of hl must
be essentially invariant on xn+1 relative to Zl, regardless of the specific composition of
Z−l. That is, we require that the underlying learning algorithm is stable in the sense of
Breiman (1996), i.e., that small changes in the training set must not cause large changes
in the resulting model. This is very much in-line with remarks made earlier by Vovk
(2015, Appendix A), who notes that the validity of leave-one-out conformal predictors
(n-fold cross-conformal predictors) is dependent on the underlying models, such that the
resulting aggregated conformal predictor is invalid if the n-fold nonconformity function is
not transitive. Here, we have shown that this requirement is not unique to leave-one-out
conformal predictors, but applies to aggregated conformal predictors in general. As also
noted by (Vovk, 2015, Appendix A), validity is violated in a “non-interesting way”, in
that the resulting aggregated conformal predictor is invalid in a conservative manner for
low values of ε, i.e., the empirical error rate is deflated rather than inflated. This means,
on the one hand, that we can utilize aggregated conformal predictors without needing to
worry about an exaggerated empirical error rate. On the other hand, conservatively valid
conformal predictors are less useful to us than exactly valid conformal predictors, since we
are not able to leverage the excess confidence; if we provide our conformal predictor with a
significance value ε = 0.05, we should still act as though 5% of all predictions are incorrect,
even though this might not be the case in reality. For any conservative predictor we could
arbitrarily reduce the size of output predictions until the error rate is exactly ε, hence, the
predictions made by an aggregated conformal predictor are—if our nonconformity measure
does not fulfill the criteria given in Proposition 7—by definition, unnecessarily large.
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4. Conclusions and Future Work

In this paper, we have provided a thorough investigation into the validity of aggregated con-
formal predictors, considering the definitions of cross-conformal predictors and bootstrap
conformal predictors provided by Vovk (2015) as well as the generalized definition provided
by Carlsson et al. (2014). We conclude that the validity of any aggregate conformal pre-
dictor is conditional on the nonconformity measure, in particular its ability to consistently
rank individual objects amongst a group of objects. If the nonconformity measure does
not possess this characteristic, the resulting aggregated conformal predictor is only conser-
vatively valid for interesting (low) values of ε, i.e., the empirical error rate is lower than
the expectation. While this is beneficial from a safety standpoint, it also means that the
predictions output by an aggregated conformal predictor may be unnecessarily large.

While the definitions provided in this paper provide some tools for reasoning about the
validity of aggregated conformal predictors, they do not provide sufficient practical guidance.
We have stated that the underlying model should be stable, as defined by Breiman (1996),
but do not quantitatively investigate the relationship between instability and invalidity, nor
have we assessed the effects of aggregating unstable nonconformity measures with respect
to efficiency. In light of this, we propose that future work addresses the question of how
to choose a suitable nonconformity measure, as well as investigates the magnitude of the
negative effect on efficiency if an unsuitable nonconformity measure is selected.

We also propose that the aggregated conformal prediction scheme be evaluated in com-
parison to other methods of combining multiple underlying models, e.g., the provably valid
bootstrap calibration procedure described by Boström et al. (2017) or other methods of
combining p-values (some of which are addressed briefly in Appendix A).
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Appendix A. Alternative Methods of combining p-values

In this work, we have shown that aggregated conformal predictors are troublesome in that
they are not valid (or, possibly, efficient) in general, but that we must put some constraints
on the underlying model and the nonconformity measure we construct from it. The issues
we see with aggregated conformal predictors stem from the fact that we are averaging p-
values that show a varying degree of interdependence. It is thus natural to wonder whether
our aggregated models could fare better if we, instead of combining the p-values through
averaging, utilize some other aggregation procedure.

Figure 6 shows three variants of conformal predictors applied to the spambase data set.
Figures 6(a) to 6(c) shows the distribution of p-values for the test set (for correct labels
only), the empirical error rate and the efficiency of a simple ICP. Figures 6(d) to 6(f ) show
the analogous results from a k-folded aggregated conformal predictor, and Figures 6(g)
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(a) P-values, ICP (b) Error rate, ICP (c) Efficiency, ICP

(d) P-values, mean (e) Error rate, mean (f ) Efficiency, mean

(g) P-values, median (h) Error rate, median (i) Efficiency, median

Figure 6: p-value distributions (of correct class), error rates and efficiency of various con-
formal predictors on the spambase data set. The conformal predictors are: an
inductive conformal predictor (top), an aggregated conformal predictor (middle),
a set of inductive conformal predictors whose p-values are aggregated by their
median. Underlying models are random forests consisting of 5 trees.

to 6(i) show results from a set of k-folded conformal predictors outputting the median p-
value rather than the mean. Here, we have used an underlying model previously identified
as problematic with regard to aggregated conformal prediction: a random forest model
consisting of only 5 trees, i.e., a model that whose decision function varies substantially
based on the particular examples that are included in the training data. For the aggregate
models, k was set to 10.

As noted previously, the distribution of p-values obtained from an aggregated conformal
predictor, shown in Figure 6(d), is unimodal rather than uniform when the underlying
model is unstable, which results in the sigmoidal error curve in Figure 6(e). Efficiency,
shown in Figure 6(f ) is clearly hampered in comparison to that of the ICP, shown in Figure
6(c). Note that the dashed lines in these last plots are provided simply to enable visual
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comparison. Although combining p-values using their median rather than their mean, as
shown in Figures 6(g) to 6(i), illustrates a similar behaviour, the negative effects on validity
and efficiency appear lessened at all significance levels, suggesting that taking the median
p-value might be a more suitable approach for constructing aggregated conformal predictors.

(a) P-values, ECF (b) Error rate, ECF (c) Efficiency, ECF

(d) P-values, SNF (e) Error rate, SNF (f ) Efficiency, SNF

(g) P-values, BH (h) Error rate, BH (i) Efficiency, BH

Figure 7: p-value distributions (of correct class), error rates and efficiency of inductive con-
formal predictor sets whose p-values are combined using various methods. Re-
sults are taken from the spambase data set. The aggregation methods are: ex-
tended chi-square function (ECF, top), simple normal form (SNF, middle) and
the Benjamini-Hochberg procedure (BH, bottom). Underlying models are ran-
dom forests consisting of 5 trees.

Balasubramanian et al. (2015) propose several methods of constructing ensemble models
from multiple conformal predictors, amongst them two procedures for combining the p-
values obtained from multiple sources. The first, extended chi-square function (ECF) is
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based on the work of Fisher (1948), defining the aggregated p-value as

p∗
k−1∑
i=0

(− ln p∗)i

i!
, (22)

where k is the number of p-values considered, and p∗ is their product. A similar approach
has also been described by Vovk (2015, Appendix C). The results of ECF are shown in
Figures 7(a) to 7(c), where it is clear that the procedure is invalid for low values of ε.

The second approach proposed by Balasubramanian et al. (2015) is the standard nor-
mal form (SNF), where p-values obtained from the conformal predictors are combined by
computing, for each p-value, the inverse of the normal CDF, qi = F−1(pi), taking the sum
q∗ =

∑
qi, and finally computing the aggregated p-value, again using the normal CDF, as

p = F (qi). Similarly to ECF, this approach also shows, in Figures 7(d) to 7(f ), invalid
results for the spambase data set at low significance levels.

Finally, in figures 7(g) to 7(i), we evaluate a p-value combination method based on the
Benjamini-Hochberg procedure for false discovery rate correction (Benjamini and Hochberg,
1995). Here, the aggregated p-value is defined as

p = min
k∑
i=1

pi
k

i
, (23)

where p1, . . . , pk are sorted in ascending order. While this approach appears empirically
sound when applied to the spambase data set, it does not fare better than combining the
p-values through their median in terms of conservativeness or efficiency.
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