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Abstract

In many applications, the real high-dimensional data occupy only a very small part in
the high dimensional ‘observation space’ whose intrinsic dimension is small. The most
popular model of such data is Manifold model which assumes that the data lie on or
near an unknown manifold (Data Manifold, DM) of lower dimensionality embedded in an
ambient high-dimensional input space (Manifold Assumption about high-dimensional data).
Manifold Learning is a Dimensionality Reduction problem under the Manifold assumption
about the processed data, and its goal is to construct a low-dimensional parameterization
of the DM (global low-dimensional coordinates on the DM) from a finite dataset sampled
from the DM.

Manifold Assumption means that local neighborhood of each manifold point is equiv-
alent to an area of low-dimensional Euclidean space. Because of this, most of Manifold
Learning algorithms include two parts: ‘local part’ in which certain characteristics reflect-
ing low-dimensional local structure of neighborhoods of all sample points are constructed
via nonparametric estimation, and ‘global part’ in which global low-dimensional coordi-
nates on the DM are constructed by solving the certain convex optimization problem for
specific cost function depending on the local characteristics. Both statistical properties of
‘local part’ and its average over manifold are considered in the paper. The article is an
extension of the paper (Yanovich, 2016) for the case of nonparametric estimation.

Keywords: Manifold Learning, Nonparametric Estimation, Asymptotic Expansions, Large
Deviations

1. Introduction

Many Data Analysis tasks, such as Pattern Recognition, Classification, Clustering, Progno-
sis, Function reconstruction, and others, which are challenging for machine learning prob-
lems, deal with real-world data that are presented in high-dimensional spaces, and the
‘curse of dimensionality’ phenomena is often an obstacle to the use of many learning al-
gorithms for solving these tasks. Fortunately, in many applications, especially in imaging
and medical ones, the real high-dimensional data occupy only a very small part in the high
dimensional p-dimensional ‘observation space’ whose intrinsic dimension q is small (usually,
q � p) (Donoho, 2000; Verleysen, 2003). Thus, various Dimensionality Reduction (Feature
extraction) algorithms whose goal is a finding of a low-dimensional parameterization of
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high-dimensional data can be used as a first key step in solutions of such ’high-dimensional’
tasks by transforming the data into their low-dimensional representations (features) pre-
serving certain chosen subject-driven data properties (Bengio et al., 2013; Bernstein and
Kuleshov, 2014; Kuleshov and Bernstein, 2016). Then the low-dimensional features can be
used in reduced learning procedures instead of initial high-dimensional vectors avoiding the
curse of dimensionality Kuleshov and Bernstein (2014): ‘dimensionality reduction may be
necessary to discard redundancy and reduce the computational cost of further operations’
(Lee and Verleysen, 2007).

The most popular model of high-dimensional data, which occupy a very small part
of observation space Rp, is Manifold model in accordance with which the data lie on or
near an unknown manifold (Data manifold, DM) M of lower dimensionality q embedded in
an ambient high-dimensional input space Rp (Manifold assumption (Seung and Lee, 2000)
about high-dimensional data); typically, this assumption is satisfied for ‘real-world’ high-
dimensional data obtained from ‘natural’ sources. In real examples, a manifold dimension
q is usually unknown and can be estimated by a given dataset randomly sampled from the
Data manifold (Levina and Bickel, 2005; Fan et al., 2009; Einbeck and Kalantana, 2013;
Rozza et al., 2011). Dimensionality Reduction under the Manifold assumption about the
processed data is usually referred to as the Manifold Learning (Smith et al., 2009; Ma and
Fu, 2011) whose goal is constructing a low-dimensional parameterization of the DM (global
low-dimensional coordinates on the DM) from a finite dataset sampled from the DM.

Manifold assumption means that local neighborhood of each manifold point is equivalent
to an area of low-dimensional Euclidean space. Because of this, most of Manifold Learning
algorithms include two parts: ‘local part’ in which certain characteristics reflecting low-
dimensional local structure of neighborhoods of all sample points are constructed, and
‘global part’ in which global low-dimensional coordinates on the DM are constructed by
solving certain convex optimization problem for specific cost function depending on the
local characteristics under some normalization constraints (usually, generalized eigenvalues
problem). It is typical structure of certain class of manifold learning algorithms such as
Locally Linear Embedding (LLE) (Roweis and Saul, 2000), ISOmerric MAPping (Isomap)
(Tenenbaum et al., 2000), Laplacian Eigenmaps (LEM) (Belkin and Niyogi, 2003), Local
Tangent Space Alignment (LTSA) (Zhang and Zha, 2004), Hessian Eigenmaps (HLLE)
(Donoho and Grimes, 2003), Semidefinite Embedding (SDE) (Weinberger and Saul, 2006),
and Diffusion Maps (DFM) (Coifman and Lafon, 2006).

The radius of the neighborhood should be small enough to achieve small local estimation
error. On the other hand, the number of points in the neighborhood should be large enough
to get a small statistical error. There are two approaches to choose the ball’s size: it consists
of the fixed number of neighbors (k nearest), or the radius is set. The first case does not
guarantee that the radius would be small so that the local approximation error could be
large. The distribution of the k-th neighbor is studied in (Levina and Bickel, 2005; massoud
Farahmand et al., 2007; Campadelli et al., 2015). Also in (Smith et al., 2009) distance to
the k-th neighbor assumed to converge to zero and is the rate of convergence parameter.
The second case does not guarantee the large enough number of points if the neighborhood.
This question is mentioned in (Levina and Bickel, 2005; Singer and Wu, 2012) but it wasn’t
specifically discussed. In (Singer and Wu, 2012), it was shown that both local and statistical
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parts of errors are asymptotically small for a specific statistic (elements of the covariance
matrix) and also large deviation error was estimated.

Local and global nonparametric statistics with a special form on a manifold are consid-
ered in the present paper. The consistency, asymptotic expansion, and large probability are
of interest. Such results could be used to study the properties of existing manifold learn-
ing algorithms and to propose new statistically motivated ones. The results generalizes
the classic results for the nonparametric regression with multivariate input for the case of
nonlinear input space. The optimal rate of convergence of the mean absolute deviation for
the classic (Henderson and Parmeter, 2015) and considered cases coincides and are equal

O(N
− 2

q+4 ), where N is a sample size.
The paper is organized as follows. In Section 2 the data model is described, and the

main results of the paper are listed and discussed. In Section 3 the data model is defined,
and all assumptions are listed. Then, Section 4 contains exact formulations of the main
results. Section 5 contains the main proofs. In Section 6 the paper summary and future
work directions are given. In Appendix A supplementary Lemmas proofs are given.

2. Results Description

The main results are strictly formulated in Section 4, and the main assumptions, used in
the proof, strictly formulated in Section 3. Some substantive comments are given here.

2.1. Manifold Learning Data Model

Let M ⊂ Rp be an unknown manifold with dimensionality q and XN = {X1, . . . , XN} ⊂M
be a random sample with size N . Data Model consists of assumptions about support
(manifold M) and assumptions about sample distribution. The paper deals with ‘good
enough’ manifolds with known dimensionality q. The problem of dimensionality estimation
is a problem of the only integer parameter estimation and solutions (Campadelli et al., 2015)
with the rate of error probability ∼ exp(−C · N) are known, where C > 0 is a constant.
Such rate is smaller than the rates in this article. The sample assumed to be independent
identically distributed (i.i.d.) with unknown ‘good’ continuous measure µ on the manifold
M. The strict formulation of the mentioned assumptions are formulated in (Yanovich, 2016)
and in Section 3.

2.2. Statistics Form

Consider local statistics

FN (X) =

∑N
n=1Kε(X,Xn) · F (X,Xn)

εd ·
∑N

n=1Kε(X,Xn)
, (1)

where F (X,Xn) is a specific function for each problem (Manifold Learning algorithm),
Kε(X,Xn) is weight (kernel) function for F (X,Xn) such that Kε(X,Xn) > 0 iff Xn ∈ UX,ε,
where UX,ε = {X ′ ∈ Rp| |X ′ − X| < ε}; d ∈ Z, d ≥ 0 is a parameter, which is defined
by function F (X,Xn) behavior for X → Xn. Parameter ε = ε(N) is considered as a
function of sample size N . The exact assumptions about ε are listed in Section Data Model
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of (Yanovich, 2016). An example of the kernel which meets assumptions is ε = E(N) =

C ·N−
1

q+2 .
The considered global statistics are average values of (1) over the sample

FN =
1

N

N∑
n=1

FN (Xn). (2)

Kernel function examples Kε(X,X
′) from different algorithms:

• indicator function I(X ′ ∈ UX,ε) for event ‘X ′ is in UX,ε’ is used in Local Linear
Embeding and Local Tangent Space Alignment (Roweis and Saul, 2000; Zhang and
Zha, 2004);

• heat-kernel from Laplacian Eigenmaps (Belkin and Niyogi, 2003) exp(−|X ′−X|2/T ) ·
I(X ′ ∈ UX,ε), where T > 0 is a ‘temperature’ parameter;

• Epanechnikov kernel from Vector Diffusion Maps (Singer and Wu, 2012)(
1− |X ′ −X|2/ε2

)
· I(X ′ ∈ UX,ε);

• kernel from Grassmann&Stiefel Eigenmaps(Bernstein and Kuleshov, 2013, 2014; Bern-
stein et al., 2015a,b,c) KGSE(X,X ′), which depends on not only from the distance
|X−X ′|, but also on CauchyBinet between tangent spaces TX(M) and TX′(M) for M
at points X and X ′.

For a fixed point X, let’s represent X ′ ∈ UX,ε using its locally Riemannian coordinates:
X ′ = expX(tθ), where t ∈ [0,∞) and θ ∈ Sq−1 ⊂ TX(M). The parametric family of smooth
kernels with finite support {K(X, θ, t), t ≥ 0, θ ∈ Sq−1}, and Kε(X,X

′) are represented as

Kε(X,X
′) = Kε(X, expX tθ) = K(X, θ, t/ε). (3)

The kernels are assumed to be smooth functions of their arguments in the article as in
other theoretic papers about Manifold Learning. The kernels from examples above could
be represented as (3) but are not continuous or smooth. Fortunately, it is possible to
replace these kernels with ‘smoothed’ counterparts, without any change in algorithms. And
it usually doesn’t change the calculation procedure quality (Bishop, 2006). An example of

the kernel which meets the papers assumptions is K(X, θ, t) = exp
(

1
z2−1

)
· I (t ∈ (−1, 1)).

Examples of F (X,X ′) (1)

1. F (X,X ′) = ψ(X ′) leads to FN (X) (1) which is nonparametric estimate (Wasserman,
2006) for unknown function on manifold ψ()̇ at point X using its values ψ(X ′) at
sample points X ′ ∈ XN ;

2. F (X,X ′) = (X ′−X) · (X ′−X)T , X,X ′ ∈ Rp, p× p matrix FN (X) (1) is an estimate
for covariance matrix at point X ∈ M using points from UX,ε. This statistic is used
in the local principal component analysis to estimate tangent space TX(M) to M at
point X (Singer and Wu, 2012);
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3. F (X,X ′) =
∣∣∣ψ(X)− ψ(X̃)

∣∣∣2, where ψ is a scalar or vector function. Local statistic

FN (X) (1) is used in such dimension reduction procedures as (Belkin and Niyogi,
2003; Bernstein and Kuleshov, 2013).

The parameter d is defined as F (X,X ′) = Φ(X, θ, t) = O(td) for t→ 0:

Φ(X, θ, t) = td · φ(X, θ, t).

It is assumed that d is fixed and is the same for all X ∈ M and θ ∈ TX(M). The strict
assumptions about kernel family and the function F (X,X ′) are also listed in Section 3.
Denote for X ′ = expX(tθ)

F (X,X ′) = F̃ (X, θ, t) = td · ϕ(X, θ, 0) + td+1 · ϕ1(X, θ, 0) +
td+2

2
· ϕ2(X, θ, t̃), (4)

for t→ 0 and t̃ = t̃(t) ∈ [0, t].
In the article it is shown that statistics (1) and (2) are the consistent estimates for

F (X) =

∫
Sq−1 ρE,d(X, θ)F̃ (X, θ, 0)dθ∫

Sq−1 ρE,0(X, θ)dθ
, (5)

and

F =

∫
M
F (X)dµ(X), (6)

where Sq−1 is sphere in q-dimensional space,

ρE,m(X, θ) =

∫ 1

0
K (X, θ, t) tm+q−1dt. (7)

2.3. Main Results

Manifold behaves as a linear subspace in a small neighborhood of a point. Therefore,
the intersection of a full dimensional Euclidean ball with a manifold is close to the low
dimensional ball. Thus, local statistics should behave almost as nonparametric estimates
in linear tangent q-dimensional space. Similar results where proved in (Singer and Wu,
2012) for a particular statistic (tangent space estimation). However, in Statement 1, it is
proved that for the class of local statistics (1) are consistent estimates for the explicitly
written values. The Theorem 1 prove that conditional distribution of sample points in
the neighborhood is asymptotically uniform. The Corollary 1 sets that all directions from
tangent space are equal to the conditional distribution. So, one could think of conditional
distribution as of uniform distribution on the ball in tangent space. In the Theorem 2
asymptotic expansion of the considered statistics is given, and in the Theorem 3 assesses
the probability of large deviations. The Theorem 4 prove a uniform result of the large
deviations probability: if we consider all points of the manifold, which are a little removed
from the border, as the centers of the balls, then the minimum over all balls of points in
each of them, will be asymptotically infinitely large with a high probability.
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The features of the results are the curvature of the unknown sample support, the ten-
dency to zero of the random variable mathematical expectation, the need to obtain uniform
estimation on the manifold. The basic ideas used in proofs: local linearization of the sup-
port, the use of inequalities for the probabilities of large deviations of sums of i.i.d. random
variables, the use of finite nets.

3. Data Model

General common assumptions M1-M8 and S1-S3 for Manifold Learning are formulated in
Section Data Model of (Yanovich, 2016). Here are listed only additional ones.

M9. Exists εB > 0 and CB > 0 such that for ε < εB Riemannian measure dV (M \Mε), of
distant from boundary points ε is bounded

dV (M \Mε) ≤ ε · CB · ε · dV (M);

M10. Exists εC > 0 and positive Cc > 0 such that ε < εc and for each point X ∈ M
Riemannian measure of intersection of p-dimensional ε ball with center at X ∈M and
Manifold M is lower bounded by Cc · εq.

For the neighborhood parameter ε = ε(N) > 0 it is assumed that

P1. For N →∞: ε→ 0;

P2. For N →∞: N · εq →∞;

P3. For N →∞: N · εq+4 → 0.

Note. The assumption P1 means that the neighborhood size tends to zero, and therefore
the expansion of functions at the main term is a term with the lowest degree of length. The
assumption P2 provides an infinite number of sample points in the neighborhood despite
the decrease in the size of the neighborhood. Assumption P3 is stronger than P1 and
guarantees that the contribution of the bias of the order ε2 is infinitely small in the results
of the central limit theorem for the number of points of order N · εq.

For the function F (X,X ′) for X ′ = expX tθ ∈ UX,ε it is assumed

F1. Exists d ∈ Z, d ≥ 0 which is the same for all X ∈M such that the d is the main term
of the F̃ (X, θ, t) expansion for t→ 0;

F2. The representation (4) is valid for t→ 0 and t̃ ∈ [0, t], where ϕ(X, θ, t) and ϕ1(X, θ, t)
are smooth and bounded, ϕ2(X, θ, t) is bounded and Lipshitz.

Let

Cϕ = sup
X∈M,t,θ

|ϕ(X, θ, t)|; (8)

Cϕ,1 = sup
X∈M,t,θ

|ϕ1(X, θ, t)|; (9)
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Cϕ,2 = sup
X∈M,t,θ

|ϕ2(X, θ, t)|. (10)

For the weight function Kε(X,X
′) for X ′ = expX tθ ∈ UX,ε it is assumed

K1. Kε(X,X
′) = K(X, θ, |X−X

′|
ε ), where K(X, θ, z) is a fixed nonnegative bounded func-

tion with bounded derivative, which is symmetric with respect to θ and z;

K2. Function K(X, θ, z) has finite support with respect to z: K(X, θ, z) = 0 for z ≥ 1;

K3. Positive ρE,0(X, θ) (7) and ρV,0(X, θ) (16) exist;

K4. Function K(X, θ, z) is Lipshitz with respect to X with constant C̃K ;

K5. infX∈M
∫
Sq

∫ 1
1/2K(X, θ, z)zq−1dθdt ≥ CK,1/2.

Let

CK = sup
X,θ,z

K(X, θ, z); (11)

CK,1 = sup
X,θ,z

∣∣∣∣∂K(X, θ, z)

∂z

∣∣∣∣ . (12)

4. Main Results

The results are formulated under assumptions M1-M10, S1-S3, P1-P3, F1-F2 and K1-K5.
Statement 1 (FN (X) consistency). For each X ∈M as N →∞

EFN (X)→ F (X);

Nεq · VarFN (X)→ d(X);

FN (X)→p F (X),

where m(X) and d(X) are functions (19) and (18), →p is convergence in probability.
Theorem 1 (FN (X) asymptotic expansion). For each X ∈M as N →∞

√
Nεq ·

(
FN (X)− F (X)

)
→D N(m(X), d(X)),

where m(X) and d(X) are functions (19) and (18), m(X) ≡ 0 for d
...2, →D is convergence

in distribution.
Theorem 2 (large deviation probability for FN (X)). For each ε-bounded from

manifold boundary point X ∈Mε, and for each N > N0 and ε < ε0

P

(∣∣FN (X)− F (X)
∣∣ ≥ z + ε · I(d 6

...2) · CLD1 + ε2 · CLD2

)
≤ 4 · exp

(
−z

2 ·Nεq

σ2(X)

)
,

where N0, ε0, CLD1, CLD2 are positive constants (20), (22), (23), (24),

σ2(X) = pµ(X) ·
∫
Sq−1

ρD,2d(X, θ)(1 + ϕ(X, θ, 0))2dθ, (13)
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and σ2(X) ≤ Cσ, Cσ is a constant (21).
Theorem 3 (uniform large deviation probability for FN (X)). For each z ∈ [0, 1],

for N > N0, ε < ε0 for each ε-bounded from manifold boundary point X ∈Mε

P

(
sup
X∈Mε

∣∣FN (X)− F (X)
∣∣ ≥ z + ε · I(d 6

...2) · CLD1 + ε2 · C̃LD2

)
≤

≤ 4 ·
(

2a
√
p

ε3

)p
· exp

(
−z

2 ·Nεq

Cσ

)
+

(
6a
√
p

ε

)p
· exp

(
−1/16 ·NεqVqp2min/(9pmax)

)
,

where N0, ε0, CLD1 are positive constants (20), (22), (23), C̃LD2 is a positive constant form
the proof.

Statement 2 (FN consistency). For N →∞:

FN →p F .

Theorem 4 (large deviation probability for FN). Exist positive constants NU,0,
CU,1, CU,2, CU,p such that for z ∈ [0, 1] and N > NU,0:

P

(∣∣FN − F ∣∣ ≥ z + ε · I(d 6
...2) · CU,1 + ε2 · CU,2

)
≤ exp

(
−z2 ·Nεq · CU,p

)
.

5. Proof of Main Theorems

The following Lemma would be used in proofs.
Lemma 1 (random variable moments). Let X ∈M2ε,

ε ≤ Cint a point X ′ ∈ M is random with density pµ(X ′). Then for ξ = 1
εq+d ·Kε(X,X

′) ·
F (X,X ′)

Eξ = pµ(X) ·
∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ + ε · E1(X) · I(d 6
...2) + ε2 · αE(X) · CE,2; (14)

Varξ = ε−q · pµ(X) ·
∫
Sq−1

ρD,2d(X, θ)ϕ(X, θ, 0)2dθ + εmin{−q+2,0} · αV (X) · CV,2, (15)

where

|αE(X)| ≤ 1;

|αV (X)| ≤ 1;

E1(X) ≤ CE,1,

E1(X) is defined in (27), CE,1, CE,2, CV,2 are constants from (28), (29), (30) respectivly,

Cint is a constant from Lemma 8 from (Yanovich, 2016), I(d 6
...2) is an indicator for even d,

ρV,m(X, θ) =

∫ 1

0
K (X, θ, t)2 tm+q−1dt. (16)

Proof. The Lemma is proved in Appendix A.
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Consequence 1. Let X ∈M2ε,
ε ≤ Cint and X ′ ∈M is random with density pµ(X ′). Then for

ξK1,F0 =
1

εq
·Kε(X,X

′);

ξK1,F2 =
1

εq+2d
·Kε(X,X

′) · F (X,X ′)2;

ξK2,F1 =
1

ε2q+d
·Kε(X,X

′)2 · F (X,X ′);

ξK2,F2 =
1

ε2q+2d
·Kε(X,X

′)2 · F (X,X ′)2

the moments are

|EξK1,F0 − pµ(X) ·
∫
Sq−1

ρE,d(X, θ)dθ| ≤ ε2 · C̃E,2;

|EξK1,F2 − pµ(X) ·
∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)2dθ| ≤ ε2 · C̃E,2;

|EξK2,F1 − pµ(X) ·
∫
Sq−1

ρV,d(X, θ)ϕ(X, θ, 0)dθ| ≤ ε · I(d 6
...2) · C̃E,1 + ε2 · C̃E,2;

|EξK2,F2 − pµ(X) ·
∫
Sq−1

ρV,2d(X, θ)ϕ(X, θ, 0)2dθ| ≤ ε2 · C̃E,2,

where

C̃E,1 = Vq · (1 + Cρ)
2 ·
(
pmax · (1 + Cϕ,1)

2 + Cp,1 · (1 + Cϕ)2
)

;

C̃E,2 = Vq · (1 + CK + CK,1)
2 · (1 + Cϕ + Cϕ,1 + Cϕ,2)

2

·(pmax + Cp,1 + Cp,2) · (1 + CRic) + 8 · Vq · pmax · (1 + CK)2 · (1 + Cϕ + Cϕ,1 + Cϕ,2)
2,

Cint is a constant from Lemma 8 from (Yanovich, 2016).
Proof of Statement 1. Using Lemma 5 for ξ = 1

εq+d · Kε(X,X
′) · F (X,X ′) and

ξ̃ = 1
εq ·Kε(X,X

′) · 1, using ε−q ·N−1 → 0 from P2, from law of large numbers:

1

Nεq+d
·
N∑
n=1

Kε(X,Xn) · F (X,Xn)→P

∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ;

1

Nεq
·
N∑
n=1

Kε(X,Xn) · F (X,Xn)→P

∫
Sq−1

ρE,d(X, θ)dθ > 0.

From which follows the convergence of the ratio to the ratio of parts limits.
Proof of Theorem 1. Transform

FN (X)−
E 1
εq+dKε(X,X1) · F (X,X1)

E 1
εqKε(X,X1)

=
( 1

N

N∑
n=1

1

ε2q+d

(
Kε(X,Xi)F (X,Xi)EKε(X,Xn)

−Kε(X,Xn) (EKε(X,Xn)F (X,Xn))
))
/
(
E

1

εq
Kε(X,X1) ·

1

Nεq

N∑
n=1

Kε(X,Xn)
)
.(17)
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Denominator (17) converges to
(
pµ(X) ·

∫
Sq−1 ρE,d(X, θ)dθ

)2
> 0 in probability. Numerator

(17) equals to the sum of centered independent (as functions of independent) identically
distributed random variables

ςn =

(
1

εq+d
Kε(X,Xi)F (X,Xi)

)
·
(

1

εq
EKε(X,Xn)

)
−
(

1

εq+d
EKε(X,Xi)F (X,Xi)

)
·
(

1

εq
Kε(X,Xn)

)
, n = 1, . . . , N

with the second moment from Consequence 1 as N →∞:

Eς2 → d(X),

where

d̃(X) =
1

εq
· pµ(X)3·

(∫
Sq−1

ρV,2d(X, θ)ϕ(X, θ, 0)2dθ ·
(∫
Sq−1

ρE,d(X, θ)dθ
)2

+

+

∫
Sq−1

ρV,2d(X, θ)dθ ·
(∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ
)2 −

−2 ·
∫
Sq−1

ρV,d(X, θ)ϕ(X, θ, 0)dθ ·
∫
Sq−1

ρE,d(X, θ)dθ ·
∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ
)
.

Also

Eς2n ≤ 4 · (1 + CK)2 · (1 + Cϕ + Cϕ,1 + Cϕ,2),

where Cϕ, Cϕ,1, Cϕ,2, CK are constants (8), (9), (10), (11) respectivly. Which implies that

N · εq · Var

(
FN (X)−

E 1
εq+dKε(X,X1) · F (X,X1)

E 1
εqKε(X,X1)

)
→ d(X),

where

d(X) = N · εq · d̃(X)/

(
pµ(X) ·

∫
Sq−1

ρE,d(X, θ)dθ

)2

= pµ(X)·
(∫

Sq−1

ρV,2d(X, θ)ϕ(X, θ, 0)2dθ ·
(∫
Sq−1

ρE,d(X, θ)dθ
)2

+

∫
Sq−1

ρV,2d(X, θ)dθ ·
(∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ
)2

−2 ·
∫
Sq−1

ρV,d(X, θ)ϕ(X, θ, 0)dθ ·
∫
Sq−1

ρE,d(X, θ)dθ

·
∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ
)
/

(∫
Sq−1

ρE,d(X, θ)dθ

)2

. (18)

As N →∞:

E 1
εq+dKε(X,X1) · F (X,X1)

E 1
εqKε(X,X1)

−
∫
Sq−1 ρE,d(X, θ)ϕ(X, θ, 0)dθ∫

Sq−1 ρE,d(X, θ)dθ

= I(d 6
...2) · E1(X)

pµ(X)
· 1∫

Sq−1 ρE,d(X, θ)dθ
· ε+O(ε2).

10
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Denote

m(X) = I(d 6
...2) · E1(X)

pµ(X)
· 1∫

Sq−1 ρE,d(X, θ)dθ
. (19)

Using P3: Nε4 → 0 as N →∞. So from the Central Limit Theorem

√
Nεq ·

(
FN (X)− F (X)

)
→d N(m(X), d(X)).

Moreover, m(X) ≡ 0 for d
...2.

Proof of Theorem 2. 1. Denote

N0 =
max {1, (Cϕ + Cϕ,1 + Cϕ,2)}
pmax · Vq ·min{1, C2

ϕ} · C2d−1
K

, (20)

Cσ = pmax · C2
K · (1 + Cϕ)2 · Vq. (21)

2. Consider random variables χn = ξn − Eξn, ξn = 1
εq+d · Kε(X,Xn) · F (X,Xn), n =

1, . . . , N , χ = ξn − Eξn, ξ = 1
εq+d ·Kε(X,X

′) · F (X,X ′):

Varχ ≤ 2ε−q · σ2(X);

Varχ ≥ 1/2 · σ2(X),

from Lemma 1 for

ε ≤ ε0 ≡ min

{
σ2(X)

2 · CV,2
, 1

}
(22)

Also, when ε < 1 for m ≥ 2

E|χ|m ≤ Varχ · sup
ω
|χ(ω)|m−2)Varχ · ε−q(m−2) · (CK · (Cϕ + Cϕ,1 + Cϕ,2))

m−2 ≤

≤ m!

2
· Varχ ·Hm−2,

where H = ε−q · CK · (Cϕ + Cϕ,1 + Cϕ,2). Hence, by Theorem 12 from (Petrov, 1987) for

z ∈
[
0, N · 12 ·

σ2(X)
CK ·(Cϕ+Cϕ,1+Cϕ,2)

]
:

P

(∣∣∣∣∣
∑N

n=1 χn
N

∣∣∣∣∣ > z

)
≤ 2 · exp

(
−z

2 ·Nεq

2σ2(X)

)
.

3. From (13)

σ2(X) ≤ pmax · Vq · C2
ϕ · C2d

K .

So for N ≥ (Cϕ+Cϕ,1+Cϕ,2)

pmax·Vq ·C2
ϕ·C

2d−1
K

item 2 is valid for z ∈ [0, 1].

11
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4. From Lemma 1∣∣∣∣ξn − pµ(X) ·
∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ

∣∣∣∣ ≤ ε · CE,1 · I(d 6
...2) + ε2 · CE,2.

5. From items 2-4 for N ≥ (Cϕ+Cϕ,1+Cϕ,2)

pmax·Vq ·C2
ϕ·C

2d−1
K

ε < min{1, Cint}

P

(∣∣∣∣∣
∑N

n=1 χn
N

∣∣∣∣∣ > z + ε · CE,1 · I(d 6
...2) + ε2 · CE,2

)
≤ 2 · exp

(
− z2 ·Nεq

2 · σ2(X)

)
.

6. Repeating items 2-5 for Kε(X,Xn) · 1 instead of Kε(X,Xn) · F (X,Xn) and using
Consequence 1 for N ≥ 1

pmax·Vq ·C2d−1
K

ε < min{1, Cint},

P

(∣∣∣∣∣
∑N

n=1Kε(X,Xn)

Nεq
− pµ(X) ·

∫
Sq−1

ρE,d(X, θ)dθ

∣∣∣∣∣ > z + ε2 · C̃E,2

)

≤ 2 · exp

(
− z2 ·Nεq

2 · σ2(X)

)
.

7. For ε ≤
√

1
2 ·

pmin·
∫
Sq−1 ρE,d(X,θ)dθ

C̃E,2

|E 1

εq
Kε(X,X

′)− pµ(X) ·
∫
Sq−1

ρE,d(X, θ)dθ| ≤
1

2
· pmin ·

∫
Sq−1

ρE,d(X, θ)dθ.

So

|F (X)| ≤ Cϕ;∣∣∣∣∣F (X)−
E 1
εd+qKε(X,X

′)F (X,X ′)

E 1
εqKε(X,X ′)

∣∣∣∣∣
≤ F (X) ·

2ε2 · C̃E,2
pµ(X) ·

∫
Sq−1 ρE,d(X, θ)dθ

+
2ε · CE,1 · I(d 6

...2) + ε2 · C̃E,2
pµ(X) ·

∫
Sq−1 ρE,d(X, θ)dθ

≤ 2

pmin ·
∫
Sq−1 ρE,d(X, θ)dθ

·
(
ε · CE,1 · I(d 6

...2) + ε2 · C̃E,2 · (1 + Cϕ)

)
.

8. From 5-7

P

(∣∣FN (X)− F (X)
∣∣ ≥ z + ε · I(d 6

...2) · CLD1 + ε2 · CLD2

)
≤ 4 · exp

(
−z

2 ·Nεq

σ2(X)

)
,

where

CLD1 =
2

pmin ·
∫
Sq−1 ρE,d(X, θ)dθ

· CE,1, (23)

CLD2 =
2

pmin ·
∫
Sq−1 ρE,d(X, θ)dθ

· C̃E,2 · (1 + Cϕ). (24)

12
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Proof of Theorem 3. 1. From Lemma 10 from (Yanovich, 2016) and ε-nets properties

for δ = ε3 exists finite δ-net Nδ for Mε with no more than
(
2a
√
p

ε3

)p
elements (smallness

of network ε3 choosed so that the order of the resulting deviation is equal to the local one
from Theorem 2).

2. For X ′ = expX(t′θ′), where t′ ≤ ε3 θ′ ∈ Sq−1 from Taylor formula for ε ≤ 1:

|F (X ′)− F (X)| ≤ ε3 ·
(

sup
X,t′,θ

∣∣∣∣∂ϕ(expX(t′θ′), θ, 0)

∂t′

∣∣∣∣
+

1

ε
· Vq · Cϕ · sup

X,t′,θ

∣∣∣∣∂K(expX(t′θ′), θ, 0)

∂t′

∣∣∣∣
+

1

ε
· (Cϕ + Cϕ,1 + Cϕ,2) · sup

X,t′,θ

∣∣∣∣∂K(expX(t′θ′), θ, 0)

∂t′

∣∣∣∣)/∫
Sq−1

ρE,0(X, θ)dθ

≤ ε2 ·
(
Cu,ϕ + VqCϕ · C̃K + Vq · (Cϕ + Cϕ,1 + Cϕ,2) · C̃K,1

)
/cρ.

3. Let us upper bound
1

Nεq+d

∑N
n=1Kε(X′,Xn)F (X′,Xn)

1
Nεq

∑N
n=1Kε(X′,Xn)

and
1

Nεq+d

∑N
n=1Kε(X,Xn)F (X,Xn)

1
Nεq

∑N
n=1Kε(X,Xn)

.

From (Theorem 5, (Yanovich, 2016)) for z = 1/8 and K4 with probability

1−
(
6a
√
p

ε

)p
· exp

(
−1/16 ·NεqVqp2min/(9pmax)

)
inf

X′∈Mε

1

Nεq

N∑
n=1

Kε(X,Xn) ≥ CK, 1
2
·
(
Vq · pmin · 7/8− ε2 ·

CE · pmax

Vqpmin

)
.

For ε <
√

3
4 · Vq · pmin · 1√

CE ·pmax
:

inf
X′∈Mε

1

Nεq

N∑
n=1

Kε(X,Xn) ≥ CK, 1
2
· Vq · pmin · 1/2.

Whence∣∣∣∣∣ 1
Nεq+d

∑N
n=1Kε(X

′, Xn)F (X ′, Xn)
1

Nεq
∑N

n=1Kε(X ′, Xn)
−

1
Nεq+d

∑N
n=1Kε(X,Xn)F (X,Xn)

1
Nεq

∑N
n=1Kε(X,Xn)

∣∣∣∣∣
≤ 2 · ε2 · C̃K · (Cϕ + Cϕ,1 + Cϕ,2) + 2CK · (C̃ϕ + C̃ϕ,1 + C̃ϕ,2)

CK, 1
2
· Vq · pmin

.

Denote

CLD,net = 2 · C̃K · (Cϕ + Cϕ,1 + Cϕ,2) + 2CK · (C̃ϕ + C̃ϕ,1 + C̃ϕ,2)

CK, 1
2
· Vq · pmin

. (25)

4. From Theorem 2 using Lemma 1 for each element of the finite net Nδ for z ∈ [0, 1]

P

(∣∣FN (X)− F (X)
∣∣ ≥ z + ε · I(d 6

...2) · CLD1 + ε2 · CLD2

)
≤ 4 ·

(
2a
√
p

ε3

)p
· exp

(
−z

2 ·Nεq

Cσ

)
.

13
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5. From 3,4 as for each X ∈Mε exists X ′ ∈ Nδ

P

(
sup
X∈Mε

∣∣FN (X)− F (X)
∣∣ ≥ z + ε · I(d 6

...2) · CLD1 + ε2 · (CLD2 + CLD,net)

)
≤ 4 ·

(
2a
√
p

ε3

)p
· exp

(
−z

2 ·Nεq

Cσ

)
+

(
6a
√
p

ε

)p
· exp

(
−1/16 ·NεqVqp2min/(9pmax)

)
.

Redenote C̃LD2 = CLD2 + CLD,net and get Theorem statement.
Proof of Statement 2. Let N2ε be the number of sample points which are 2ε far from

the boundary. Then From Theorem 3 and Lemma 4

FN =
Nε

N

∑
X′∈M\Mε

FN (X ′) +
N −Nε

N

∑
X′∈Mε

FN (X ′)→p 0 + F .

Proof of Theorem 4. Using the FN expansion from Statement 2, Theorem 3, Lemmas
4 and 5 obtain, that there are positive NU,0, CU,1, CU,2, CU,p, for all z ∈ [0, 1] N > NU,0:

P

(∣∣FN − F ∣∣ ≥ z + ε · I(d 6
...2) · CU,1 + ε2 · CU,2

)
≤ exp

(
−z2 ·Nεq · CU,p

)
.

6. Conclusion

The specific for Manifold Learning nonparametric estimation on the manifold and its av-
erage are considered in the present paper. Points are assumed to lie on a good enough
unknown manifold, the kernels with finite support are used, the radius of support slowly
tends to zero with sample size growth. Asymptotic expansion and uniform large devia-
tion results are obtained for the considered nonparametric estimates. And also consistency
and large deviations of average is also considered. The problem statement is motivated
by manifold learning problems (Roweis and Saul, 2000; Zhang and Zha, 2004; Bernstein
and Kuleshov, 2014). The results of the paper could be used for the manifold learning
algorithms analysis, could be and already are used to get properties of Manifold Learning
optimization procedures (Yanovich, 2017).
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Appendix A. Lemmas Proofs

A.1 Moments of Random Variables

Lemma 2. For d
...2 function ϕ(X, θ, 0) is even function of θ and function ϕ1(X, θ, 0) is odd

function of θ. For d 6
...2 function ϕ(X, θ, 0) is odd function of θ and function ϕ1(X, θ, 0) is

even function of θ.
Proof. As

ϕ(X, θ, 0) = d! · (∇θ)dF (X, expX(tθ)|t=0;

ϕ1(X, θ, 0) = (d+ 1)! · (∇θ)d+1F (X, expX(tθ)|t=0.

The orders of θ proves Lemma.
Lemma 3. From K3 follows existance of ρE,m(X, θ) (7) and ρV,m(X, θ) ( (16) for

m ∈ Z, d ≥ 0.
Proof. Indeed

0 ≤ ρE,m(X, θ) =

∫ 1

0
K (X, θ, t) tm+q−1dt ≤

∫ 1

0
K (X, θ, t) 1m · tq−1dt = ρE,0(X, θ);

0 ≤ ρV,m(X, θ) =

∫ 1

0
K (X, θ, t)2 tm+q−1dt ≤

∫ 1

0
K (X, θ, t)2 1m · tq−1dt = ρV,0(X, θ).

Proof of Lemma 1. 0. From Lemma 3 ρE,m(X, θ) and ρE,m(X, θ) exist.
1. From (Lemma 8, (Yanovich, 2016)) for ξ · εq as ε ≤ Cint:

|Eξ · εq −
∫
B̃ε(X)

Kε(X,X
′) · F (X,X ′)

εd
· pµ(X ′) · dV (X ′)| ≤

≤ 8 · Vq · pmax · sup
X,X′

∣∣∣∣Kε(X,X
′) · F (X,X ′)

εd

∣∣∣∣ · εq+2.

Consequently ∣∣∣∣∣Eξ −
∫
B̃ε(X)

Kε(X,X
′) · F (X,X ′)

εq+d
· pµ(X ′) · dV (X ′)

∣∣∣∣∣ ≤
≤ 8 · Vq · pmax · sup

X,X′

∣∣∣∣Kε(X,X
′) · F (X,X ′)

εd

∣∣∣∣ · ε2.
2. Replace in Kε(X,X

′) · F (X,X′)
εd+q · pµ(X ′)dV (X ′) X ′ with its Riemmanian coordinates

(θ, t): X ′ = expX(ε · tθ), t ∈ [0, 1] and expand around ε = 0. From (Lemma 2, (Yanovich,
2016))

K(X, θ,
|X ′ −X|

ε
) = K(X, θ, t) + t2 · ε2 ·K ′(X, θ, t1),

where t̃1 ∈ [0, t]. Also

F (X,X ′)

εd
= td · ϕ(X, θ, 0) + ε · td+1 · ϕ1(X, θ, 0) + ε2 · t

d+2

2
· ϕ2(X, θ, t2);

pµ(X ′) = pµ(X) + ε · t · ∇θpµ(X) + ε2 · t2 · (∇θ̃)
2pµ(X̃),

15
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where t2 ∈ [0, t], X̃ = expX(t̃θε), θ̃ ∈ TX(M). Using (Lemmas 1 and 3, (Yanovich, 2016))

Kε(X,X
′) · F (X,X ′)

εd
· pµ(X ′)dV (X ′) =

(
K(X, θ, t) + t2 · ε2 ·K ′(X, θ, t1)

)
·
(
td · ϕ(X, θ, 0) + ε · td+1 · ϕ1(X, θ, 0) + ε2 · t

d+2

2
· ϕ2(X, θ, t2)

)
·
(
pµ(X) + ε · t · ∇θpµ(X) + ε2 · t2 · (∇θ)2pµ(X̃)

)
·
(
tq−1 + tq+1RicX̃(θ̃, θ̃)

)
dtdθ. (26)

Main three terms are

ε0 : K(X, θ, t) · td+q−1 · ϕ(X, θ, 0) · pµ(X);

ε1 : K(X, θ, t) · td+q · ϕ1(X, θ, 0) · pµ(X) +K(X, θ, t) · td+q · ϕ(X, θ, 0) · ∇θpµ(X);

ε2 : K(X, θ, t) · td+q+1 · ϕ2(X, θ, t2) · pµ(X) +K(X, θ, t) · td+q+1 · ϕ(X, θ, 0) · (∇θ)2pµ(X)

+td+q+1 ·K ′(X, θ, t1) · ϕ(X, θ, 0) · pµ(X) + td+q+1 ·K(X, θ, t) · ϕ1(X, θ, 0) · ∇θpµ(X)

+K(X, θ, t) · td+q+1 · ϕ(X, θ, 0) · pµ(X) ·RicX̃(θ̃, θ̃).

3. As unit ball (t, θ) equals to [0, 1]× Sq−1 it is symmetric. So from Lemma 2 integrals

of odd powers equals 0. For d 6
...2∫

Sq−1

∫ 1

0
K(X, θ, t) · td+q−1 · ϕ(X, θ, 0) · pµ(X)dtdθ = 0,

and for d
...2 integral with ε1 equals 0.

4. Integrating the item 2 over the unit sphere∫
Sq−1

∫ 1

0
K(X, θ, t) · td+q−1 · ϕ(X, θ, 0) · pµ(X)dtdθ = pµ(X) ·

∫
Sq−1

ρE,d(X, θ)ϕ(X, θ, 0)dθ;

E1(X) ≡
∫
Sq−1

∫ 1

0
K(X, θ, t) · td+q · ϕ1(X, θ, 0) · pµ(X)

+K(X, θ, t) · td+q · ϕ(X, θ, 0) · ∇θpµ(X)dtdθ

= pµ(X) ·
∫
Sq−1

ρE,d+1(X, θ)ϕ1(X, θ, 0)dθ +

∫
Sq−1

ρE,d+1(X, θ)ϕ(X, θ, 0)∇θpµ(X)dθ (27)

5. Denote E1(X):

|E1(X)| ≤ |pµ(X) ·
∫
Sq−1

ρE,d+1(X, θ)ϕ1(X, θ, 0)dθ|

+|
∫
Sq−1

ρE,d+1(X, θ)ϕ(X, θ, 0)∇θpµ(X)dθ| ≤ Vq · Cρ · (pmax · Cφ,1 + Cp,1 · Cφ) .
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Denote

CE,1 = Vq · Cρ · (pmax · Cϕ,1 + Cp,1 · Cϕ) . (28)

sing (26), ε ≤ 1 and t ≤ 1:

|K(X, θ, t) + t2 ·K ′(X, θ, t1)| ≤ CK + CK,1;

|td · ϕ(X, θ, 0) + td+1 · ϕ1(X, θ, 0) +
td+2

2
· ϕ2(X, θ, t2)|

≤ |ϕ(X, θ, 0) + ϕ1(X, θ, 0) + ϕ2(X, θ, t2)| ≤ Cϕ + Cϕ,1 + Cϕ,2;

|pµ(X) + t · ∇θpµ(X) + t2 · (∇θ)2pµ(X̃)| ≤ |pµ(X) +∇θpµ(X) + (∇θ)2pµ(X̃)|
≤ pmax + Cp,1 + Cp,2;

|1 + t2RicX̃(θ̃, θ̃)| ≤ |1 +RicX̃(θ̃, θ̃)| ≤ 1 + CRic.

Using item 1 and

8 · Vq · pmax · sup
X,X′

∣∣∣∣Kε(X,X
′) · F (X,X ′)

εd

∣∣∣∣ ≤ 8 · Vq · pmax · CK · (Cϕ + Cϕ,1 + Cϕ,2)

get

CE,2 = Vq · (CK + CK,1) · (Cϕ + Cϕ,1 + Cϕ,2) · (pmax + Cp,1 + Cp,2) · (1 + CRic)

+8 · Vq · pmax · CK · (Cϕ + Cϕ,1 + Cϕ,2) (29)

6. Repeating 1-5 for ξ2

Eξ2 = ε−q · pµ(X) ·
∫
Sq−1

ρD,2d(X, θ)ϕ(X, θ, 0)2dθ + ε−q+2 · CE2,2,

where

CE2,2 = Vq · (CK + CK,1)
2 · (Cϕ + Cϕ,1 + Cϕ,2)

2

·(pmax + Cp,1 + Cp,2) · (1 + CRic) + 8 · Vq · pmax · C2
K · (Cϕ + Cϕ,1 + Cϕ,2)

2.

Finally

Varξ = Eξ2 − (Eξ)2 = ε−q · pµ(X) ·
∫
Sq−1

ρD,2d(X, θ)ϕ(X, θ, 0)2dθ + εmin{−q+2,0} · CV,2,

where

CV,2 = Vq · (CK + CK,1)
2 · (Cϕ + Cϕ,1 + Cϕ,2)

2

·(pmax + Cp,1 + Cp,2) · (1 + CRic) + 8 · Vq · pmax · C2
K · (Cϕ + Cϕ,1 + Cϕ,2)

2 + CE2,2. (30)
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A.2 Random Variables Near the Boundary

Lemma 4. For small ε ≤ min{εB, εc}, the number of points XN,ε from XN , near the
boundary M \Mε with high probability

P (|XN,ε| ≥ 2 · ε ·N · pmax · dV (M) · CB) ≤ exp
(
−C̃B ·Nε

)
,

where C̃B is a constant, pmax = supX∈M pµ(X), CB is the constant from M10.
Proof of Lemma 4. An indicator of event ‘point near the boundary’ is Bernoulli

random variable. The success probability tends to zero slower than ε ·N · pmax · dV (M) ·CB
from assumption M9. Using Theorem (Theorem 5, (Yanovich, 2016)) one get Lemma’s
statement for some C̃B > 0.

Lemma 5 (FN (X) near the boundary For all points X ∈ M, each N > N0,B and
ε < ε̃0,B and some positive constants CLD1,B, CLDP,B for z ∈ [0, 1]

P

(
sup
X∈M

∣∣FN (X)− F (X)
∣∣ ≥ z + ε · CLD1,B

)
≤ exp

(
−z2 · CLDP,B ·Nεq

)
.

Proof of Lemma 5. As in Theorem 3 without using the symmetry of the region of
integration and using M10 and as the polynomial term is slower than the expositional one
we get Lemma’s statement.
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