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Abstract

This paper applies conformal prediction to derive predictive distributions that are valid un-
der a nonparametric assumption. Namely, we introduce and explore predictive distribution
functions that always satisfy a natural property of validity in terms of guaranteed coverage
for IID observations. The focus is on a prediction algorithm that we call the Least Squares
Prediction Machine (LSPM). The LSPM generalizes the classical Dempster�Hill predictive
distributions to regression problems. If the standard parametric assumptions for Least
Squares linear regression hold, the LSPM is as e�cient as the Dempster�Hill procedure, in
a natural sense. And if those parametric assumptions fail, the LSPM is still valid, provided
the observations are IID.

Keywords: Conformal prediction, Least Squares, predictive distributions, regression.

Let me conclude by observing that A(n) is supported by all of
the serious approaches to statistical inference. It is Bayesian,
�ducial, and even a con�dence/tolerance procedure. It is simple,
coherent, and plausible. It can even be argued, I believe, that
A(n), along with H(n), constitutes the fundamental solution to
the problem of induction.

Bruce M. Hill, 1988

To be truly useful, however, the methods need extension to
regression models with unknown regression parameters.

Christian Genest and Jack Kalb�eisch, 1988

1. Introduction

This paper applies conformal prediction to derive predictive distribution functions that are
valid under a nonparametric assumption. In our de�nition of predictive distribution func-
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tions and their property of validity we follow Shen et al. (2017, Section 1), whose terminology
we adopt, and Schweder and Hjort (2016, Chapter 12), who use the term �prediction con�-
dence distributions�. The theory of predictive distributions as developed by Schweder and
Hjort (2016) and Shen et al. (2017) assumes that the observations are generated from a
parametric statistical model. We extend the theory to the case of regression under the
general IID model (the observations are generated independently from the same distribu-
tion), where the distribution form does not need to be speci�ed; however, our exposition is
self-contained. Our predictive distributions generalize the classical Dempster�Hill procedure
(to be formally de�ned in Section 5), which these authors referred to as direct probabilities
(Dempster) and A(n)/H(n) (Hill). For a relatively recent review of predictive distributions,
see Lawless and Fredette (2005).

We start our formal exposition from de�ning conformal predictive distributions (CPDs),
nonparametric predictive distributions based on conformal prediction, and algorithms pro-
ducing CPDs (conformal predictive systems, CPSs) in Section 2; we are only interested in
regression problems in this paper. An unusual feature of CPDs is that they are random-
ized, although they are typically a�ected by randomness very little. The starting point for
conformal prediction is the choice of a conformity measure; not all conformity measures
produce CPDs, but we give simple su�cient conditions. In Section 3 we apply the method
to the classical Least Squares procedure obtaining what we call the Least Squares Prediction
Machine (LSPM). The LSPM is de�ned in terms of regression residuals; accordingly, it has
three main versions: ordinary, deleted, and studentized. The most useful version appears
to be studentized, which does not require any assumptions on how in�uential any of the
individual observations is. We state the studentized version (and, more brie�y, the ordinary
version) as an explicit algorithm. The next two sections, 4 and 5, are devoted to the validity
and e�ciency of the LSPM. Whereas the LSPM, as any CPS, is valid under the general IID
model, for investigating its e�ciency we assume a parametric model, namely the standard
Gaussian linear model. The question that we try to answer in Section 5 is how much we
should pay (in terms of e�ciency) for the validity under the general IID model enjoyed by
the LSPM. We compare the LSPM with three kinds of oracles under the parametric model;
the oracles are adapted to the parametric model and are only required to be valid under
it. The weakest oracle (Oracle I) only knows the parametric model, and the strongest one
(Oracle III) also knows the parameters of the model. In important cases the LSPM turns
out to be as e�cient as the Dempster�Hill procedure. Section 6 is devoted to experimental
results demonstrating the validity and, to some degree, e�ciency of our methods.

2. Randomized and conformal predictive distributions

We consider the regression problem with p attributes. Correspondingly, the observation

space is de�ned to be Rp+1 = Rp × R; its element z = (x, y), where x ∈ Rp and y ∈ R,
is interpreted as an observation consisting of an object x ∈ Rp and its label y ∈ R. Our
task is, given a training sequence of observations zi = (zi, yi), i = 1, . . . , n, and a new test
object xn+1 ∈ Rp, to predict the label yn+1 of the (n + 1)th observation. Our statistical
model is the general IID model: the observations z1, z2, . . ., where zi = (xi, yi), are generated
independently from the same unknown probability measure P on Rp+1.
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We start from de�ning predictive distribution functions following Shen et al. (2017,
De�nition 1), except that we relax the de�nition of a distribution function and allow ran-
domization. Let U be the uniform probability measure on the interval [0, 1].

De�nition 1 A function Q : (Rp+1)n+1 × [0, 1] → [0, 1] is called a randomized predictive
system (RPS) if it satis�es the following three requirements:

R1a For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object xn+1 ∈ Rp,
the function Q(z1, . . . , zn, (xn+1, y), τ) is monotonically increasing both in y and in τ
(where �monotonically increasing� is understood in the wide sense allowing intervals

of constancy). In other words, for each τ ∈ [0, 1], the function

y ∈ R 7→ Q(z1, . . . , zn, (xn+1, y), τ)

is monotonically increasing, and for each y ∈ R, the function

τ ∈ [0, 1] 7→ Q(z1, . . . , zn, (xn+1, y), τ)

is monotonically increasing.

R1b For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object xn+1 ∈ Rp,

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y), 0) = 0

and

lim
y→∞

Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 As function of random training observations z1 ∼ P ,. . . , zn ∼ P , a random test

observation zn+1 ∼ P , and a random number τ ∼ U , all assumed independent, the

distribution of Q is uniform:

∀α ∈ [0, 1] : P {Q(z1, . . . , zn, zn+1, τ) ≤ α} = α.

The output of the randomized predictive system Q on a training sequence z1, . . . , zn and
a test object xn+1 is the function

Qn : (y, τ) ∈ R× [0, 1] 7→ Q(z1, . . . , zn, (xn+1, y), τ), (1)

which will be called the randomized predictive distribution (function) (RPD) output by Q.
The thickness of an RPD Qn is the smallest number ε ≥ 0 such that the diameter

Qn(y, 1)−Qn(y, 0) (2)

of the set
{Qn(y, τ) | τ ∈ [0, 1]} (3)

is at most ε for all y ∈ R except for �nitely many values. The exception size of Qn is the
cardinality of the set of y for which the diameter (2) exceeds the thickness of Q. Notice that
a priori the exception size can be in�nite.
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In this paper we will be interested in RPDs of thickness 1
n+1 with exception size at

most n, for typical training sequences of length n (cf. (16) below). In all our examples,
Q(z1, . . . , zn, zn+1, τ) will be a continuous function of τ . Therefore, the set (3) will be
a closed interval in [0, 1]. However, we do not include these requirements in our o�cial
de�nition.

Four examples of predictive distributions are shown in Figure 5 below as shaded areas;
let us concentrate, for concreteness, on the top left one. The length of the training sequence
for that plot (and the other three plots) is n = 10; see Section 6 for details. Therefore, we
are discussing an instance of Q10, of width 1/11 with exception size 10. The shaded area
is {(y,Q10(y, τ)) | y ∈ R, τ ∈ [0, 1]}. We can regard (y, τ) as a coordinate system for the
shaded area. The cut of the shaded area by the vertical line passing through a point y of
the horizontal axis is the closed interval [Q(y, 0), Q(y, 1)], where Q := Q10. The notation
Q(y) for the vertical axis is slightly informal.

Next we give basic de�nitions of conformal prediction adapted to producing predictive
distributions (there are several equivalent de�nitions; the one we give here is closer to Vovk
et al. 2005, Section 2.2, than to Balasubramanian et al. 2014, Section 1.3). A conformity

measure is a measurable function A : (Rp+1)n+1 → R that is invariant with respect to
permutations of the �rst n observations: for any sequence (z1, . . . , zn) ∈ (Rp+1)n, any
zn+1 ∈ Rp+1, and any permutation π of {1, . . . , n},

A(z1, . . . , zn, zn+1) = A
Ä
zπ(1), . . . , zπ(n), zn+1

ä
. (4)

Intuitively, A measures how large the label yn+1 in zn+1 is, based on seeing the observations
z1, . . . , zn and the object xn+1 of zn+1. A simple example is

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (5)

ŷn+1 being the prediction for yn+1 computed from xn+1 and z1, . . . , zn as training sequence
(more generally, we could use the whole of z1, . . . , zn+1 as the training sequence).

The conformal transducer determined by a conformity measure A is de�ned as

Q(z1, . . . , zn, (xn+1, y), τ) :=
1

n+ 1

∣∣∣¶i = 1, . . . , n+ 1 | αyi < αyn+1

©∣∣∣
+

τ

n+ 1

∣∣∣¶i = 1, . . . , n+ 1 | αyi = αyn+1

©∣∣∣ , (6)

where (z1, . . . , zn) ∈ (Rp+1)n is a training sequence, xn+1 ∈ Rp is a test object, and for each
y ∈ R the corresponding conformity score αyi is de�ned by

αyi := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi), i = 1, . . . , n,

αyn+1 := A(z1, . . . , zn, (xn+1, y)).
(7)

A function is a conformal transducer if it is the conformal transducer determined by some
conformity measure. A conformal predictive system (CPS) is a function which is both a con-
formal transducer and a randomized predictive system. A conformal predictive distribution

(CPD) is a function Qn de�ned by (1) for a conformal predictive system Q.
Any conformal transducer Q and Borel set A ⊆ [0, 1] de�ne the conformal predictor

ΓA(z1, . . . , zn, xn+1, τ) := {y ∈ R | Q(z1, . . . , zn, (xn+1, y), τ) ∈ A} . (8)
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The standard property of validity for conformal transducers is that the values (also called
p-values) Q(z1, . . . , zn+1, τ) are distributed uniformly on [0, 1] when z1, . . . , zn+1 are IID and
τ is generated independently of z1, . . . , zn+1 from the uniform probability distribution U on
[0, 1] (see, e.g., Vovk et al. 2005, Proposition 2.8). This property coincides with requirement
R2 in the de�nition of an RPS and implies that the coverage probability, i.e., the probability
of yn+1 ∈ ΓA(z1, . . . , zn, xn+1), for the conformal predictor (8) is U(A).

Remark 2 The usual interpretation of (6) is that it is a randomized p-value for testing the
null hypothesis of the observations being IID. In the case of CPDs, the informal alternative
hypothesis is that yn+1 is too small. Then (5) can be interpreted as a degree of conformity
of the observation (xn+1, yn+1) to the remaining observations. Notice the one-sided nature
of this notion of conformity: a label can only be strange (non-conforming) if it is too small;
large is never strange.

De�ning properties of distribution functions

Next we discuss why De�nition 1 (essentially taken from Shen et al. 2017) is natural. The
key elements of this de�nition are that (1) the distribution function Q is monotonically
increasing, and (2) its value is uniformly distributed. The following two lemmas show that
these are de�ning properties of distribution functions of probability measures on the real
line.

First we consider the case of a continuous distribution function; the justi�cation for this
case, given in the next lemma, is simpler.

Lemma 3 Suppose F is a continuous distribution function on R and Y is a random vari-

able distributed as F . If Q : R → R is a monotonically increasing function such that the

distribution of Q(Y ) is uniform on [0, 1], then Q = F .

In the general case we need randomization. Remember the de�nition of the lexicographic
order on R× [0, 1]: (y, τ) ≤ (y′, τ ′) is de�ned to mean that y < y′ or both y = y′ and τ ≤ τ ′.

Lemma 4 Let P be a probability measure on R, F be its distribution function, and Y be a

random variable distributed as P . If Q : R × [0, 1] → R is a function that is monotonically

increasing (in the lexicographic order on its domain) and such that the image (P × U)Q−1

of the product P ×U , where U is the uniform distribution on [0, 1], under the mapping Q is

uniform on [0, 1], then, for all y and τ ,

Q(y, τ) = (1− τ)F (y−) + τF (y). (9)

Equality (9) says that Q is essentially F ; in particular, Q(y, τ) = F (y) at each point y of
F 's continuity. It is a known fact that if we de�ne Q by (9) for the distribution function F
of a probability measure P , the distribution of Q will be uniform when its domain R× [0, 1]
is equipped with the probability measure P × U .

The previous two lemmas suggest that properties R1a and R2 in the de�nition of RPSs
are the important ones. However, property R1b is formally independent of R1a and R2 in
our case of the general IID model (rather than a single probability measure on R): consider,
e.g., a conformity measure A that depends only on the objects xi but does not depend on
the labels yi.

5



Vovk Shen Manokhin Xie

Simplest example: monotonic conformity measures

We start from a simple but very restrictive condition on a conformity measure making the
corresponding conformal transducer satisfy R1a. A conformity measure A is monotonic if
A(z1, . . . , zn+1) is:

• monotonically increasing in yn+1,

yn+1 ≤ y′n+1 =⇒ A(z1, . . . , zn, (xn+1, yn+1)) ≤ A(z1, . . . , zn, (xn+1, y
′
n+1));

• monotonically decreasing in y1,

y1 ≤ y′1 =⇒ A((x1, y1), z2, . . . , zn, zn+1) ≥ A((x1, y
′
1), z2, . . . , zn, zn+1).

(Because of the requirement of invariance (4), being decreasing in y1 is equivalent to
being decreasing in yi for any i = 2, . . . , n.)

This condition implies that the corresponding conformal transducer (6) satis�es R1a by
Lemma 5 below.

An example of a monotonic conformity measure is (5), where ŷ is produced by the
K-nearest neighbours regression algorithm:

ŷn+1 :=
1

K

K∑
k=1

y(k)

is the average label of the K nearest neighbours of xn+1, where y(1), . . . , y(n) is the sequence
y1, . . . , yn sorted in the order of increasing distances between xi and xn+1 (we assume n ≥ K
and in the case of ties replace each y(i) by the average of yj over all j such that the distance
between xj and xn+1 is equal to the distance between xi and xn+1). This conformity measure
satis�es, additionally,

lim
y→±∞

A(z1, . . . , zn, (xn, y)) = ±∞

and, therefore, the corresponding conformal transducer also satis�es R1b and so is an RPS
and CPS.

Criterion of being a CPS

Unfortunately, many important conformity measures are not monotonic, and the next lemma
introduces a weaker su�cient condition for a conformal transducer to be an RPS.

Lemma 5 The conformal transducer determined by a conformity measure A satis�es con-

dition R1a if, for each i ∈ {1, . . . , n}, each training sequence (z1, . . . , zn) ∈ (Rp+1)n, and
each test object xn+1 ∈ Rp, αyn+1 − α

y
i is a monotonically increasing function of y ∈ R (in

the notation of (7)).

Of course, we can �x i to, say, i := 1 in Lemma 5. We can strengthen the conclusion of
the lemma to the conformal transducer determined by A being an RPS (and, therefore, a
CPS) if, e.g.,

lim
y→±∞

Ä
αyn+1 − α

y
i

ä
= ±∞.
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3. Least Squares Prediction Machine

In this section we will introduce three versions of what we call the Least Squares Prediction
Machine (LSPM). They are analogous to the Ridge Regression Con�dence Machine (RRCM),
as described in Vovk et al. (2005, Section 2.3) (and called the IID predictor in Vovk et al.
2009), but produce (at least usually) distribution functions rather than prediction intervals.

The ordinary LSPM is de�ned to be the conformal transducer determined by the con-
formity measure

A(z1, . . . , zn+1) := yn+1 − Êyn+1 (10)

(cf. (5)), where yn+1 is the label in zn+1 and Êyn+1 is the prediction for yn+1 computed using
Least Squares from xn+1 (the object in zn+1) and z1, . . . , zn+1 (including zn+1) as training
sequence. The right-hand side of (10) is the ordinary residual. However, two more kinds of
residuals are common in statistics, and so overall we will discuss three kinds of LSPM. The
deleted LSPM is determined by the conformity measure

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (11)

whose di�erence from (10) is that Êyn+1 is replaced by the prediction ŷn+1 for yn+1 computed
using Least Squares from xn+1 and z1, . . . , zn as training sequence (so that the training
sequence does not include zn+1). The version that will be most useful in this paper will
be the �studentized LSPM�, which is midway between ordinary and deleted LSPM; we will
de�ne it formally later.

Unfortunately, the ordinary and deleted LSPM are not RPS, because their output Qn
(see (1)) is not necessarily monotonically increasing in y (remember that, for conformal
transducers, Qn(y, τ) is monotonically increasing in τ automatically). However, we will see
that this can happen only in the presence of high-leverage points.

Let X̄ stand for the (n + 1) × p data matrix, whose ith row is the transpose x′i to the
ith object (training object for i = 1, . . . , n and test object for i = n + 1). The hat matrix
for the n+ 1 observations z1, . . . , zn+1 is

H̄ = X̄(X̄ ′X̄)−1X̄ ′. (12)

Our notation for the elements of this matrix will be h̄i,j , i standing for the row and j for
the column. For the diagonal elements h̄i,i we will use the shorthand h̄i.

The following proposition can be deduced from Lemma 5 and the explicit form (analogous
to Algorithm 1 below but using (21)) of the ordinary LSPM.

Proposition 6 The function Qn output by the ordinary LSPM (see (1)) is monotonically

increasing in y provided h̄n+1 < 0.5.

The condition needed for Qn to be monotonically increasing, h̄n+1 < 0.5, means that
the test object xn+1 is not a very in�uential point. An overview of high-leverage points is
given by Chatterjee and Hadi (1988, Section 4.2.3.1), where they start from Huber's 1981
proposal to regard points xi with h̄i > 0.2 as in�uential.

The assumption h̄n+1 < 0.5 in Proposition 6 is essential:

Proposition 7 Proposition 6 ceases to be true if the constant 0.5 in it is replaced by a

larger constant.

7



Vovk Shen Manokhin Xie

The next two propositions show that for the deleted LSPM, determined by (11), the
situation is even worse than for the ordinary LSPM: we have to require h̄i < 0.5 for all
i = 1, . . . , n.

Proposition 8 The function Qn output by the deleted LSPM according to (1) is monoton-

ically increasing in y provided maxi=1,...,n h̄i < 0.5.

We have the following analogue of Proposition 7 for the deleted LSPM.

Proposition 9 Proposition 8 ceases to be true if the constant 0.5 in it is replaced by a larger

constant.

The best choice, from the point of view of predictive distributions, seems to be the
studentized LSPM determined by the conformity measure

A(z1, . . . , zn+1) :=
yn+1 − Êyn+1»

1− h̄n+1

(13)

(intermediate between those for the ordinary and deleted LSPM: a standard representation
for the deleted residuals is (yi− Êyi)/(1− h̄i), i = 1, . . . , n+1; we ignore a factor independent
of i in the de�nition of internally studentized residuals in, e.g., Seber and Lee 2003, Section
10.2).

An important advantage of studentized LSPM is that to get predictive distributions we
do not need any assumptions of low leverage.

Proposition 10 The studentized LSPM is an RPS and, therefore, a CPS.

The studentized LSPM in an explicit form

We will give two explicit forms for the studentized LSPM (Algorithms 1 and 2); the versions
for the ordinary and deleted LSPM are similar (we will give an explicit form only for the
former, which is particularly intuitive). Predictive distributions (1) will be represented in
the form

Qn(y) := [Qn(y, 0), Qn(y, 1)]

(in the spirit of abstract randomized p-values of Geyer and Meeden 2005); the function Qn
maps each potential label y ∈ R to a closed interval of R. It is clear that in the case of
conformal transducers this interval-valued version of Qn carries the same information as
the original one: each original value Qn(y, τ) can be restored as a convex mixture of the
end-points of Qn(y); namely, Qn(y, τ) = (1− τ)a+ τb if Qn(y) = [a, b].

For the studentized residuals (13), we can easily obtain

αyn+1 − α
y
i = Biy −Ai, i = 1, . . . , n,

in the notation of (7), where y is the label of the (n+ 1)th object xn+1 and

Bi :=
»

1− h̄n+1 +
h̄i,n+1√
1− h̄i

, (14)
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Algorithm 1: Least Squares Prediction Machine

Data: a training sequence (xi, yi) ∈ Rp × R, i = 1, . . . , n, and a test object xn+1 ∈ Rp.
Set X̄ to the data matrix for the given n+ 1 objects x1, . . . , xn+1;
de�ne the hat matrix H̄ by (12);
for i ∈ {1, 2, . . . , n} do

de�ne Ai and Bi by (15) and (14), respectively;
set Ci := Ai/Bi

end

sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n);
return the predictive distribution (16) for yn+1

Ai =

∑n
j=1 h̄j,n+1yj»

1− h̄n+1

+
yi −

∑n
j=1 h̄i,jyj√

1− h̄i
. (15)

We will assume that all Bi are de�ned and positive; this assumption will be discussed further
at the end of this subsection.

Set Ci := Ai/Bi for all i = 1, . . . , n. Sort all Ci in the increasing order and let the
resulting sequence be C(1) ≤ · · · ≤ C(n). Set C(0) := −∞ and C(n+1) :=∞. The predictive
distribution is:

Qn(y) :=

{
[ i
n+1 ,

i+1
n+1 ] if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}

[ i
′−1
n+1 ,

i′′+1
n+1 ] if y = C(i) for i ∈ {1, . . . , n},

(16)

where i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)}. We can see that the

thickness of this CPD is 1
n+1 with the exception size equal to the number of distinct Ci, at

most n.
The overall algorithm is summarized as Algorithm 1. Remember that the data matrix

X̄ has x′i, i = 1, . . . , n+ 1, as its ith row; its size is (n+ 1)× p.
Finally, let us discuss the condition that all Bi are de�ned and positive, i = 1, . . . , n. By

Chatterjee and Hadi (1988, Property 2.6(b)), h̄n+1 = 1 implies h̄i,n+1 = 0 for i = 1, . . . , n;
therefore, the condition is equivalent to h̄i < 1 for all i = 1, . . . , n + 1. By Mohammadi
(2016, Lemma 2.1(iii)), this means that the rank of the extended data matrix X̄ is p and it
remains p after removal of any one of its n + 1 rows. If this condition is not satis�ed, we
de�ne Qn(y) := [0, 1] for all y. This ensures that the studentized LSPM is a CPS.

The batch version of the studentized LSPM

There is a much more e�cient implementation of the LSPM in situations where we have
a large test sequence of objects xn+1, . . . , xn+m instead of just one test object xn+1. In
this case we can precompute the hat matrix for the training objects x1, . . . , xn, and then,
when processing each test object xn+j , use the standard updating formulas based on the
Sherman�Morrison�Woodbury theorem: see, e.g., Chatterjee and Hadi (1988, p. 23, (2.18)�
(2.18c)). For the reader's convenience we will spell out the formulas. Let X be the n × p
data matrix for the �rst n observations: its ith row is x′i, i = 1, . . . , n. Set

gi := x′i(X
′X)−1xn+1, i = 1, . . . , n+ 1. (17)

9



Vovk Shen Manokhin Xie

Algorithm 2: Least Squares Prediction Machine (batch version)

Data: a training sequence (xi, yi) ∈ Rp × R, i = 1, . . . , n, and a test sequence xn+j ∈ Rp,
j = 1, . . . ,m.

Set X to the data matrix for the n training objects;
set H = (hi,j) to the hat matrix (18);
for j ∈ {1, 2, . . . ,m} do

set xn+1 := xn+j ;
de�ne an (n+ 1)× (n+ 1) matrix H̄ = (h̄i,j) by (19) and (20);
for i ∈ {1, 2, . . . , n} do

de�ne Ai and Bi by (15) and (14), respectively;
set Ci := Ai/Bi

end

sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n);
return the predictive distribution (16) for the label of xn+j

end

Finally, let H be the n× n hat matrix

H := X(X ′X)−1X ′ (18)

for the �rst n objects; its entries will be denoted hi,j , with hi,i sometimes abbreviated to hi.
The full hat matrix H̄ is larger than H, with the extra entries

h̄i,n+1 = h̄n+1,i =
gi

1 + gn+1
, i = 1, . . . , n+ 1. (19)

The other entries of H̄ are

h̄i,j = hi,j −
gigj

1 + gn+1
, i, j = 1, . . . , n. (20)

The overall algorithm is summarized as Algorithm 2. The two steps before the for loop
are preprocessing; they do not depend on the test sequence.

The ordinary LSPM

A straightforward calculation shows that the ordinary LSPM has a particularly e�cient and
intuitive representation (Burnaev and Vovk, 2014, Appendix A):

Ci =
Ai
Bi

= ŷn+1 + (yi − ŷi)
1 + gn+1

1 + gi
, (21)

where ŷn+1 and ŷi are the Least Squares predictions for yn+1 and yi, respectively, computed
from the test objects xn+1 and xi, respectively, and the observations z1, . . . , zn as the training
sequence. The predictive distribution is de�ned by (16). The fraction 1+gn+1

1+gi
in (21) is

typically and asymptotically (at least under the assumptions A1�A4 stated in the next
section) close to 1, and can usually be ignored. The two other versions of the LSPM also
typically have

Ci ≈ ŷn+1 + (yi − ŷi). (22)
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4. A property of validity of the LSPM in the online mode

In the previous section (cf. Algorithm 1) we de�ned a procedure producing a �fuzzy� distribu-
tion function Qn given a training sequence zi = (xi, yi), i = 1, . . . , n, and a test object xn+1.
In this and following sections we will use both notation Qn(y) (for an interval) and Qn(y, τ)
(for a point inside that interval, as above). Remember that U is the uniform distribution
on [0, 1].

Prediction in the online mode proceeds as follows:

Protocol 1 Online mode of prediction

Nature generates an observation z1 = (x1, y1) from a probability distribution P ;
for n = 1, 2, . . . do

Nature independently generates a new observation zn+1 = (xn+1, yn+1) from P ;
Forecaster announces Qn, a predictive distribution based on (z1, . . . , zn) and xn+1;
set pn := Qn(yn+1, τn), where τn ∼ U independently

end for

Of course, Forecaster does not know P and yn+1 when computing Qn.
In the online mode we can strengthen condition R2 as follows:

Theorem 11 In the online mode of prediction (in which (zi, τi) ∼ P × U are IID), the

sequence (p1, p2, . . .) is IID and (p1, p2, . . .) ∼ U∞, provided that Forecaster uses the studen-

tized LSPM (or any other conformal transducer).

The property of validity asserted in Theorem 11 is marginal, in that we do not assert
that the distribution of pn is uniform conditionally on xn+1. Conditional validity is attained
by the LSPM only asymptotically and under additional assumptions, as we will see in the
next section.

5. Asymptotic e�ciency

In this section we obtain some basic results about the LSPM's e�ciency. The LSPM has a
property of validity under the general IID model, but a natural question is how much we
should pay for it in terms of e�ciency in situations where narrow parametric or even Bayesian
assumptions are also satis�ed. This question was asked independently by Evgeny Burnaev
(in September 2013) and Larry Wasserman. It has an analogue in nonparametric hypothesis
testing: e.g., a major impetus for the wide-spread use of the Wilcoxon rank-sum test was
Pitman's discovery in 1949 that even in the situation where the Gaussian assumptions of
Student's t-test are satis�ed the e�ciency (�Pitman's e�ciency�) of the Wilcoxon test is still
0.95.

In fact the assumptions that we use in our theoretical study of e�ciency are not com-
parable with the general IID model used so far: we will add strong parametric assumptions
on the way labels yi are generated given the corresponding objects xi but will remove the
assumption that the objects are generated randomly in the IID fashion; in this section
x1, x2, . . . are �xed vectors. (The reason being that the two main results of this section,
Theorems 12 and 13, do not require the assumption that the objects are random and IID.)
Suppose that, given the objects x1, x2, . . ., the labels y1, y2, . . . are generated by the rule

yi = w′xi + ξi, (23)

11
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where w is a vector in Rp and ξi are independent random variables distributed as N(0, σ2)
(the Gaussian distribution being parameterized by its mean and variance). There are two
parameters: vector w and positive number σ. We assume an in�nite sequence of observations
(x1, y1), (x2, y2), . . . but take only the �rst n of them as our training sequence and let n→∞.
These are all the assumptions used in our e�ciency results:

A1 As i→∞, ‖xi‖ = o(i1/4).

A2 The �rst component of each vector xi is 1.

A3 The empirical second-moment matrix has its smallest eigenvalue eventually bounded
away from 0:

lim inf
n→∞

λmin

(
1

n

n∑
i=1

xix
′
i

)
> 0,

where λmin stands for the smallest eigenvalue.

A4 The labels y1, y2, . . . are generated according to (23): yi = w′xi + ξi, where ξi are
independent Gaussian noise random variables distributed as N(0, σ2).

Alongside the three versions of the LSPM, we will consider three �oracles� (at �rst
concentrating on the �rst two). Intuitively, all three oracles know that the data is generated
from the model (23). Oracle I knows neither w nor σ (and has to estimate them from the
data or somehow manage without them). Oracle II does not know w but knows σ. Finally,
Oracle III knows both w and σ.

Formally, proper Oracle I outputs the standard predictive distribution for the label yn+1

of the test object xn+1 given the training sequence of the �rst n observations and xn+1,
namely it predicts with

ŷn+1 +
√

1 + gn+1σ̂ntn−p, (24)

where gn+1 is de�ned in (17),

ŷn+1 := x′n+1(X
′X)−1X ′Y, σ̂n :=

Ã
1

n− p

n∑
i=1

(yi − ŷi)2, ŷi := x′i(X
′X)−1X ′Y,

X is the data matrix for the training sequence (the n × p matrix whose ith row is x′i,
i = 1, . . . , n), Y is the vector (y1, . . . , yn)′ of the training labels, and tn−p is Student's t-
distribution with n − p degrees of freedom; see, e.g., Seber and Lee (2003, Section 5.3.1)
or Wang et al. (2012, Example 3.3). The version that is more popular in the literature on
empirical processes for residuals is simpli�ed Oracle I outputting

N
Ä
ŷn+1, σ̂

2
n

ä
. (25)

The di�erence between the two versions, however, is asymptotically negligible (Pinelis, 2015),
and the results stated below will be applicable to both versions.

Proper Oracle II outputs the predictive distribution

N
Ä
ŷn+1, (1 + gn+1)σ

2
ä
. (26)

12



Nonparametric predictive distributions based on conformal prediction

Correspondingly, simpli�ed Oracle II outputs the predictive distribution

N
Ä
ŷn+1, σ

2
ä

; (27)

the di�erence between the two versions of Oracle II is again asymptotically negligible under
our assumptions. For future reference, Oracle III outputs the predictive distribution

N
Ä
w′xn+1, σ

2
ä
.

Our notation is Qn for the conformal predictive distribution (1), as before, QI
n for simpli-

�ed or proper Oracle I's predictive distribution, (25) or (24) (Theorem 12 will hold for both),
and QII

n for simpli�ed or proper Oracle II's predictive distribution, (27) or (26) (Theorem 13
will hold for both). Theorems 12 and 13 are applicable to all three versions of the LSPM.

Theorem 12 The random functions Gn : R→ R de�ned by

Gn(t) :=
√
n
Ä
Qn(ŷn+1 + σ̂nt, τ)−QI

n(ŷn+1 + σ̂nt)
ä

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t))− φ(s)φ(t)− 1

2
stφ(s)φ(t), s ≤ t.

Theorem 13 The random functions Gn : R→ R de�ned by

Gn(t) :=
√
n
Ä
Qn(ŷn+1 + σt, τ)−QII

n (ŷn+1 + σt)
ä

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t))− φ(s)φ(t), s ≤ t.

In Theorems 12 and 13, we have τ ∼ U ; alternatively, they will remain true if we �x τ
to any value in [0, 1]. For simpli�ed oracles, we have QI

n(ŷn+1 + σ̂nt) = Φ(t) in Theorem 12
and QII

n (ŷn+1 + σt) = Φ(t) in Theorem 13. Our proofs of these theorems (omitted in this
version of the paper) are based on the representation (21) and the results of Mugantseva
(1977) (see also Chen 1991, Chapter 2).

Applying Theorems 12 and 13 to a �xed argument t, we obtain (dropping τ altogether):

Corollary 14 For a �xed t ∈ R,
√
n
Ä
Qn(ŷn+1 + σ̂nt)−QI

n(ŷn+1 + σ̂nt)
ä
⇒ N

Å
0,Φ(t)(1− Φ(t))− φ(t)2 − 1

2
t2φ(t)2

ã
,

√
n
Ä
Qn(ŷn+1 + σt)−QII

n (ŷn+1 + σt)
ä
⇒ N

Ä
0,Φ(t)(1− Φ(t))− φ(t)2

ä
.

Figure 1 presents plots for the asymptotic variances, given in Corollary 14, for the two
oracular predictive distributions: black for Oracle I (Φ(t)(1−Φ(t))− φ(t)2 − 1

2 t
2φ(t)2 vs t)

and blue for Oracle II (Φ(t)(1−Φ(t))−φ(t)2 vs t); the red plot will be discussed later in this
section. The two asymptotic variances coincide at t = 0, where they attain their maximum
of between 0.0908 and 0.0909.

We can see that under the Gaussian model (23) complemented by other natural assump-
tions, the LSPM is asymptotically close to the oracular predictive distributions for Oracles I
and II, and therefore is approximately conditionally valid and e�cient. On the other hand,
Theorem 11 guarantees the marginal validity of the LSPM under the general IID model,
regardless of whether (23) holds.
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Figure 1: The asymptotic variances for the Dempster�Hill (DH) procedure as compared with
the truth (Oracle III, red) and for the LSPM and Dempster�Hill as compared with
the oracular procedures for known σ (Oracle II, blue) and unknown σ (Oracle I,
black); in black and white, red is highest, blue is intermediate, and black is lowest

Comparison with the Dempster�Hill procedure

In this subsection we discuss a classical procedure that was most clearly articulated by
Dempster (1963, p. 110) and Hill (1968, 1988); therefore, in this paper we refer to it as
the Dempster�Hill procedure. Both Dempster and Hill trace their ideas to Fisher's (1939,
1948) nonparametric version of his �ducial method, but Fisher was interested in con�dence
distributions for quantiles rather than predictive distributions. Hill (1988) also referred to
his procedure as Bayesian nonparametric predictive inference, which was abbreviated to
nonparametric predictive inference (NPI) by Frank Coolen (Augustin and Coolen, 2004).
We are not using the last term since it seems that all of this paper falls under the rubric
of �nonparametric predictive inference�. An important predecessor of Dempster and Hill
was Je�reys (1932), who postulated what Hill later denoted as A(2) (see Lane 1980 and
Seidenfeld 1995 for discussions of Je�reys's paper and Fisher's reaction).

The Dempster�Hill procedure is the conformal predictive system determined by the
conformity measure

A(z1, . . . , zn+1) = A(y1, . . . , yn+1) = yn+1 (28)

that ignores the objects xi. It can be regarded as the special case of the LSPM for the
number of attributes p = 0; alternatively, we can take p = 1 but assume that all objects
are xi = 0. The predictions ŷ are always 0 and the hat matrices are H̄ = 0 and H = 0
(although the expressions (12) and (18) are not formally applicable), which means that (10),
(11), and (13) all reduce to (28). It is easy to see that the predictive distribution becomes,

14
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in the absence of ties (Dempster's and Hill's usual assumption),

Qn(y) :=

{
[ i
n+1 ,

i+1
n+1 ] if y ∈ (y(i), y(i+1)) for i ∈ {0, 1, . . . , n}

[ i−1n+1 ,
i+1
n+1 ] if y = y(i) for i ∈ {1, . . . , n}

(29)

(cf. (16)), where y(1) ≤ · · · ≤ y(n) are the yi sorted in the increasing order, y(0) := −∞, and
y(n+1) := ∞. This is essentially Hill's assumption A(n) (which he also denoted An); in his
words: �An asserts that conditional upon the observations X1, . . . , Xn, the next observation
Xn+1 is equally likely to fall in any of the open intervals between successive order statistics
of the given sample� (Hill, 1968, Section 1). The set of all continuous distribution functions
F compatible with Hill's A(n) coincides with the set of all continuous distribution functions
F satisfying F (y) ∈ Qn(y) for all y ∈ R, where Qn is de�ned by (29).

Notice that the LSPM, as presented in (22), is a very natural adaptation of A(n) to the
Least Squares regression.

Since (29) is a conformal transducer (provided a point from an interval in (29) is chosen
randomly from the uniform distribution on that interval), we have the same guarantees of
validity as those given above: the distribution of (29) is uniform over the interval [0, 1].

As for e�ciency, it is interesting that, in the most standard case of IID Gaussian obser-
vations, our predictive distributions for linear regression are as precise as the Dempster�Hill
ones asymptotically when compared with Oracles I and II. Let us apply the Dempster�Hill
procedure to the location/scale model yi = w + ξi, i = 1, 2, . . ., where ξi ∼ N(0, σ2) are
independent. As in the case of the LSPM, we can compare the Dempster�Hill procedure
with three oracles (we consider only simpli�ed versions): Oracle I knows neither w nor σ,
Oracle II knows σ, and Oracle III knows both w and σ.

It is interesting that Theorems 12 and 13 (and therefore the blue and black plots in
Figure 1) are applicable to both the LSPM and Dempster�Hill predictive distributions.
(The fact that the analogous asymptotic variances for standard linear regression are as good
as those for the location/scale model was emphasized in the pioneering paper by Pierce and
Kopecky 1979.) The situation with Oracle III is di�erent. Donsker's (1952) classical result
implies the following simpli�cation of Theorems 12 and 13, where QIII stands for Oracle
III's predictive distribution (independent of n).

Theorem 15 In the case of the Dempster�Hill procedure, the random function Gn : R→ R
de�ned by

Gn(t) :=
√
n
Ä
Qn(w + σt, τ)−QIII(w + σt)

ä
=
√
n (Qn(w + σt, τ)− Φ(t)) (30)

weakly converges to a Brownian bridge, i.e., a Gaussian process Z with mean zero and

covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t)) , s ≤ t.

The variance Φ(t)(1−Φ(t)) of the Brownian bridge is shown as the red line in Figure 1.
However, the analogue of the process (30) does not converge in general for the LSPM (under
this section's assumption of �xed objects).

6. Experimental results

In this section we explore experimentally the validity and e�ciency of the studentized LSPM.

15



Vovk Shen Manokhin Xie

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

n

cu
m

ul
at

iv
e 

su
m

Figure 2: The cumulative sums Sn of the p-values vs n = 1, . . . , 1000
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Figure 3: The cumulative sums Sαn vs n = 1, . . . , 1000 for α ∈ {0.25, 0.5.0.75}

Online validity

First we check experimentally the validity of our methods in the online mode of prediction.
It is guaranteed by our theoretical results but provides an opportunity to test the correctness
of our implementation.
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Figure 4: The calibration curve: AαN vs α ∈ [0, 1] for N = 1000

We generate N := 1000 of IID observations z1, . . . , zN and the corresponding p-values
pn := Qn(yn+1, τn), n = 1, . . . , N , in the online mode. In our experiments, xn ∼ N(0, 1),
yn ∼ 2xn + N(0, 1), and, as usual, τn ∼ U , all independent. Figure 2 plots Sn :=

∑n
i=1 pi

vs n = 1, . . . , N ; as expected, it is an approximately straight line with slope 0.5. Figure 3
presents three plots: the cumulative sums Sαn :=

∑n
i=1 1{pi≤α}, where 1 is the indicator

function, vs n = 1, . . . , N , for three values of α, α ∈ {0.25, 0.5, 0.75}. For each of the three
αs the result is an approximately straight line with slope α. Finally, Figure 4 plots AαN
against α ∈ [0, 1], where AαN := 1

N

∑N
i=1 1{pi≤α}. The result is, approximately, the main

diagonal of the square [0, 1]2, as it should be.

E�ciency

Next we explore empirically the e�ciency of the studentized LSPM. Figure 5 compares the
conformal predictive distribution with the true (Oracle III's) distribution for four randomly
generated test objects and a randomly generated training sequence of length 10 with 2
attributes. The �rst attribute is a dummy all-1 attribute; remember that Theorems 12
and 13 depend on the assumption that one of the attributes is an identical 1 (without
it, the plots become qualitatively di�erent: cf. Chen 1991, Corollary 2.4.1). The second
attribute is generated from the standard Gaussian distribution, and the labels are generated
as yn ∼ 2xn,2+N(0, 1), xn,2 being the second attribute. We also show (with thinner lines) the
output of Oracle I and Oracle II, but only for the simpli�ed versions, in order not to clutter
the plots. Instead, in the left-hand plot of Figure 6 we show the �rst plot of Figure 5 that is
normalized by subtracting the true distribution function; this time, we show the output of
both simpli�ed and proper Oracles I and II; the di�erence is not large but noticeable. The
right-hand plot of Figure 6 is similar except that the training sequence is of length 100 and
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Figure 5: Examples of true predictive distribution functions (black), their conformal esti-
mates (represented by the shaded areas), and the distribution functions output
by simpli�ed Oracle I (red) and Oracle II (blue) for a tiny training sequence (of
length 10 with two attributes, the �rst one being the dummy all-1 attribute); in
black and white, the true predictive distribution functions are the thick lines, and
Oracle I is always farther from them in the uniform metric than Oracle II is

there are 20 attributes generated independently from the standard Gaussian distribution
except for the �rst one, which is the dummy all-1 attribute; the labels are generated as
before, yn ∼ 2xn,2 +N(0, 1).

Since Oracle III is more powerful than Oracles I and II (it knows the true data-generating
distribution), it is more di�cult to compete with; therefore, the black line is farther from
the shaded area than the blue and red line for all four plots in Figure 5. The estimated
distribution functions being to the left of the true distribution functions is a coincidence:
the four plots correspond to the values 0�3 of the seed for the R pseudorandom number
generator, and for other seeds the estimated distribution functions are often to the right.
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Figure 6: The left-hand plot is the �rst (upper left) plot of Figure 5 normalized by sub-
tracting the true distribution function (the thick black line in Figure 5, which
now coincides with the x-axis) and with the outputs of the proper oracles added;
the right-hand plot is an analogous plot for a larger training sequence (of length
100 with 20 attributes, the �rst one being the dummy attribute)

7. Conclusion

This paper introduces conformal predictive distributions in regression problems. Their ad-
vantage over the usual conformal prediction intervals is that a conformal predictive distri-
bution Qn contains more information and can produce a plethora of prediction intervals:
e.g., for each ε > 0, {y ∈ R | ε/2 ≤ Qn(y, τ) ≤ 1− ε/2} is a conformal prediction interval at
con�dence level 1− ε.
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