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Abstract

Approximation of stationary strongly mixing processes by Stochastic Context Trees (SCOT)
models and the Le Cam-Hajek-Ibragimov-Khasminsky locally minimax theory of statistical
inference for them is outlined. SCOT is an m-Markov model with sparse memory structure.
In our previous papers we proved SCOT equivalence to 1-MC with state space—alphabet
consisting of the SCOT contexts. For the fixed alphabet size and growing sample size, the
Local Asymptotic Normality is proved and applied for establishing asymptotically optimal
inference. We outline what obstacles arise for a large SCOT alphabet size and not neces-
sarily vast sample size. Training SCOT on a large string using clusters of computers and
statistical applications are described.

Keywords: Strong mixing, strongly stationary sequences, Local Asymptotic Normality,
Local Asymptotic Minimaxity, SCOT models, Edgeworth expansion.

1. Introduction

Strongly stationary sequences as an object of advanced Probability theory are studied in
the first part of this paper culminating in their LAN property, section 5.

Approximability of strong mixing sequences by m-Markov Chain (m-MC) with large m
belongs to the mathematical folklore and is widely used without rigorous definitions in the
Information Theory, see Cover and Thomas (2006). In view of exponential complexity of
general m-MC, ARMA-models were their most popular surrogates until sparse memory
m-MC named VLMC was introduced in Rissanen (1983) for compression aims. We study
novel conditions for sparse m-MC approximation of strong mixing stationary sequences
called Stochastic Context Trees (SCOT) in section 2.2. Parameter m in SCOT depends
in general on accuracy of the approximation and can be arbitrarily large, even infinite
justifying appropriateness of a name alternative to VLMC .

The ergodicity of MC and Asymptotic Normality (AN) of additive state and transition
functions of their paths has been subject of numerous studies starting from the pioneering
works of A. A. Markov and S. N. Bernstein in the beginning of 20th century. Among many
popular surveys—(Borovkov, 1998; Meyn and Tweedy, 1993; Tutubalin, 1992). Statistical
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inference for MC has become popular after (Billingsley, 1961; Roussas, 1972). The second
of these references introduced the MC Local Asymptotic Normality (LAN) following the
Le Cam-Hajek asymptotic locally minimax inference theory. An elementary exposition of
this theory is in Tutubalin (1992); Veretennikov (2000). The traditional asymptotics with
fixed MC and growing sample size N is considered in all these references. Our section
5 outlines the simpler straightforward LAN derivation for finite MC with fixed alphabet
following (with substantial revisions) Tutubalin (1992); Veretennikov (2000). The key point
is a new Asymptotic Normality proof for additive transition functions which replaces the
popular much longer way (for more elementary case of additive state functions) based on
a reduction to the more general Martingale Central Limit Theorem. The latter approach
involves a cumbersome Poisson-like inverse problem solution which is not straightforward
(Meyn and Tweedy, 1993).

Our statistical SCOT modeling (Ryabko et al., 2016; Malyutov et al., 2013) of financial
data discovered a small size of their context tree, while literary texts showed the number
of SCOT contexts m > 2000; m is the size of 1-MC alphabet equivalent to SCOT, if the
corresponding SCOT has a perfect memory, (Zhang, 2016), in (Ryabko et al., 2016; Malyu-
tov and Zhang, 2015) another name: ‘TailClosed’ is used for the same object. Otherwise,
a perfect memory envelope of the original SCOT, (Zhang, 2016) should be used with even
larger alphabet size.

The literary texts examples in Ryabko et al. (2016); Malyutov et al. (2013) show that
the traditional asymptotics for deriving AN of additive SCOT functions can be inadequate.
A similar change of asymptotics has been suggested by A. N. Kolmogorov for statistical
classification of objects characterized by many normally distributed characters each, see
Deyev (1970), where Kolmogorov’s ideas are exposed.

To illustrate what happens when both m and sample size N grow simultaneously, we
consider in subsection 3.1 the spectral decomposition of cyclic random walks nicely exposed
in Feller (1967), (pp. 377–378 and 434–435).

Our study of alternative asymptotics uses the first order Edgeworth expansion for the
additive functions — see Bolthausen (1980, 1982); Malinovsky (1987); Jensen (1989) among
many publications. The principal multiplier (µ3/σ

3)/
√
N of the residual term may grow

with m which worsens the precision of approximation, see section 4. Here µ3, σ are the
stationary third moment and standard deviation of Xi respectively. Our discussion of
alternative asymptotics is novel.

Sections 6-7 constitute the mathematical statistics part of this paper. We outline asymp-
totically optimal inference in estimation and testing local hypotheses under LAN validity.

Section 7 justifies SCOT homogeneity testing results of Ryabko et al. (2016); Malyutov
et al. (2013) in the framework of local (contiguous) alternatives theory under LAN. Testing
very distant alternatives was exposed earlier in Ryabko et al. (2016); Malyutov et al. (2013)
for an example of screening out active inputs of a multivariate regression model with colored
noise using the large deviations probability results. Results of section 7 justify the effec-
tiveness of the homogeneity nonparametric testing in section 8.4. Estimation of transition
probabilities in sliding windows is aimed at distinguishing abrupt changes in SCOT model
from its small deviations.

The speed up of SCOT training of the sparse m-MC with a large alphabet size or
for multichannel online SCOT training prompted development in section 8 of our novel
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parallel implementation of the algorithms developed earlier in Rissanen (1983); Mächler
and Bühlmann (2004) et al without quoting their consistency results.

Our simulation algorithm for section 3.1 is outlined in Appendix.

2. Approximation by SCOT

2.1. Review of previous approaches to m-MC approximations

We consider a strictly stationary process X(t) over a finite alphabet X of cardinality |X |
and discrete time: Xt,−∞ < t < ∞, with potentially infinite memory which can be ap-
proximated uniformly by an m-Markov chain (UA-m-MC condition).

By this we mean that for any ε > 0 there exists a positive integer m(ε) > 0 such that

|P (X0|X−1−∞)− P (X0|X−1−m)| < ε

for almost every X0 and past sequences X−1−∞.
Remark 1. Apparently, a uniform version of absolute mixing — attributed to A.N. Kol-

mogorov in Volkonskii and Rozanov (1959) — with exponential memory decay can guarantee
a uniform approximation by an m-MC.

Numerous conditions of strong mixing sequences are reviewed in Bradley (2005). The-
orem 1.2 and Remark 3 in Bradley (1989) assure that a very artificial stronger version of
absolute regularity is equivalent to the fact that the sequence is m-MC for some m.

2.2. Sparse m-MC approximations

Assume now the UA-m-MC condition of a stationary sequence x∞−∞ and fix m(ε) of the
approximating m-MC which is assumed ergodic. Sequences xm1 are called m-grams. Let us
introduce contexts for each of |X |m different realizations am1 of m-gram.

The context to m-gram am1 is its final part of minimal length l(am1 ) such that the
conditional distributions P (Xm+1|x, amm−l) do not depend on prefix x up to joint error
probability < ε. This statement is described by simultaneous validity of obvious A×(A−1)
double inequalities. Not occurring m-grams are ignored. To streamline introduction, we
assume that there are no such m-grams. Such a twice approximated stationary sequence
will be called ε-SCOT with small abuse of notation.

Finally, the memory spectrum M = m2m
1 is the |X |m-vector of context lengths along

|X |m paths from the root to the past showing distribution of the memory size sufficient for
predicting the root symbol distribution.

We combine all preceding developments into the following:
Definition. If a UA-m-MC has a memory spectrumM, then X∞−∞ is an ε-SCOT with

the corresponding context length distribution.
We say that X∞−∞ has a sparse m-MC representation, if the average context length

satisfies:

|X |−m
|X |m∑
i=1

Emi << m.
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Widespread sparse processes in nature phenomenon are explained by the ‘Occam razor’
or ‘Bottleneck’ popular philosophical principles.

Averaging context lengths over their stationary distribution gives a better sparsity
indicator—the mean prediction length. The average prediction length is a preliminary
indicator before the stationary distribution for the contexts is found. The median, or an-
other quantile collection, or other functions of M over the stationary distribution can be
also used for defining sparsity. Many examples of stationary distribution evaluation among
various SCOT modeling results are in Ryabko et al. (2016).

If under UA-m-MC condition, we are given a long string with a vast collection of m-
grams, then the probability context length distributions can be replaced with their corre-
sponding consistent frequencies. This allows the sparse m-MC consistent training based
on choosing as contexts the strings of the past with small Empirical Shannon Information
(ESI), see Galves and Loecherbach (2008); Mächler and Bühlmann (2004); Rissanen (1983).
A version of SCOT training on a cluster of computers valid for a large alphabet is described
in our section 8.

Remark 2. Another indicator of sparsity is the entropy rate of n-string which is much
lower for the UA-m-MC with sparse memory than a general linear one. For example, the
entropy rate of arbitrary n-string in the Comb model, (Ryabko et al., 2016), does not exceed
a const.

3. Asymptotic Normality of additive transition functions

Ryabko et al. (2016); Malyutov and Zhang (2015) and especially Zhang (2016) established
the equivalence of a perfect memory sparse SCOT to 1-MC with state space consisting of
the m-MC contexts which we call alphabet A of cardinality A . For not perfect memory
sparse SCOT, its perfect memory sparse envelope studied in (Zhang, 2016) plays this role.
Thus, by first applying UA-m-MC and M conditions, we reduced a stationary sequence to
an m-MC with sparse memory structure, and now reduce it further to a 1-MC with
alphabet A.

We develop further asymptotic theory mostly for fixed A and large sample size and,
therefore, for a finite ergodic MC suppressing arbitrary ε > 0 in previous approximations.

LetXi, i = 0, 1, . . . be the subsequent values of ergodic MC with alphabetA = {1, . . . , A}
and transition matrix P = (pjk, 1 ≤ j, k ≤ A);π = π(0) be the row-vector-initial distribu-
tion of X0 and π∗ be the stationary π. Finally, let f(·, ·) be a real function on A×A. We
call Sn =

∑n
i=0 f(Xi, Xi+1) an additive transition function (ATF) of MC Xi. An important

ATF example is the loglikelihood ln(θ) of a string Xn
0 depending on vector θ of all transition

probabilities and the loglikelihood ratio rn(θ, θ′) which asymptotic representation in section
5 establishes the LAN property.

3.1. Ouverture: asymmetric cyclic RW example

To illustrate what happens when both A and sample size N grow to infinity, let us consider
the asymmetric cyclic random walk (RW).

The alphabet consists of equidistant circumference points exp (2ikπ/A), k = 0, 1, . . . , A−
1, i is the imaginary unit. The asymmetric cyclic random walk stays in the same state or
jumps to the nearest left state with probabilities 1/2. Introduce θ = exp (2iπ/A), sr =
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Histogram

((1/2)(1+θr). Equation (2.11) of (Feller, 1967) establishes the power n of transition matrix
spectral decomposition

p
(n)
jk = (A−1)

A−1∑
r=0

θr(j−k)snr . (1)

We see from (1) that eigenvalues of the transition matrix are O(A−1) apart as A→∞ which
means that we cannot separate the maximal of them from the rest and restrict spectral

expansion to just one ‘maximal summand’. The term p
(A/2)
jk=0 corresponds to the additive

state function for the indicator function of state A/2. Obviously, this function takes the
value 0, if the initial state is 1 and number of summands less than A/2. Distribution of the
sum is far from Normal, if few more summands are involved.

This fact is displayed in empirical histogram of visits to the state A/2 (fig.1), where the
sample size N is 20 times more than A as a result of 1000 simulations. It shows several
slightly intersected clusters far from the overall Normal histogram.

3.2. The AN of additive MC functions under fixed alphabet size

The most popular derivation of the CLT for MC nowadays is based on a reduction to the
more general Martingale CLT which requires rather cumbersome approximations to the
Poisson inverse-problem-like solution which is not straightforward — see e.g. Meyn and
Tweedy (1993).

To compose parts of derivation together, we outline a simpler approach based on results
of the Russian Probability school.
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Let e be A-column consisting of ones. For a real number t, introduce a new matrix P (t)
with entries pjk(t) = pjk exp(tf(j, k)) and start with an elegant expression of Sn’ moment
generating function (MGF):

Fn(t) = Eπ exp(tSn) = πPn(t)e. (2)

The proof of insufficient for our aims particular case of additive state function (ASF)
(where f(·, ·) depends only on its second argument) is displayed in (Tutubalin, 1992), pp.
230-232, and erroneously attributed there to A. A. Markov. The origin of this formula
remains unclear to us. A. A. Markov actually used a cumbersome method of moments for
deducing AN of Sn. We omit the detailed derivation of this formula. It is straightforward via
sequential conditioning. At first E(E(Ft|Xn−1

0 )) = Fn−1(·)P (t)e, then similar conditioning
on Xn−2

0 , etc.
To simplify further exposition, let us assume that all entries of P = P (0) (and therefore

also of P (t)) are positive. In view of ergodicity of P = P (0), this is certainly valid for some
power of P = P (0) — see Feller (1967) — which is sufficient for our aims in this paper.
Thus, pjk(t) = pjk exp(tf(j, k)) is also strictly positive. The Perron-Frobenius theorem
implies that the isolated eigenvalue λ(t) of P (t), 0 ≤ t <∞ with the largest real part exists.
Due to analicity of P (t) and the theorem of implicit functions, this unique root λ(t) of the
equation

det(P (t)− λI) = 0, (3)

is an infinitely differentiable function of t in a neighborhood of λ(0) = 1. Attached to
eigenvalue λ(t) are row eigenvector qt → π∗ and column eigenvector e(t) → e as t → 0
infinitely smoothly depending on t, with unit scalar product. Then P1(t) = λ(t)e(t)qt
is such that P (t) − P1(t) = P2(t) is exponentially smaller than P1(t) due to the Perron-
Frobenius theorem. For our aims in this paper, P2(t) can be ignored.

Ergodicity: A normalized additive MC functions (ATF and ASF) shifted with time
are obviously a stationary process converging to µ = ESn/n as n→∞.

The proof — see Tutubalin 1992 (pp. 236–237) — of the AN of normalized additive
ASF functions via applying twice the L’hospital’s rule to its MGF is pretty standard given
our representation of its MGF and similar to that in the IID case, see e.g. Grinstead and
Snell (2006). The proof in the ATF case is essentially the same.

To prove the weak convergence to the limiting Normal approximation (possibly singular)
under usual

√
N normalization for centered ATF, we evaluate the second derivative of its

‘reduced’ MGF P 0
1 (t) at t = 0.

Terms involving the first derivative of the centered P 0
1 (t) vanish at t = 0 due to centering.

Only one term remains

[(π(t/
√
N)e)(π∗e(t/

√
N)) + o(1)][1− (tσ)2/2n]n → exp−(tσ)2

as n→∞. This finishes the proof according to well-known classical Probability approx-
imation theorems since the limiting MGF is that of the standard Normal distribution.

Of some interest is that the limiting distribution under standard normalization can be
singular due to the null limiting variance.

As a consequence, in this case there is no need for
√
N normalization, and the residual

distribution is bounded.
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A simple example of such anomaly for additive state function is the symmetric cyclic
RW with four states and equally likely transitions to each of two neighbors, and alternating
±1 function between neighboring states. Values ±1 necessarily alternate also in time killing
each other. Thus S2n = 0, while S2n+1 = ±1 for all n and the standard 1/

√
n normalization

provides the limiting null variance.

4. The Edgeworth expansion of additive MC functions under fixed
alphabet size

Asymptotic expansion of additive functions appeared in Bolthausen (1980, 1982), Mali-
novsky (1987), Jensen (1989) under various conditions which certainly include the case of
a duly smoothed finite ergodic MC. An appropriate smoothing procedure is described in
theorem 2, XVI,4, (Feller, 1970).

In Malinovsky (1987) the first terms of asymptotic expansion under Cramer-type con-
ditions are:

P ((N−1/2
N∑
i=1

f(xi)) ≤ x) = Φσ(x) + φσ(x)q(x)N−1/2 +O(N−1).

Here φ and Φ are PDF and CDF of the central Normal RV with StD σ, q is expressed
in terms of the first Hermite polynomial 1− x2.

The principal multiplier (µ3/σ
3)/
√
N of the residual term may grow with A which

worsens the precision of approximation. Here µ3, σ are the stationary central third moment
and standard deviation of Xi respectively.

In particular, for our circular MC of section 3.1 and the indicator function of state A/2 as
an example of additive function, the mean is A−1, µ3 = A−1 +O(A−2), σ2 = A−1 +O(A−2).
Thus, the principal multiplier of the residual O(A1/2/

√
N → 0, only if (A/N) → 0 as

N →∞.

5. The Local Asymptotic Normality of SCOT under a fixed context
cardinality

One of our principal aims is to outline the Local Asymptotic Minimaxity (LAM) and the
Locally Asymptotically Most Power (LAMP) of the likelihood based inference and of its
certain approximations. The LAM in parameter estimation as formally defined further in
section 6, means that the deviation of the estimate from the true parameter value θ∗ is as
minimal as possible in the local minimax sense.

It is implied by the LAN condition — see e.g. Veretennikov (2000); Roussas (1972) —
for MC which will be introduced immediately. The principal role in the LAN proof is played
by the AN of the ATF functions — established in section 4 and missing in Veretennikov
(2000). Two elementary corollaries of ergodicity ending the LAN proof and best exposed
in Veretennikov (2000) are omitted here.

The Local Asymptotic Normality (or simply LAN) introduced in Le Cam (1960) is the
following decomposition of

rn(u) = ln[Pθ+n−1/2u((Xn
0 ))/Pθ((X

n
0 ))],u ∈ RA :
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rn(u) = uTλ− (1/2)uTJu + ψn(u),

where
λ ∼ N(0, J), J = Eπ∗∂r(θ)∂r(θ)T

is the limit of the mean in the ATF r(·) Jacobian multivariate AN approximation.
and ψn(u) converges in Pθ(X

n
0 )- probability to zero.

This expansion for a univariate parameter via the Taylor expansion of the second order
is proved in Veretennikov (2000) referring to the much more involved exposition in (Roussas,
1972) for the AN proof of the ATF in general case under standard regularity conditions.

The uniformity of the residual ψn(u) convergence in P
(n)
θ - probability to zero can be

proved by the more elegant Lagrange-type integral representation of the second order
residual in the Taylor expansion as in Malyutov and Protassov (2002). Namely, for all
K > 0, a > 0

lim
n→∞

Pθ+n−1/2u,sup ||u||<K(|ψn(u)| > a]) = 0.

6. The Local Asymptotic Minimaxity of Likelihood-Ratio-like tests
under a fixed alphabet size

Let the distribution family Pθ satisfy LAN condition in θ = θ∗ with the identity Fisher
information matrix, || · || be the Euclidean norm. A function w(·) : Rp → R+ is called
bowl-shaped if {u| w(u) ≤ a} are closed bounded symmetric convex sets for any a ≥ 0.
An increasing continuous bowl-shaped function w(·) : R+ → R+, w(0) = 0, is called a loss
function.

The fundamental Hajek’s lower bound for the LAM-risk of any estimate Tn for any loss
function w(·) and δ > 0:

lim inf
n→∞

sup
||θ−θ∗||<δ

Eθw(n1/2||Tn − θ||) ≥
∫
w(u)(2π)−1/2e−|u|

2/2du,

holds. In general, the positively definite Fisher information J determines the norm in
the risk function definition.

The LAM property of the Maximum Likelihood (ML) estimate and of the Fisher score
update to ML given a qualified consistent prior estimate for θ are exposed in Veretennikov
(2000); Roussas (1972). Malyutov and Protassov (2002) shows sufficiency of a usual con-
sistent estimate for θ for LAM of the Fisher score update given the uniform LAN property.

The third Le Cam’s lemma (Chibisov, 2009; Roussas, 1972) proves that the AN of a
statistic under the null hypothesis implies its AN under the alternative distribution provided
contiguity — defined in Roussas (1972) — and the LAN condition.

7. Locally asymptotically optimal tests

The most transparent overview of the Locally Asymptotically Most Powerful (LAMP) tests
under LAN condition for I.I.D samples is in Chibisov (2009). Given LAN property, it differs
insignificantly from the one for MC in Roussas (1972).
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The main distinction of the LAMP approach originated in Le Cam’s works from the
traditional one, is that the ‘close’ alternatives u(n−1/2) are considered for the sample size
n → ∞. This enables limiting positive significance level and power asymptotically and a
transparent application of the familiar testing shift theory for multivariate Normal. We now
give schematic simplified overview of this theory following Chibisov (2009) and shortening
our notation for transparency in an obvious way.

The Neyman-Pearson lemma gives the most powerful test of significance level α against
alternative u(n−1/2) as

rn(u) = ln[Pθ+n−1/2u((Xn
0 ))/Pθ((X

n
0 ))] > Cn,α,

with parameter Cn,α determined from equation Pn,0(rn > Cn,α) = α.
The LAN condition converts this into the asymptotic equality Cn,α = zα

√
Ju−uTJu/2

which is equivalent to
Pn,0(rn < x)→ Φ((x+ uTJu/2)/

√
uTJu)

The power is βn,u = Pn,u(rn,u > Cn,α) as n→∞ implying

Pn,u(rn < x)→ Φ((x− uTJu/2)/
√

uTJu)
Thus, βn,u = Pn,u(rn > zα

√
Ju) → 1 − Φ(zα −

√
Ju) = Φ(

√
Ju − zα) which means

— see e.g. Chibisov 2009, (§8.1.19) — that the limiting asymptotic power of our test
is asymptotically maximal for every given alternative u in view of the Neyman-Pearson
lemma. Thus, our test is LAMP.

Let us apply the preceding theory to the homogeneity of multivariate distributions of
the large strongly stationary ergodic training string T and a query string Q. We use the
nonparametric test of Malyutov et al. (2013).

The first stage is estimation of the SCOT model of the string T following the algorithm
in Mächler and Bühlmann (2004). We refer to this publications for the details.

We assume
1. the T ’s and Q’s good approximability by a sparse SCOT and
2. fulfillment of the LAN condition for the equivalent 1-MC over their contexts.
We cut the query string into K slices of the same length. Then, using the SCOT model

of T we find the loglikelihoods LQ(k) of query slices Qk and of strings Sk simulated from
the training distribution of the same size as Qk, k = 1, . . . ,K, for constructing simulated
strings, see e.g. algorithm in Mächler and Bühlmann (2004).

We then find log-likelihoods LQ(k) of Qk, LS(k) of Sk using the derived probability
model of the training string and the average D̄ of their difference D which approximates
the likelihood ratio statistic discussed above. The averaging over slices is used for empirical
evaluation of the loglikelihood variances since our testing homogeneity problem is completely
nonparametric.

We assume though that the multivariate distributions of the training and the query
strings are contiguous. In particular, for literary applications this assumption means that
both texts are written in the same language, and admissibility of texts is the same for T
and Q.

Next, due to the asymptotic normality of log-likelihood increments both for the null
hypothesis and alternative (third LeCam’s lemma), we can compute the usual empirical
variance V of D̄ and the t-statistic t as the ratio D̄/

√
V with K − 1 degrees of freedom
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(DF). We find K∗ from the empirical condition that t(K∗) is maximal. Then, the p-value
of homogeneity is evaluated for the t-distribution with K∗ − 1 DF.

8. Algorithms

The first SCOT training algorithm was constructed and its consistency proved in Rissa-
nen (1983). The open source algorithm ’Context’ in language R appeared in Mächler and
Bühlmann (2004). Our statistical application of this algorithm to stationary or piecewise
stationary financial, literary and seismic data were described in Malyutov et al. (2013);
Ryabko et al. (2016). Refined consistency proofs of the ’Context’ consistency are e.g. in
Bühlmann and Wyner; Galves and Loecherbach (2008). This section describes a novel paral-
lel implementation of the algorithm similar to ’Context’ which is created for fast processing
more complex data sets including those with larger alphabet sizes. We do not review proofs
of ’Context’ consistency.

Algorithm ’Context’ in Mächler and Bühlmann (2004) is reasonably fast on a PC, if
sparsity of the MC memory structure is valid and the alphabet size A is not larger than
27. The criterion of selecting contexts according to their appropriately small Empirical
Shannon Information (ESI), (see p.13, section 8.2) usually stops back-processing of the
training string long before the chosen horizon. All directions backwards from the root are
processed in parallel making the algorithm much faster.

8.1. Pre-processing. Alphabet Correction of Corporas

The process of transforming a literary corpus for converting all characters to lower-case,
validating against an alphabet and replacing non-alphabet symbols to spaces or empty-
spaces as appropriate1. Any characters that are in the alphabet will be kept, and any
multi-space sequences are converted to one space. The only exception is with apostrophes,
which are converted to an empty space and newline character which is converted to a space
in order to have the text be a sequential sequence of alphabet-validated corpus. All names
and dialogues also need to be removed from the corpora in order for proper analysis.

8.2. Training Stochastic COntext Trees (SCOT)

The Stochastic COntext Trees (SCOT) training program — written using the Python pro-
gramming language — builds the stochastic trees starting from stage 1 and proceeding to
the horizon stage of interest. Potential contexts having an ESI value smaller than ε become
contexts, and would be omitted from processing in the following stages. Another improve-
ment in parallelism is processing of a potential context by hashing into sets — for storing
count statistics — and for quickly determining if it should be processed on one node of
many, by modulo of the hash with the total number of compute nodes. The assumption
here is that there we have many (hundreds) of compute nodes available to process a cor-
pus into a SCOT, and we follow the MapReduce (Dean and Ghemawat, 2004) paradigm in
building up a SCOT. The allocation of compute nodes was performed using the open-source
SLURM package (SLU), developed at the Lawrence Livermore National Laboratory. The

1. For example, a dash (-) would become a space (“ ”), while a period (.) will become an empty space(“”).
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function that initiates the construction of a SCOT is the run stage() function described
on the following page. The key to the determination of a context if ESI falls below the ε
threshold.

(a) When parsing a corpus one can encode sequences of
string-contexts with their corresponding counts, by travers-
ing to the past.

(b) Contexts can be
joined as a tree.

Figure 1: A SCOT being trained for a given sequence.

The leaves of a SCOT will contain the probabilities at the root (future) symbol:

Figure 2: EXAMPLE : Notice that in the sequence 001011110101011 - for the two

underlined contexts - P ( 1 | 01 ) =
1

4
, and the complement would be

P ( 0 | 01 ) = 1 − 1

4
=

3

4
. The probability of a future symbol given its past is

P ( SymbolFUTURE | ContextPAST ).

As all stages are performed using the same (run stage()) algorithm, and start from 1.
If for a specific stage some subsequences become contexts because they fall below the ε
threshold, then those will not be processed in subsequent stages.
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In the (run stage()) algorithm — for each stage — the first input is the full sequence of
the text (full seq), which is used for building up the counts for the matrix (Fig. 3). The
second input is the stage to be processed (Stage). The third input is the set of confirmed
contexts (Confirmed Contexts) of previous stages, which if encountered in the current
stage can be ignored from processing. The fourth input is the (ε) threshold used by the
RissanenESI() in (Algorithm 3). The fifth and sixth inputs (node id and total nodes) are
used by (Algorithm 6) in determining if a possible subsequence for context-validation should
be processed on the current node for optimal distributed computing. The subsequences that
are equal to or fall below the ε threshold are considered contexts, and will be saved into a
file called contexts stage NUMBER.csv — with the context string appended to a file called
contexts list.csv for use in subsequent stages — otherwise they are saved into a file
called esi stage NUMBER.csv. The format for each saved row in either staged files is as
follows:

CONTEXT , ESI Score , Alphabet probability distribution at the leaf

The leaf probability distribution is formatted as a quoted alphabet symbol, with its
determined probability value. Such a format allows for direct selection of the context or ESI
value — since it is comma-separated — and for the symbol probability as it is subsequently
semicolon-separated. Below is an example of one such row:

ann, 1.89413252, " "=0.03653586 ; "a"=0.03653586 ; "b"=0.03653586 ;

"c"=0.03653586 ; "d"=0.03653586 ; "e"=0.03653586 ; "f"=0.03653586 ;

"g"=0.03653586 ; "h"=0.03653586 ; "i"=0.03653586 ; "j"=0.03653586 ;

"k"=0.03653586 ; "l"=0.03653586 ; "m"=0.03653586 ; "n"=0.03653586 ;

"o"=0.05006766 ; "p"=0.03653586 ; "q"=0.03653586 ; "r"=0.03653586 ;

"s"=0.03653586 ; "t"=0.03653586 ; "u"=0.03653586 ; "v"=0.03653586 ;

"w"=0.03653586 ; "x"=0.03653586 ; "y"=0.03653586 ; "z"=0.03653586

On the following page is the algorithm for processing a stage:

12



SCOT Approximation, Training and Asymptotic Inference

Algorithm 1: The run stage() function on one node.

Inputs:
full seq: The sequence of symbols in the corpus.
Stage: The current stage being processed.
Confirmed Contexts: The list of confirmed contexts, which encountered
can be ignored from being processed for context-checking.
ε: The threshold value for ESI.
node id: Node ID out all nodes.
total nodes: Total number of compute nodes.

Outputs:
Writes the contexts (≤ ε) and non-contexts (> ε) for a specific stage.

1 begin
2 // Have a baseline minimum ESI value to compare with

previously a context value = −107

3 // Filter out any text that is already an established context, and
4 // Process the counts for new non-contexts

populate NonContextSequenceCounts and
5 FilterOutEstablishedContexts in Corpus(
6 full seq, Stage+ 2, Stage, 0, |full seq| − 1,
7 Confirmed Contexts, node id, total nodes)

8 // Initialize the current node’s ESI statistics for all sub-sequences
9 // processed stage ESI = {}

10 // Process all sequences from all buckets, distributed by node-id
11 for SEQUENCE BUCKET ∈ SEQUENCE BUCKET LIST do
12 for SEQUENCE ∈

SEQUENCE BUCKET LIST [SEQUENCE BUCKET ] do

13 if should context be processed on this node(
SEQUENCE TO PROCESS, node id, total nodes ) then

14 SEQUENCE ESI =
RissanenESI(SEQUENCE, alphabet)

15 stage ESI[SEQUENCE] = SEQUENCE ESI

The run stage() function is continued on the following page.
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Algorithm 2: (Continued) The run stage() function on one node.

1 begin
2 // Build Contests if ESI ≤ ε
3 contexts less equal epsilon = {}
4 for Context ∈ stage ESI do
5 // The 0-position stores the ESI value
6 if stage ESI[Context][0] ≤ ε then
7 if stage ESI[Context][0] > previously a context value then
8 contexts less equal epsilon[Context] = stage ESI[Context]

9 // Build Non-Contests if ESI > ε
10 ESI stage with no contexts = {}
11 for Context ∈ stage ESI do
12 if stage ESI[Context][0] > ε then
13 ESI stage with no contexts[Context] = stage ESI[Context]

14 // Write only greater than epsilon
15 write not contexts file(ESI stage with no contexts, Stage, node id)
16 // Write out Contexts in another file
17 write contexts file(contexts less equal epsilon, Stage, node id)
18 for Context ∈ contexts less equal epsilon do
19 confirmed contexts list =

update confirmed contexts list(new context)

20 write contexts list(contexts less equal epsilon, node id)

The key to the determination of a context if ESI falls below the ε threshold:

ESI =
∑
i

∑
j

i.s.j ∗ log2

 i.s.j

i.s
s.j

s

 ≤ ε
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This is performed by populating a matrix for each context-check, which is initially
populated by the counts of each substring occurrence, and Laplace-smoothened by adding
0.1 to the matrix, which is described in [Fig. 3].

Figure 3: The matrix for used for ESI calculation regarding context-checking.
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The function performing this calculation is called RissanenESI() and is described in
the following pages.

Algorithm 3: The RissanenESI() function on one node.

Inputs:
current context: The context to check and build the matrix for.
alphabet: The alphabet to use.

Outputs:
Returns a tuple of the ESI value and the leaf-distribution.

1 begin
2 // The Laplace smoothing parameter
3 laplace offset = 0.1
4 // Initialize the matrix with zeros
5 count matrix = zeros(|alphabet|, |alphabet|)
6 // Populate the matrix
7 for prefix char index ∈ {0, . . . , |alphabet| − 1} do
8 for suffix char index ∈ {0, . . . , |alphabet| − 1} do
9 lookup sequence = alphabet[prefix char index] +

current context+ alphabet[suffix char index]

10 // Get the sequence counts previously populated
count matrix[prefix char index][suffix char index] =
retrieve STAGE SEQUENCE COUNTS(lookup sequence)

11 i symbols j count matrix = count matrix+ laplace offset
12 s = 0.0
13 // Build i.s
14 i symbols count matrix = zeros(|alphabet|, 1)
15 for i ∈ {0, . . . , |alphabet| − 1} do
16 is = 0.0
17 for j ∈ {0, . . . , |alphabet| − 1} do
18 i s = i s+ i symbols j count matrix[i][j]

s = s+ i symbols j count matrix[i][j]

19 i symbols count matrix[i] = i s

20 // Build s.j
21 symbols j count matrix = zeros(|alphabet|, 1)
22 for j ∈ {0, . . . , |alphabet| − 1} do
23 sj = 0.0
24 for i ∈ {0, . . . , |alphabet| − 1} do
25 s j = s j + i symbols j count matrix[i][j]

26 symbols j count matrix[j] = s j

The RissanenESI() function is continued on the following page.
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Algorithm 4: (Continued) The RissanenESI() function on one node.

1 begin
2 // Initialize the ESI value
3 ESI sum = 0

4 leaf distribution = {}

5 for i ∈ {0, . . . , |alphabet| − 1} do
6 for j ∈ {0, . . . , |alphabet| − 1} do

7 i s j = i symbols j count matrix[i][j]

8 i s = i symbols count matrix[i]

9 s j = symbols j count matrix[j]

10 ESI sum = ESI sum+ (i s j) ∗ log2((i s j/i s)/(s j/s))
11 s j = symbols j count matrix[i]

12 // Save the array as a string in order to be saved to a file later on
leaf distribution[alphabet[i]] =
process numpy array value to string(sj/s)

13 return [ESI sum, leaf distribution]

These set of algorithms are always started with Stage 1 in order to build up the contexts.
At the end of each stage the contexts are collected from all the nodes and stored into one
file, which will be used as an input for the following stage. This writing of the files by each
node is equivalent to the Map phase of the MapReduce algorithm, while the collection is the
Reduce phase of it. In order to build the final SCOT file to a specific stage, all the contexts
to the desired stage are combined and the horizon is consolidated with all the non-contexts
of only the specific stage.

The objects for parallelism in the SCOT construction are substrings, which are tested
for being contexts via the RissanenESI function. Such potential contexts would require
the prefix and suffix counts to be populated. To parallelize the processing of contexts, a
hash function is implemented to construct a numerical value out of the characters forming
the context string, which subsequently is modulo with the number of nodes (total nodes
variable). This way each compute node will process a portion of the potential contexts,
which can be many in latter stages of a SCOT. The hashing algorithm for strings (Algorithm
5) — which is described on the following page — is a common one (Kernighan and Ritchie).
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Algorithm 5: The hash of sequence() function on one node.

Inputs:
sequence of symbols: The sequence of symbols to hash.

Outputs:
Returns the hash of the sequence of symbols.

1 begin
2 // A large prime number
3 number of bins = 99971
4 hash key = 0
5 odd integer multiplier = 31
6 for i ∈ {0, . . . , |sequence of symbols| do
7 hash key = ((hash key ∗ odd integer multiplier) +

get ASCII value(sequence of symbols[i])) mod number of bins

8 return hash key

The hash function is applied by the following algorithm, in order to determine if a
sequence should be processed on a specific node out of many allocated ones:

Algorithm 6: The should context be processed on this node() predicate
function to determine if a context should be processed on the current node.

Inputs:
sequence of symbols: The sequence of symbols to determine it should be
processed.
node id: Node ID out all nodes.
total nodes: Total number of compute nodes.

Outputs:
Returns True if sequence of symbols, otherwise False.

1 begin
2 hash key = hash of sequence(context to check)
3 return ((hash key % total nodes) == node id)

The medium-sized prime number 99971 is used to distribute the storage of data for
load-balancing the retrieval of sequence counts. Each sequence thus would be stored in a
list (chained) in the bucket denoted by the modulo — because of possible collisions — which
would look as follows:
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Figure 4: The process by which a subsequence is stored into the hash-based bucket data-
structure for optimal retrieval.

The populate NonContextSequenceCounts and FilterOutEstablishedContexts in Corpus
in the run stage performs a check — via a predicate helper function — on the potential con-
text to determine if it should be processed on the compute node as follows ((hash key % total nodes) ==
node id). If the potential context is run on a particular node then a helper function per-
forms an initial check by comparing the potential context subsequence against the keys of
known previously determined contexts. If it is a context then the prefix and suffix counts
encountered across the corpus for such a subsequence is not performed. Otherwise, that
count is then incremented accordingly.

8.3. Homogeneity Testing For Authorship Attribution

We now describe the Homogeneity Test using a SCOT model and two corpora for author-
ship attribution outlined at the end of section 7. The idea is to splice each corpus into
k slices and using the SCOT walk along each segment character-wise. At each position,
that will be considered the future character and by walking backward on subsequences of
characters previous to it, we search for the corresponding SCOT context. If one is found
then we retrieve the probability of the future character in the leaf-distribution, otherwise
return a small probability of 10−10. For each segment, the log of these probabilities will
be evaluated and summing the logs of these probabilities we to obtain the log-likelihood
of that segment. Since each segment does not have a significant past of characters at the
beginning, the last 50 characters of the corpus will be attached to it for evaluation. As the
slice progresses more of the sequence will be related to its corpus.

Let us apply the theory of the section 7 to the homogeneity testing of multivariate dis-
tributions of the large strongly stationary ergodic training string T and a query string Q.
We use the nonparametric test of (Malyutov et al., 2013). The first stage is estimation of
the SCOT model of the string T following the algorithm in (Mächler and Bühlmann, 2004).
We refer to this publications and our section 7 for details.
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We summarize our test statistics by the following equation:

Homogeneity Test =

(
maximize

k

(
∑
LT −

∑
LQ)/

√
k√

V AR(LT ) + V AR(LQ)

)
The key function that performs the likelihood calculation is called get log likelihoods()

and described in the following pages, which was written using the Python programming
language.

Algorithm 7: The get log likelihoods() function on one node.

Inputs:
Text corpus file: The corpus a text.
Text SCOT : The SCOT trained a text.
k number of segments: k segments to splice the corpora in order to
calculate the likelihood for each.
node id: Node ID out all nodes.
total nodes: Total number of compute nodes.

Outputs:
Returns the log-likelihoods of segments run a node.

1 begin
2 log likelihoods = []
3 // The segment index starts at 1 and proceeds to k
4 for i ∈ {1, . . . , k number of segments} do
5 sequence segment =

get segment(Text corpus, i, k number of segments)
6 // The hash of the string with the modulo of the total nodes is

performed here
7 if should sequence be processed on this node(sequence segment,
8 node id, total nodes) then
9 log likelihood within segment = 0.0

10 for i ∈ {0, . . . , |sequence segment| − 1} do
11 log likelihood within segment =

log likelihood within segment+
log(get future symbol likelihood(Text corpus,

12 sequence segment, i, T ext SCOT ))

13 log likelihoods.append(log likelihood within segment)

14 return log likelihoods

The corpora are limited to ensure equal length and equal segment sizes. We ran a test
of the first 1000 characters with k = 100 after post-processing of Chapter 1 of Go Set a
Watchman against Chapter 1 of To Kill A Mockingbird, both by Harper Lee to test style
homogeneity of these novels. The SCOT was trained against Go Set a Watchman to stage
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15 with an ε = 3. We chose these settings in order to maximize finding contexts in the
SCOT in order to best determine the chosen contexts over this large period of time. The
t-test result was 2.70299491543 which shows significance of style difference. We generated
the q-q plot and distribution to illustrate the results:

The q-q plot of Watchman versus Mockingbird.

The distributions of Watchman versus Mockingbird.
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Our experience shows that attempts to deliberately change style usually do not lead to
significant changes of microstyle. Our discrimination method apparently uses unconscious
phonetic habits. This should be confirmed by further studies.

8.4. Follow-Up Analysis of the the Most Contributing Patterns

In case there is a significant difference between corpora in the Homogeneity test, then using
the number of slices k derived above we then determine the most contributing patterns by
running CorpusT against SCOT T , and CorpusQ against SCOTQ. These generate counts
for each context in each k-segment populating the following matrices:

The matrices used to populate the contexts in each segment of each corpus (given the

corresponding SCOT process) are stored into the hash-based bucket data-structure for optimal

retrieval.

These counts are generated via the following four statistics per context i: E[ContextTi ],

E[ContextQi ], V AR[ContextTi ], and V AR[ContextQi ]. These will be then be used to get the
maximum contributing patterns (CP) in T and Q as follows:

CP T =

maximize
i

(E[ContextTi ]− E[ContextQi ])/
√
k√

V AR(ContextTi ) + V AR(ContextTi )



CPQ =

minimize
i

(E[ContextTi ]− E[ContextQi ])/
√
k√

V AR(ContextTi ) + V AR(ContextTi )


Such statistics are sorted by the respective CP T and CPQ to determine the most con-

tributing patterns in each corpora. As is previously described, the parallelism applied here
on each node is by performing the hash of the context with the modulo of the total nodes,
in order that it should be processed by the node.

Our results are available by request.

9. Discussion, open problems and acknowledgments

Our presentation on modeling and asymptotic inference of strongly mixing stationary se-
quences differs drastically from the material presented in traditional courses on stationary
processes and connects this discipline with the classical MC-theory.
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Our AN derivation for ATF and of LAN property of SCOT models is new and seems
transparent. Parallelism in training SCOT enables possibility to run it with various thresh-
olds for the ESI-criterion and choosing most relevant one. This was only asymptotically
studied before.

A formalization of convergence of strongly mixing stationary sequences tom-MC remains
the main task to clarify.

Another challenge is the relation of the memory-spectrum and the entropy-based ap-
proaches for characterizing the sparsity of approximating m-MC.

The main remaining hard asymptotic problem is to prove accurate asymptotic results
for the case of the number of SCOT contexts rising simultaneously with the sample size.

We are grateful to Professor Cooperman and the National Science Foundation, NSF
Award OCI 12-29059, “MRI Consortium: Acquisition of a heterogeneous, shared, com-
puting instrument to enable science and computing research by the Mass. Green High
performance Computing Consortium.” We are also grateful to V. N. Tutubalin for the
useful discussion.
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