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Abstract

The paper presents some possible approaches to the combination of Conformal Predictors
in the binary classification case. A first class of methods is based on p-value combination
techniques that have been proposed in the context of Statistical Hypothesis Testing; a
second class is based on the calibration of p-values into Bayes factors. A few methods from
these two classes are applied to a real-world case, namely the chemoinformatics problem
of Compound Activity Prediction. Their performance is discussed, showing the different
abilities to preserve of validity and improve efficiency. The experiments show that P-value
combination, in particular Fisher’s method, can be advantageous when ranking compounds
by strength of evidence.

Keywords: Conformal Prediction, Confidence Estimation, Chemoinformatics, Non-Conformity
Measure

1. Introduction

Conformal Predictors (CP) (Vovk et al., 2005; Gammerman and Vovk, 2007) provide a
theoretically sound way to generate predictions with a chosen rate of errors. This property,
referred to as validity, is of considerable interest in many application domains. CP prescribe
the way to generate prediction sets (so the prediction is multi-valued, as opposed to being a
single value, as it is generally the case), so that the validity property is guaranteed. It is of
course desirable that the prediction sets be as small as possible. A CP that outputs smaller
prediction sets than another is said to be more efficient. Since validity is guaranteed, the
challenge becomes one of improving efficiency. The efficiency of a specific CP depends on
the specific Machine Learning algorithm, referred to as the underlying algorithm, that the
CP is built on. More accurate underlying algorithms result in smaller prediction sets, hence
in higher efficiency of the CP.

The objective of this paper is to explore ways to improve Conformal Prediction by some
form of ensembling. Ensembling appears to be a recurrent theme of winning submissions
to Machine Learning contests. In itself, the term ensembling can be taken to designate
different specific strategies. For instance, Bagging and Random Forests aggregate multiple
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potentially overfitting classifiers, whereas Mixture of Experts both foster specialization in
the component classifiers and learn which to choose for a given test object. The form of
ensembling investigated in this paper differs from either strategy. It differs from Bagging and
Random Forests in that it does not explicitly aim at combating overfitting and correlation
per se; it differs from Mixture of Experts in that it takes the component classifiers as a given
and does not ”encourage” their specialization. The approach investigated in this paper
takes its motivation from the intuition that intrinsically different algorithms are going to
make idiosyncratic errors in different parts of the data space and with different modalities.
The challenge is to find a method of wide applicability that combines the predictions in a
synergistic way.

2. Conformal Predictors

This short section recalls succinctly the key facts about Conformal Predictors. For a gentler
introduction the reader is referred to (Shafer and Vovk, 2008; Toccaceli et al., 2016). As-
suming that the training set is made up of ` independent identically distributed examples
(iid)1 (xi, yi), if x`+1 is a test example taken from the same distribution as the training ex-
amples, a Conformal Predictor assigns a p-value to a hypothetical completion (x`+1, y`+1),
i.e. a hypothetical assignment of a label y`+1 to the object x`+1. The definition of p-value
in this context relies on the notion of Non-Conformity Measure (NCM). The NCM is a
real-valued function α(z; z1, . . . , zk) that expresses how dissimilar an example appears to
be with respect to a bag (or multi-set) of examples, assuming they are all iid. A Non-
Conformity Measure can be extracted from any machine learning algorithm, although there
is no universal method to choose it.

Armed with an NCM, it is possible to compute for any example (x, y) a p-value that has
the following property: for any chosen ε ∈ [0, 1], the p-value of test examples (x, y) drawn
iid from the same distribution as the training examples are (in the long run) smaller than
ε with probability at most ε.

The idea is then to compute for a test object a p-value of every possible choice of the
label.Once the p-values are computed, they can be put to use in one of the following ways:

• Given a significance level ε, a region predictor outputs for each test object the set of
labels (i.e., a region in the label space) such that the actual label is not in the set no
more than a fraction ε of the times. This is called the validity property. It provides
a long term guarantee on the number of errors (where “error” is defined as “actual
label not in the prediction set”) in the long run. If the prediction set consists of more
than one label, the prediction is called uncertain, whereas if there are no labels in the
prediction set, the prediction is empty.

• Alternatively, one can take a forced prediction (where the label with the largest p-value
is chosen for a given test object), alongside with its credibility (the largest p-value)
and confidence (the complement to 1 of the second largest p-value).

There are two forms of CP: Transductive CP (TCP) and Inductive CP (ICP). TCP
is computationally expensive as the computation of the NCM is performed from scratch

1. in fact, even a weaker requirement of exchangeability is sufficient.
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for each object. Inductive CP instead requires just one training of the underlying, but it
requires that the training data set be split into a proper training set (to train the underlying)
and a calibration set (which is used to compute the NCM). Both the Transductive form
and the Inductive form of CP are proven to have the validity property.

Finally, the validity property as stated above guarantees an error rate over all possible
label values, not on per-label value basis. The latter can be achieved with a variant of CP,
called Mondrian CP. The label-conditional validity guarantee of Mondrian CP is particularly
relevant when the distribution of the label values is imbalanced.

3. Requirements for CP combination

The study of the problem of combining p-values to obtain a single test for a common hypoth-
esis has a long history, originating very soon after the framework of statistical hypothesis
testing was established (Fisher, 1932). A survey can be found in (Loughin, 2004). In its
more general form, the problem raised a lot of attention for its application to meta-analyses,
where the results of a number independent studies, generally with different sample sizes and
different procedures, are combined. The various methods that have been proposed over the
years have tried to cater for the different ways in which the evidence manifests itself. In
particular, some methods allow for weighting, thereby assigning more importance to some
p-values (for instance, in the case of meta-analyses, those corresponding to studies with
larger samples sizes). More importantly, each method is associated with a different shape
of the rejection region (the portion of the k-dimensional space of the k p-values being com-
bined for which the combined test of significance would reject the null hypothesis under
a chosen significance level ε). The shape reflects the different way in which evidence of
different strength is incorporated into the aggregated p-value. It has been observed that
there is no single combination method that outperforms all others in all applications.

The combination of p-values from different Conformal predictors on the same test object
is a very special form of the general problem outline above.

A method for the combination of Conformal Predictors should aim to:

• Preserve validity: for the output of the combination method to be a Conformal
Predictor, this is a necessary property.

• Improve efficiency: smaller prediction sets must result from a desirable method of
combination.

In practice, one is interested in the two desiderata above if the resulting p-values are to
be used to obtain prediction sets. There are domains of application where the p-values
can be used in other ways. An example which will be developed further in the sequel is in
the context of Drug Discovery: the p-values can be used to rank candidate compounds in
terms of the confidence in their activity (or lack of confidence in their inactivity), so that
an informed decision can be made as to which candidate compounds to choose for a new
batch of screenings.

There are two key observations that apply to p-values computed by Mondrian Inductive
Conformal Predictors (MICP):
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1. The p-values from the same Conformal Predictor for the various test objects do not
necessarily follow the uniform distribution. The p-values in Statistical Hypothesis
Testing are uniformly distributed by construction if the null hypothesis is true. Sim-
ilarly, when one examines the MICP p-values for a set of test objects, it is apparent
that only those for which the hypothetical label assignment is the correct one are
uniformly distributed. The p-values for the objects for which the hypothetical label
assignment is incorrect tend to have values towards 0.

2. The p-values from different Conformal Predictors for the same test object are not
independent. One has to expect that, when testing the same hypothesis with different
methods on the same object, the results will exhibit some degree of correlation. In
other applications of p-value combination, the issue may be less of a concern. For
instance, in meta-analyses of clinical trials, it is arguable that there is less correlation
because the trials are not reusing the same patients in the same groups (hopefully).
However, the one considered is certainly not the only context in which dependent
p-values are encountered and the issue has attracted some attention by statisticians.

4. Methods from Statistical Hypothesis Testing

As outlined in (Loughin, 2004), there are, broadly speaking, two classes of p-value combi-
nation methods: quantile methods and order-statistic methods.

Order-statistic methods (Davidov, 2011) are mentioned here for completeness. Given k
p-values coming from k experiments, the combining function is based on the order of the
p-values. For instance, a combination method might simply consist in taking the smallest
of the p-values; another method, the second smallest, and so forth. They are not considered
any further here because the more common forms would not produce p-values with the
validity property.

On the other hand, quantile methods can satisfy this requirement. The quantile meth-
ods transform the p-values by using a function often chosen as the inverse of a Cumulative
Distribution Function (CDF), which may and indeed generally does differ from that of the
null hypothesis. The transformed values (which may be considered quantiles) are then
added together and the aggregated p-value is computed using the CDF of the sampling
distribution of the sum of those ”quantiles”. The choice of CDF is in principle arbitrary,
but computational considerations constrain it to those distributions for which the calcula-
tions can be expressed with closed formulas or can be computed taking advantage of widely
available tables. Combinations methods following the quantile framework have the property
that if the p-values are uniformly distributed and independent to start with, their combi-
nation is uniformly distributed. This is necessary if the validity property of the CP is to
be preserved. Here we consider two methods: Fisher’s method (also known as chi-square
method) and Stouffer’s method (also known as z-transform test).

4.1. Fisher’s method

Fisher’s method (Fisher, 1932, 1948), also known as chi-square method, is among the earliest
p-value combination methods. It relies on the key observation that if p1, p2, . . . , pk are each
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the realization of a uniformly distributed random variable,

hi = −2 log pi with i = 1, . . . , k

is a random variable that follows a chi-squared distribution with 2 degrees of freedom.
The sum of k independent random variables each following a chi-squared distribution

with 2 degrees of freedom is itself chi-squared distributed with 2k degrees of freedom.

h = −2
k∑
i=1

log pi

is a random variable that follows a chi-squared distribution with 2k.
The combined p-value is:

p = P

{
y ≤ −2

k∑
i=1

log pi

}
where y is a random variable following a chi-square distribution with 2k d.f. The integral
required for calculating the probability above has a very simple closed form:

t

k−1∑
i=0

(− log t)i

i!

where t = (p1 × p1 × · · · × pk).

4.2. Stouffer’s method

Stouffer’s method (Stouffer et al., 1949), also known as z-transform method, maps the
uniformly distributed p-values onto random variables with a normal distribution. This is
achieved by:

hi = Φ−1(1− pi)
where Φ is the cumulative normal distribution. If the pi are independent, then:

h =

∑k
i=1 hi√
k

is also normally distributed. The combined p-value is:

p = 1− Φ(h)

4.3. Comparison

As stated earlier, there is no method that is guaranteed to outperform all the others. A
claim that is often cited is the Littell and Folks’s proof (Littell and Folks, 1971, 1973) that
”Fisher’s method is asymptotically optimal among essentially all methods of combining
independent tests”, but the recurring advice from practitioner in the literature is to choose
the method that best suits the characteristics of the evidence.

Figure 1 illustrates the rejection regions for the two methods for significance levels
ε = 0.01 and ε = 0.05 when combining two p-values. Note that the contours for the two
methods for the same significance levels intersect. This indicates that one method is not
stricter than the other for all p-values.
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Figure 1: The rejection regions for the Fisher method and the Stouffer method, for ε = 0.01
and ε = 0.05

5. Calibration to Bayes Factors

In the context of the discussions among probability theorists on the foundations of the
notion of probability and more specifically on whether p-values can be really used as a
measure of empirical evidence against a hypothesis (Berger and Sellke, 1987), a proposal
has emerged to approach the combination of p-values by first transforming them into Bayes
factors. For the present purposes, a Bayes factor is defined as:

Bθ(x) =
Lx(θ)∫

Θ Lx(θ)dQ(θ)

where Lx(θ) is the likelihood of x given θ and Q(θ) a prior distribution in θ. The smaller
a Bayes factor Bθ(x) is, the less likely it is that the parameter will take value θ having
observed data x.

A p-value can be transformed into a Bayes factor by way of a calibrator. The reader
is referred to (Vovk, 1993) and (Shafer et al., 2011) for the mathematical details. For the
purposes of this paper, it will suffice to say that a non-decreasing and continuous function
f : (0, 1)→ (0,+∞) is a calibrator if and only if∫ 1

0
{1/f(p)}dp ≤ 1.

For instance, a family of calibrators is given by f(p) := p1−α/α for α ∈ (0, 1).
The calibrator that will be used in the empirical application is based on the Vovk-Sellke

bound and has following form:

f(p) :=

{
−ep log(p) p < 1/e

1 p ≥ 1/e

The advantages accruing from this calibrator are discussed in (Bayarri et al., 2016).
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Figure 2: The Vovk-Sellke calibrator

Having obtained Bayes factors, it is now possible to compute a combined p-value as:

p = P

{
k∏
i=1

f(qi) ≤
k∏
i=1

f(pi)

}

where the qi are random variables uniformly distributed in (0, 1) and pi are the p-values to
combine.

6. Empirical results

To assess the relative merits of the different approaches, the methods were applied on 3
sets of p-values, each obtained via Mondrian Inductive Conformal Predictors, using three
different underlying ML algorithms, namely Neural Networks, SVM, and Random Forests.
The initial data set was obtained from PubChem (Wang et al., 2017), a public repository of
data on chemical compounds and biological assays. The data set (designated as AID827)
was suggested by industry experts because its characteristics are representative of a large
class of prediction problems in chemoinformatics. The data set is the product of a High
Throughput Screening assay aimed at identifying chemical compounds that kill cells from
a particular tumoral cell line2. The classification into Active vs. Inactive was carried out
by applying a threshold on the estimated percentage of cells still alive after exposure to the
chemical. The threshold was chosen by the suppliers of the data set, who also provided the
associated classification.

2. The complete designation of the data set is “High Throughput Screen to Identify Compounds that
Suppress the Growth of Cells with a Deletion of the PTEN Tumor Suppressor”.
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For the purposes of applying machine learning techniques, from each compound, a de-
scription of relevant features of its molecular structure was obtained via signature descrip-
tors (Faulon et al., 2003). Each feature corresponds to the number of occurrences of a
specific labelled subgraph in the labelled molecular graph of a compound. So, for each com-
pound all the possible labelled subgraphs up to a chosen depth (max number of edges along
a path from the root to a leaf) were enumerated and their occurrences counted. The key
statistics of the resulting data set are summarized in Table 1 which shows the high imbal-
ance, high sparsity, and high dimensionality common to many chemoinformatics prediction
problems.

Table 1: Key statistics of the data set. The lower part refers to the data sets used in each
of the 20 runs.

Total number of examples = 138,437
Number of original features = 170,334
Number of non-zero entries = 7,868,562
Density of the data set = 0.00034
Active compounds = 1,659 (1.2%)
Number of selected features = 6,262

Test objects = 10,000
Calibration set size = 10,000
Parameter optimization set size = 10,000
Proper training set size = 108,437

The dimensionality of data set was substantially reduced to keep the computational
requirements manageable, especially for Neural Networks. The feature selection was per-
formed very simply by filtering out all the features for which the variance (across all exam-
ples) was less than 0.001.

For the outcome to have some element of statistical significance, it was planned to
repeat the evaluation 20 times. Consequently, for each of the 20 runs, the entire data set
was randomly split into test set, calibration set, parameter optimization set, and proper
training set. The split was stratified to ensure that the Active and the Inactive classes were
represented in same proportions as in the original data set.

All the computations were run on the IT4I Salomon cluster and the Anselm cluster,
both located in Ostrava, in the Czech Republic. The Salomon cluster is based on the SGI
ICE X system and comprises 1008 computational nodes (plus a number of login nodes),
each with 24 cores (2 12-core Intel Xeon E5-2680v3 2.5GHz processors) and 128GB RAM,
connected via high-speed 7D Enhanced hypercube InfiniBand FDR and Ethernet networks.
The Anselm cluster has 229 nodes, with a mixture of twin Intel 8-core 2.3GHz Sandy Bridge
E5-2470 and twin Intel 8-core 2.4GHz Sandy Bridge E5-2665. 23 of the nodes have also one
NVIDIA Tesla Kepler K20 GPU. Training and testing for each run was carried out on a
single node, but runs were distributed across multiple nodes using the dask/distributed

framework (Rocklin, 2016).
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6.1. Algorithms

The algorithms were chosen with the aim of having inherently different approaches. Intu-
itively, ensembling in general and p-value combination in particular have a better chance of
being beneficial if the component predictors complement each other in terms of predictive
weaknesses and strengths.

6.1.1. Neural Networks

The architectural parameters of the Neural Network used in this experiment are captured in
Table 2. The architecture is Feed-forward, the optimizer was Stochastic Gradient Descent,
with a mini-batch size of 384. Dropout was applied with a rate of 0.80 on layer 2 (to
prevent feature co-adaptation). The Tensorflow framework (Abadi et al., 2015) was used to
implement the network and the model was trained on one node equipped with an NVidia K40
GPU. There was admittedly limited effort in optimizing the parameters and the topology.
The convergence of the network was observed via Tensorboard, evaluating periodically the
loss function on the parameter optimization set during training.

Table 2: Characteristics of Neural Network

# nodes Activation function Topology

Input 6,262 — —
Layer 1 2,048 ReLU Fully connected
Layer 2 1,024 Tanh Fully connected
Output 1 Sigmoid Fully connected

One unusual aspect of the Neural Network in this exercise is the loss function used
during training. It seemed intuitive that, to cater for the high imbalance, an asymmetric
log-loss should be used. However the simple approach of assigning different weights to the
two terms of the log-loss as in L(p, y) = −w0(1 − y) log(1 − p) − w1y log p leads to a loss
function that is no longer proper. A proper loss function is such that Ey∼BqL(p, y), where
Bq is the Bernoulli distribution with parameter q, attains its minimum at p = q. In other
words, if y has a probability q of being 1, then the expectation of proper loss function as a
function of p (fixed) is minimized for p = q. Informally, it is has been claimed that proper
loss functions ”keep forecasters honest”. The proper form of an asymmetric log-loss with
weights a and b was suggested in (Nouretdinov, 2016) and is:

L(p, y) =

{
−b log(1− p) + (a− b)p if y = 0

−a log(p) + (b− a)(1− p) if y = 1

Given the imbalanced class representation in the data set (the Active class is ≈ 1% of the
total), the weights used during training were set to a = 0.99 and b = 0.01.

The NCM that was used for Conformal Prediction is{
o(xi) if yi = 0

−o(xi) if yi = 1
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where o() is the output of the neuron in the output layer.

6.1.2. Support Vector Machines

In this experiment, the SVM employed a kernel that is the composition of the Tanimoto
kernel and the RBF kernel, as in previous experiments this seemed to be well suited to
the specific task. A customized version of the very popular LIBSVM tool (Chang and Lin,
2011) was developed by one of the authors (Toccaceli, 2016) to allow for arbitrary kernels
implemented for speed in C as external shared libraries. The parameters C, the weight
for the active class, and γ (bandwidth of the RBF) were optimized once only (using the
parameter optimization set), rather than for each of the runs.

The NCM is −yif(xi), where f() is the decision function of the SVM and the labels are
assumed to take values -1 (Inactive) and +1 (Active).

6.1.3. Random Forests

The implementation of Random Forests used in this investigation is the one in the scikit-learn
Python package (Varoquaux et al., 2015). The RF consisted of 10000 fully grown trees. The
trees were grown with the default setting of picking

√
p random features (where p is the

number of the features) at each stage. Also, the optimal split was chosen taking into account
weights based on class representation in the training set.

The NCM chosen for RF was the fraction of trees that classified the test object as having
the opposite label as the hypothetical one.

6.2. Classification Performance

The classification performance of the three algorithms is summarized in Figure 3. Given the
high imbalance, accuracy is arguably not an appropriate metric. Instead, the performance
was assessed in terms of Precision (fraction of Active test examples among the test example
predicted as Active), Recall (fraction of all the Active test examples that were predicted
as Active), and Area Under the ROC Curve (ROC AUC). In addition, the number of
Uncertain predictions and the number of Empty predictions are also relevant metrics in
this application of Conformal Predictors3.

For this data set and for the parameter settings chosen in this study, NN and RF appear
to share a common tendency to be more precise at the expense of recall, compared with
SVM. All three algorithms achieve similar ROC AUC.

Mondrian Inductive Conformal Predictors were then applied, using the NCMs defined
in the previous subsection. The resulting confusion matrices for the set predictor over the
10,000 test objects for each individual algorithm are reported in Table 3. The values in
the table are the averages over the 20 runs. The rightmost column shows the count of the
errors (actual label of the test object not in the prediction set); from this information, the
validity property appears by and large verified (i.e. the number of errors is indeed roughly
equal to significance level ε times the size of the test set, 10,000).

3. Uncertain predictions occur when the Conformal Predictor outputs more than one label for the chosen
level of significance. Empty predictions occur when the significance level is too high for the Conformal
Predictor to output a label.
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Table 3: Set Prediction Confusion Matrices for the Active class for each algorithm.

Neural Networks

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 38.05 97.95 0.55 705.55 0.00 9157.90 98.50
0.05 62.75 500.45 6.05 3122.70 0.00 6308.05 506.50
0.10 74.40 995.65 12.35 4750.35 0.00 4167.25 1008.00
0.15 81.90 1492.85 18.35 6052.05 0.00 2354.85 1511.20
0.20 87.60 1993.40 24.20 7016.55 3.85 874.40 2021.45
0.25 89.75 2156.60 25.90 7309.65 344.80 73.30 2527.30
0.50 58.40 387.85 13.00 4927.60 4613.15 0.00 5014.00
0.75 29.80 54.30 3.55 2468.15 7444.20 0.00 7502.05
0.80 24.10 35.25 2.50 1974.55 7963.60 0.00 8001.35
0.85 19.75 22.00 1.75 1473.05 8483.45 0.00 8507.20
0.90 12.60 10.85 1.05 992.35 8983.15 0.00 8995.05
0.95 6.95 4.90 0.30 506.35 9481.50 0.00 9486.70
0.99 1.95 0.85 0.05 106.90 9890.25 0.00 9891.15

SVM (Tanimoto+RBF)

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 42.05 93.55 1.05 909.75 0.00 8953.60 94.60
0.05 69.85 490.75 6.75 3955.80 0.00 5476.85 497.50
0.10 83.65 991.10 12.55 5648.35 0.00 3264.35 1003.65
0.15 90.10 1478.30 18.65 6885.50 0.00 1527.45 1496.95
0.20 94.35 1866.00 22.70 7581.65 111.25 324.05 1999.95
0.25 91.10 1552.30 20.80 7401.90 933.90 0.00 2507.00
0.50 57.90 236.10 9.00 4937.05 4759.95 0.00 5005.05
0.75 28.35 37.15 2.85 2472.35 7459.30 0.00 7499.30
0.80 22.65 24.50 2.00 1978.65 7972.20 0.00 7998.70
0.85 17.05 16.00 1.30 1481.10 8484.55 0.00 8501.85
0.90 12.90 10.55 0.90 988.15 8987.50 0.00 8998.95
0.95 7.40 5.30 0.40 490.70 9496.20 0.00 9501.90
0.99 1.95 2.05 0.00 97.75 9898.25 0.00 9900.30

Random Forests

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 45.30 93.25 0.55 651.35 0.00 9209.55 93.80
0.05 68.75 490.20 6.50 4255.60 0.00 5178.95 496.70
0.10 81.80 989.35 13.15 6042.05 0.00 2873.65 1002.50
0.15 89.60 1483.75 18.90 7141.05 0.00 1266.70 1502.65
0.20 93.35 1794.65 23.75 7726.85 177.85 183.55 1996.25
0.25 90.00 1534.40 20.60 7407.30 947.70 0.00 2502.70
0.50 57.75 236.20 8.80 4962.50 4734.75 0.00 4979.75
0.75 29.60 27.90 2.20 2564.75 7375.55 0.00 7405.65
0.80 23.80 18.55 1.40 2072.05 7884.20 0.00 7904.15
0.85 18.15 12.45 0.90 1550.20 8418.30 0.00 8431.65
0.90 12.75 6.70 0.60 1133.30 8846.65 0.00 8853.95
0.95 6.85 2.70 0.35 649.15 9340.95 0.00 9344.00
0.99 1.85 0.45 0.15 325.10 9672.45 0.00 9673.05
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Figure 3: Performance of the Neural Networks, SVM, and RF.

6.3. Performance of Fisher and Stouffer methods

The confusion matrices for Fisher and Stouffer methods are reported in Table 4 and Ta-
ble 5, respectively. Each row contains the confusion matrix entries for one significance level
value. The table should make it possible to choose the significance value that results in the
Precision and Recall that best suit a specific application. Both Fisher and Stouffer meth-
ods result in better efficiency, as the number of uncertain predictions is reduced compared
to any of the single-algorithm results. Within the same method, the efficiency appears to
improve when combining 3 p-values compared to combining 2 p-values. However, validity
is adversely affected for low values of the significance level (i.e. more errors than expected
are made). The point is illustrated in more detail in Figure 4, which shows that the devi-
ation from ideal validity is symmetrical for Stouffer’s method, whereas it is asymmetrical
for Fisher’s method, with a smaller deviation for low ε and a more pronounced deviation
(fewer errors than expected) elsewhere.

It should be noted that both Fisher’s and Stouffer’s method depend on the assump-
tion of independence and of uniform distribution. Some researchers have proposed meth-
ods (Brown, 1975; Alves G., 2014; Poole et al., 2016) for mitigating the consequences of
correlation, but experimentation with these methods has been left for further study.

In some applications it is advantageous to rank test objects according to how supportive
the evidence is of them being of one class rather than the other. In the example used here,
one may want to rank compounds by how strongly the evidence support their being Active
for the biological target in hand. Note that there are two ways to do this: ranking the
compounds by highest pactive or ranking them by lowest pinactive. The latter is arguably more
in line with the tenets of Statistical Hypothesis Testing: the compounds that rank at the
top are those for which the hypothesis of them being Inactive can be rejected with stronger
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Table 4: Set Prediction Confusion Matrices for the Active class after combining p-values
with the Fisher method

Neural Networks + SVM

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 61.25 296.55 2.85 2450.90 0.00 7188.45 299.40
0.05 78.35 818.90 11.05 5131.45 0.00 3960.25 829.95
0.10 87.20 1299.00 16.15 6511.90 2.00 2083.75 1317.15
0.15 91.40 1699.75 21.45 7339.75 38.50 809.15 1759.70
0.20 92.15 1789.95 23.70 7641.60 350.55 102.05 2164.20
0.25 88.15 1464.30 21.30 7351.10 1073.50 1.65 2559.10
0.50 64.70 398.00 11.05 5480.90 4045.35 0.00 4454.40
0.75 42.90 93.90 5.05 3443.25 6414.90 0.00 6513.85
0.80 37.55 68.15 3.75 2968.95 6921.60 0.00 6993.50
0.85 31.70 45.55 2.65 2463.20 7456.90 0.00 7505.10
0.90 25.60 27.05 1.55 1889.15 8056.65 0.00 8085.25
0.95 17.30 13.90 0.80 1204.10 8763.90 0.00 8778.60
0.99 7.00 4.15 0.25 423.70 9564.90 0.00 9569.30

Neural Networks + SVM + RF

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 71.85 472.85 6.15 4139.75 0.00 5309.40 479.00
0.05 85.60 1027.95 14.95 6464.80 0.35 2406.35 1043.25
0.10 91.40 1475.05 20.40 7478.55 18.20 916.40 1513.65
0.15 93.45 1634.70 22.30 7820.95 256.55 172.05 1913.55
0.20 90.80 1405.05 21.45 7624.35 855.05 3.30 2281.55
0.25 86.70 1120.55 19.75 7298.70 1474.30 0.00 2614.60
0.50 67.35 390.00 11.00 5708.20 3823.45 0.00 4224.45
0.75 48.65 116.55 5.05 3940.45 5889.30 0.00 6010.90
0.80 44.75 87.40 4.20 3510.55 6353.10 0.00 6444.70
0.85 39.75 63.15 3.00 3021.20 6872.90 0.00 6939.05
0.90 33.65 41.15 1.85 2458.95 7464.40 0.00 7507.40
0.95 25.80 22.25 1.25 1729.00 8221.70 0.00 8245.20
0.99 13.80 7.70 0.25 762.90 9215.35 0.00 9223.30

evidence. This study examined the implications of p-value combination on the test object
ranking. The results are reported in Table 6 and Table 7 for the pinactive-based and pactive-
based ranking, respectively. The tables show how many actually Active test compounds
were listed among the 25 top ranked compounds. The bottom row shows that the p-value
combination of NN and SVM results in a higher average count of Active compounds, for
Fisher’s as well as for Stouffer’s methods. The 3-way combination of NN, SVM, and RF on
the other hand improves on the performance of RF (and the other algorithms) only in the
case of Fisher’s method and when ranking by highest pactive. The detail of the tables allows
to see also that combining is not always advantageous, even when on average it appears to
be.

The statistical significance of the observed difference in the counts of Active compounds
among the top 25 can be assessed with a paired observation test. The Wilcoxon signed-
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Table 5: Set Prediction Confusion Matrices for the Active class after combining p-values
with the Stouffer method

Neural Networks + SVM

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 65.60 400.95 5.00 3182.15 0.00 6346.30 405.95
0.05 82.80 1038.70 13.55 5891.25 0.00 2973.70 1052.25
0.10 90.55 1614.85 21.00 7234.55 1.95 1037.10 1637.80
0.15 92.25 1796.45 24.05 7702.35 312.45 72.45 2132.95
0.20 87.15 1369.90 20.95 7328.25 1193.75 0.00 2584.60
0.25 81.70 1016.60 18.95 6904.30 1978.45 0.00 3014.00
0.50 57.95 244.35 9.50 4986.00 4702.20 0.00 4956.05
0.75 35.90 63.60 3.90 3022.40 6874.20 0.00 6941.70
0.80 31.75 45.40 2.80 2585.75 7334.30 0.00 7382.50
0.85 27.20 30.30 1.80 2125.00 7815.70 0.00 7847.80
0.90 21.20 19.05 1.40 1619.05 8339.30 0.00 8359.75
0.95 14.30 10.40 0.90 1019.90 8954.50 0.00 8965.80
0.99 6.25 3.75 0.25 352.70 9637.05 0.00 9641.05

Neural Networks + SVM + RF

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 77.85 677.35 9.70 5234.20 0.00 4000.90 687.05
0.05 90.45 1388.30 20.05 7384.70 0.10 1116.40 1408.45
0.10 93.15 1587.45 22.90 7887.75 376.40 32.35 1986.75
0.15 87.45 1157.35 20.40 7464.40 1270.40 0.00 2448.15
0.20 81.55 870.55 18.40 7071.85 1957.65 0.00 2846.60
0.25 77.15 665.05 16.00 6703.15 2538.65 0.00 3219.70
0.50 57.30 208.75 8.30 5064.40 4661.25 0.00 4878.30
0.75 40.30 65.80 3.55 3377.60 6512.75 0.00 6582.10
0.80 36.15 49.75 2.80 2983.05 6928.25 0.00 6980.80
0.85 31.40 35.60 2.00 2555.40 7375.60 0.00 7413.20
0.90 26.80 24.35 1.45 2080.40 7867.00 0.00 7892.80
0.95 19.90 14.55 1.00 1478.55 8486.00 0.00 8501.55
0.99 10.55 5.30 0.25 746.95 9236.95 0.00 9242.50

rank test (Wilcoxon, 1945; Hollander and Wolfe, 1999) is possibly a reasonable choice. The
null hypothesis of the Wilcoxon signed-rank test is that the distribution of the differences
between elements of pairs is symmetrical around 0. However, in its basic form, the test
does not apply to variables with discrete values such as counts but only to variables with
continuous values, the reason being that the test was not designed to deal (a) with no
differences in a pair and (b) with ties among the differences (occurrences of pairs with the
same difference in absolute value). Variants have been proposed (by Wilcoxon himself, who
suggested to disregard the observation pairs with no difference, and by Pratt (Pratt, 1959),
who suggested a way to account for those) but the distribution of the statistic would change.
Simulations performed by one of the authors to study the effect of quantization (Toccaceli,
2017) appear to suggest that such variants are slightly conservative, in the sense that a value
of the statistic that the Wilcoxon distribution would associate with p = 1% corresponds
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Figure 4: Validity plot. This illustrates the deviation from validity introduced by Fisher
and Stouffer Methods

Table 6: Number of Active compounds among the top 25 test objects ranked by lowest
pinactive

Fisher Stouffer
data set id NN SVM RF NN+SVM NN+SVM+RF NN+SVM NN+SVM+RF

000 10 14 15 13 17 13 18
001 15 16 18 16 18 16 17
002 13 16 16 18 17 18 17
003 13 15 17 16 17 16 17
004 15 11 15 14 15 14 15
005 13 13 16 14 16 15 16
006 15 16 18 16 17 16 17
007 12 14 14 13 15 13 15
008 13 14 15 15 16 15 15
009 10 10 13 12 13 12 14
010 16 13 15 13 15 13 15
011 12 10 16 13 14 13 14
012 13 14 16 16 16 16 17
013 18 19 19 18 20 18 20
014 13 10 14 13 14 13 14
015 12 13 15 14 15 13 16
016 16 13 20 16 16 16 16
017 11 15 15 12 14 12 14
018 13 15 16 14 15 14 15
019 13 14 14 13 14 13 14

Average 13.30 13.75 15.85 14.45 15.70 14.45 15.80
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Table 7: Number of Active compounds among the top 25 test objects ranked by highest
pactive

Fisher Stouffer
data set id NN SVM RF NN+SVM NN+SVM+RF NN+SVM NN+SVM+RF

000 10 14 15 14 18 13 15
001 15 15 18 16 17 17 18
002 12 16 17 16 18 17 18
003 14 16 17 15 18 15 18
004 16 12 14 14 15 14 14
005 14 13 16 14 16 14 14
006 15 17 18 15 17 15 16
007 13 13 14 14 16 13 15
008 13 14 15 15 15 15 15
009 11 11 13 12 13 12 14
010 15 15 15 14 15 13 15
011 11 10 16 12 14 13 13
012 14 14 16 17 17 17 16
013 18 19 20 21 21 21 20
014 13 9 14 13 15 13 14
015 13 13 15 13 15 13 14
016 16 14 20 16 17 16 16
017 11 15 15 12 14 11 13
018 14 15 17 14 15 14 16
019 14 14 13 14 15 14 14

Average 13.60 13.95 15.90 14.55 16.05 14.50 15.40

in fact to a lower p for the variants and is therefore stronger evidence against the null
hypothesis.

To get an indication of the statistical significance, it makes sense to limit the comparison
to the best combination with its best component. The statistical significance between SVM
and Fisher NN+SVM is 0.078 with plain Wilcoxon and 0.076 with the Pratt variant (com-
puted with the scipy Python package (Jones et al., 2001)). So, while at first glance there
appear to be an advantage, a result such as this one or a more convincing one could occur
by chance (under the null hypothesis that the distribution of the difference is symmetrical)
1 out of 13 times. The difference in average between RF and Fisher NN+SVM+RF is very
small and common sense alone is enough to surmise that the evidence does not contradict
the hypothesis that the two are in fact the same. Just for completeness, the statistical
significance in this case between is 0.75 with plain Wilcoxon and 0.252 with Pratt variant.

As a final observation, it may be worthwhile to take a look at the original data from
which the data set used in this study was extracted. As explained in section 6, the label
Active/Inactive was derived by thresholding a continuous value, referred to as viability,
expressing the percentage of cells still alive after exposure to the compound. In particular,
any compound for which the viability was less than or equal to 3.81% was deemed Active,
otherwise Inactive4. A histogram of the Viability for data set AID827 is provided in Figure 5.
Table 8 shows the top 25 compounds identified by highest pactive and by smallest pinactive.
Inspecting the viability, one realizes that several of the compounds classed as Inactive are

4. In this specific assay, Activity denotes that the compound kills cells belonging to a specific tumoral cell
line.
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actually borderline cases. This occurrence is rather intriguing: while it is true that there are
outright errors in the top 25, it is also true that the borderline cases are over-represented,
suggesting that the classifiers did generalize on the data set and that the performance might
in fact be better than the metrics on Active/Inactive classification indicate.

Figure 5: Histogram of Viability in AID827. The vertical line shows the value of the thresh-
old.

6.4. Vovk-Sellke calibration

As illustrated in Figure 2, the calibrator assigns the same Bayes factor of 1 to p-values
greater than 1/e. The rationale is that in Statistical Hypothesis Testing one can assume
that p-values above a certain value cease to be informative. The emphasis is on low values
because these are what constitute strong evidence on which to reject the null hypothesis.

When applied to combining Conformal Predictors, the V-S calibrator inevitably affects
validity for high values of p, as the confusion matrices in Table 9 and the chart in Figure 6
attest. The combined CP appears to predict with substantially fewer errors than the signif-
icance level would allow. Also, for lower values of p-values, on the other hand, the deviation
from validity is limited and improves on either Fisher’s or Stouffer’s methods.

As to the performance on ranking, because of what was observed at the start of this
subsection, the ranking by highest of test objects by largest pactive becomes meaningless and
is reported here only for completeness. It is in the ranking of compounds by lowest pinactive
that V-S calibration finds its appropriate application. Its averages of 14.50 for NN+SVM
and 15.55 for NN+SVM+RF are in line with those of Fisher’s and Stouffer’s methods up
to statistical fluctuations.
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Table 8: Example of the top 25 compounds (from run 000, Stouffer NN+SVM+RF). The
table on the left is order by lowest pinactive, the one the right by highest pactive.

Rank Compound
tag

Viability pinactive

1 79813 1.76 3.483e-10
2 129543 4.57 9.419e-10
3 115173 1.48 1.593e-09
4 108813 15.69 2.372e-09
5 100523 0.85 4.316e-09
6 116614 39.05 2.161e-08
7 94529 3.57 2.312e-08
8 104764 1.47 3.455e-08
9 62991 25.27 4.058e-08
10 64246 4.44 4.743e-08
11 84878 1.77 4.755e-08
12 127825 1.67 5.238e-08
13 52454 2.95 5.885e-08
14 74599 3.84 6.941e-08
15 75236 74.03 9.263e-08
16 91399 2.05 1.138e-07
17 121411 1.69 1.929e-07
18 6106 2.27 2.118e-07
19 104197 1.78 2.127e-07
20 12551 1.08 2.363e-07
21 85895 2.03 2.412e-07
22 128112 1.96 2.579e-07
23 96373 1.16 2.599e-07
24 74016 2.37 2.820e-07
25 130880 3.36 3.077e-07

Rank Compound
tag

Viability pactive

1 115173 1.48 1.000
2 116614 39.05 1.000
3 129543 4.57 1.000
4 79813 1.76 1.000
5 100523 0.85 0.998
6 108813 15.69 0.998
7 94529 3.57 0.997
8 62991 25.27 0.994
9 64246 4.44 0.992
10 84878 1.77 0.990
11 104764 1.47 0.988
12 127825 1.67 0.985
13 52454 2.95 0.984
14 74599 3.84 0.982
15 75236 74.03 0.978
16 115494 83.84 0.977
17 121411 1.69 0.977
18 91399 2.05 0.977
19 119648 80.08 0.973
20 128112 1.96 0.964
21 85895 2.03 0.961
22 129514 50.91 0.960
23 130880 3.36 0.958
24 6106 2.27 0.958
25 104197 1.78 0.957

Figure 6: Validity plot for the combination via Vovk-Sellke calibration
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Table 9: Set Prediction Confusion Matrices for the Active class after combining p-values
with the V-S Calibration method

Neural Networks + SVM

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 55.25 198.55 1.45 1630.90 0.00 8113.85 200.00
0.05 72.25 578.45 7.50 4103.15 0.35 5238.30 586.30
0.10 81.10 944.55 12.60 5490.85 4.70 3466.20 961.85
0.15 87.00 1275.60 15.20 6343.05 29.50 2249.65 1320.30
0.20 89.95 1548.80 18.55 6942.90 111.00 1288.80 1678.35
0.25 90.95 1719.90 21.15 7291.55 282.25 594.20 2023.30
0.50 75.30 754.10 13.45 5968.00 3189.15 0.00 3956.70
0.75 65.25 418.10 10.15 5141.40 4365.10 0.00 4793.35
0.80 65.25 418.10 10.15 5140.10 4366.40 0.00 4794.65
0.85 65.25 418.10 10.15 5137.95 4368.55 0.00 4796.80
0.90 65.25 418.10 10.15 5137.00 4369.50 0.00 4797.75
0.95 65.25 418.10 10.15 5134.25 4372.25 0.00 4800.50
0.99 65.25 418.10 10.15 5131.30 4375.20 0.00 4803.45

Neural Networks + SVM + RF

Significance
level

Active
pred

Active

Inactive
pred

Active

Active
pred

Inactive

Inactive
pred

Inactive

Empty
preds

Uncertain
preds

Errors

0.01 63.65 288.60 2.65 2681.95 0.00 6963.15 291.25
0.05 77.25 654.40 8.60 5044.45 0.55 4214.75 663.55
0.10 84.15 972.25 13.40 6188.40 9.35 2732.45 995.00
0.15 88.05 1237.50 16.80 6854.95 44.35 1758.35 1298.65
0.20 90.85 1441.85 18.95 7270.45 132.55 1045.35 1593.35
0.25 92.30 1560.35 20.50 7482.20 303.50 541.15 1884.35
0.50 81.50 922.90 15.40 6436.45 2543.75 0.00 3482.05
0.75 60.55 291.50 7.05 4431.20 5209.70 0.00 5508.25
0.80 60.55 291.50 7.05 4428.05 5212.85 0.00 5511.40
0.85 60.55 291.50 7.05 4424.85 5216.05 0.00 5514.60
0.90 60.55 291.50 7.05 4422.65 5218.25 0.00 5516.80
0.95 60.55 291.50 7.05 4419.15 5221.75 0.00 5520.30
0.99 60.55 291.50 7.05 4415.30 5225.60 0.00 5524.15

7. Conclusions and future work

This study discussed different methods for combining p-values produced by Conformal Pre-
dictors. The methods chosen here arise from considerations belonging to statistical hypoth-
esis testing rather than statistical learning proper and their computational cost is next to
negligible (in the order of fraction of a second for each of the data sets used here). The
study demonstrated on a real-world example that, despite their simplicity, these techniques
can be of benefit, in particular with the Fisher method exhibiting a synergistic effect on
the accuracy of ranking as in the case of the combination of NN and SVM. In the tests,
while there was no evidence that the benefits extend to multiple combinations, there was
also no evidence of negative effects. The deviation from validity of the set predictor was
also limited and combination appeared to improve efficiency.
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Table 10: Number of Active compounds among the top 25 test objects after combining
p-value via V-S calibration

By lowest pinactive

run NN SVM RF NN
SVM

NN
SVM

RF

000 10 14 15 13 16
001 15 16 18 16 18
002 13 16 16 18 17
003 13 15 17 16 17
004 15 11 15 14 15
005 13 13 16 14 16
006 15 16 18 16 17
007 12 14 14 13 15
008 13 14 15 15 15
009 10 10 13 12 13
010 16 13 15 13 15
011 12 10 16 13 14
012 13 14 16 16 16
013 18 19 19 19 20
014 13 10 14 13 14
015 12 13 15 14 15
016 16 13 20 16 16
017 11 15 15 12 13
018 13 15 16 14 15
019 13 14 14 13 14

Average 13.30 13.75 15.85 14.50 15.55

By highest pactive

run NN SVM RF NN
SVM

NN
SVM

RF

000 10 14 15 1 8
001 15 15 18 4 4
002 12 16 17 1 4
003 14 16 17 1 6
004 16 12 14 5 5
005 14 13 16 2 4
006 15 17 18 3 8
007 13 13 14 3 7
008 13 14 15 4 3
009 11 11 13 5 7
010 15 15 15 1 3
011 11 10 16 3 5
012 14 14 16 1 3
013 18 19 20 7 5
014 13 9 14 6 7
015 13 13 15 5 8
016 16 14 20 1 6
017 11 15 15 4 3
018 14 15 17 0 3
019 14 14 13 6 4

Average 13.60 13.95 15.90 3.15 5.15

One possible future line of enquiry might be about intelligent ways of mixing the p-
values on the basis of the objects to which they refer. The methods discussed so far rely
only on the bare p-values. They do not exploit any patterns in the different accuracy of the
different underlying ML of Conformal Predictors. One Conformal Predictor might be more
accurate than the others in one range of predicted values, but not in another. One CP could
be systematically more accurate for some subsets of object, whereas another CP might be
more accurate for a different subset. One way to try to exploit these different abilities might
be by learning which objects tends to be better predicted by which CP. Mixture of Experts
models (Jacobs et al., 1991) use a combination of specialized models and a gating network
which weights, possibly in a non-linear way, the output of the specialized models. The
gating network uses as inputs the objects, their labels and the predictions of the models. In
such a framework, scalability could be achieved by partitioning the data set across multiple
nodes and then aggregating the p-values. In the specific chemoinformatics problem used as
an example here, it may even make sense to have component classifiers becoming specialized
by assigning training examples from the same chemical cluster. This approach could also
allow to frame the p-value combination as an optimization problem over an appropriate
functional space (such as a RKHS), with constraints to enforce validity and with a loss
function crafted to improve efficiency.
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