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Abstract
This paper considers the resolution of ambiguity according to the scientific ideal of direct obser-
vation when there is a practical necessity for social learning. An agent faces ambiguity when she
directly observes low-quality data yielding set-identified signals. I suppose the agent’s objective
is to choose the single belief replicating what would occur with high-quality data yielding point-
identified signals. I allow the agent to solve this missing data problem using signals observed
through her network in combination with a model of social learning. In some cases the agent’s
belief formation reduces to DeGroot updating and beliefs in a network reach a consensus. In other
cases the agent’s updating can generate polarization and sustain clustered disagreement, even on a
connected network where everyone observes the same data and processes that data with the same
model.
Keywords: belief formation; subjective probability; social learning; partial identification; causal
inference; DeGroot learning rule; bounded confidence.

1. Introduction

We all hold beliefs based on limited personal experience. This is often due to logistical, and not
philosophical, limitations. The scientific ideal of “seeing for one’s self” is subject to time and
resource constraints that make it infeasible to personally verify all claims. How do we form beliefs
based on evidence beyond our personal experience?

This paper studies scenarios of partial identification in which personal experience offers no
guidance for belief formation beyond a range of possibilities. Consider the example of a high school
guidance counselor advising minority students on whether to attend a selective or non-selective
college. What is the probability that an advisee will graduate from the selective college? The
counselor would face partial identification if the high school had not tracked the experiences of
recent graduates, or had sent few students to selective colleges.

When facing partial identification, the counselor could provide his students with a range of
probabilities. Alternatively, the counselor could provide a single probability based on information
beyond his directly-observed data. The choice of a single probability would use the counselor’s
judgment to combine his own experience; his discussions with others like counselors or teachers;
and the conflicting estimates in the literature (Arcidiacono and Lovenheim, 2016; Alon and Tienda,
2005). This paper models the counselor’s choice of a single probability.

The general setting begins with an agent who must form beliefs about a set of propositions.
The agent can use a model to translate data into signals about the truth of each proposition. Under
frequentist inference she may form beliefs as the mean of her signals observed over discrete time.1

There are many situations in which the available data might only allow the agent to partially
identify a signal. An obvious scenario pertains to causal propositions when one cannot easily ob-

1. For independent and identically distributed (iid) signals, the Law of Large Numbers ensures such beliefs will converge
to the mean of the signal distribution.
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serve the Data Generating Process (DGP) under controlled intervention. This situation is widespread
in economics, with many important counterfactual outcomes waiting to be definitively quantified.2

Beliefs of an agent observing iid partially-identified signals will converge to a set when formed by
averaging signals observed over discrete time (Artstein and Vitale, 1975).

When the agent has a set of possible beliefs, or faces ambiguity, prominent decision rules in-
struct her to choose the single belief generating an extreme utility (Gilboa and Marinacci, 2013).
For example, the maxmin expected utility decision rule maximizes expected utility after choosing
the belief that would be set by a malevolent nature minimizing the agent’s utility for any decision
(Gilboa and Schmeidler, 1989). The minimax regret decision rule maximizes expected utility after
choosing the belief maximizing the agent’s lost utility from not knowing the true state of the world
(Manski, 2011).

This paper separates belief formation from preferences: When choosing one belief, the objective
is to accurately represent the DGP. While the scientific ideal is to attain this objective based on direct
observation, no single belief cannot satisfy this ideal when directly-observed data are only capable
of partial identification. However, a single belief can approximate the scientific ideal if data yielding
point-identification can be inferred from second-hand observations.

I specify the agent’s problem as an attempt to replicate the beliefs she would have formed had
she directly observed data yielding point-identified signals. The agent’s problem can be viewed as a
missing data problem to be solved with signals observed through her social network. I assume that
communication is imperfect, so that socially-observed signals are communicated alone, without the
data or model used in their construction.

I first show that if the agent uses linear opinion pooling of signals, a common method for com-
bining forecasts and estimates, she will follow the canonical DeGroot (1974) learning rule under a
special case of observed data. I then show that such DeGroot updating solves the agent’s problem
under additional assumptions on the homogeneity of data and models in the agent’s network.

Two issues argue for pushing beyond the assumptions necessary for DeGroot updating to solve
the agent’s problem. The first is that the assumptions justifying DeGroot updating are strong. For
example, individuals can be justified in using different models to interpret the same data (Al-Najjar,
2009), and the agent might observe new data over time (Jadbabaie et al., 2012).

Second, while DeGroot updating is the benchmark for non-Bayesian learning on social net-
works, a combination of theory and evidence motivates the desideratum of an alternative capable
of generating polarization (Golub and Sadler, 2016). DeGroot learning and many of its generaliza-
tions converge to a degenerate distribution for connected networks (Jackson, 2008; Dandekar et al.,
2013).3 However, an empirical analogue of a connected network - individuals exposed to sources
of information contradicting their beliefs - is often observed together with persistent disagreement.
Examples include scientific opinions when journals publish opposing research and public opinion
when individuals are exposed to diverse news sources (Gentzkow and Shapiro, 2011).4 The emer-
gence of “fake news” highlights this limitation of DeGroot updating.

2. In microeconomics alone it has proven difficult to ascertain outcomes under controlled interventions to neighbor-
hood characteristics (Ludwig et al., 2008; Aliprantis, 2017), teacher characteristics (Rothstein, 2010; Kinsler, 2012),
educational attainment (Angrist and Krueger, 1991; Aliprantis, 2012), minimum wages (Card and Krueger, 1994;
Neumark and Wascher, 2000), unemployment benefits (Hagedorn et al., 2013; Farber and Valletta, 2015), income
taxes (Manski, 2014), and right-to-carry laws (Manski and Pepper, 2015; Durlauf et al., 2016).

3. Time to consensus, though, is not invariant across all connected network structures (Golub and Jackson (2012)).
4. For example, there is persistent disagreement over propositions like Iraq had an active WMD program, President

Obama was born in the US, vaccines cause autism, and global warming is occurring despite public debate.
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I show that linear opinion pooling can still solve the agent’s problem after weakening the as-
sumptions justifying DeGroot updating. In contrast to DeGroot updating, though, this solution
requires a first stage in which signals are properly-transformed. I present the selection of a model
that properly interprets signals as a statistical learning problem, and show that this problem is not
well-posed. That is, frictions from communication generate a fundamental problem of inference,
in that signals do not convey the same information as directly-observed data, and the agent cannot
know whether she is properly interpreting signals without this information.

The agent might nevertheless choose a model for interpreting signals, just as methods for causal
inference attempt to overcome the fundamental problem of evaluation. I study how the agent might
use the model implied by a “reasonable” heuristic. The agent first interprets signals according to
the model. The agent then uses the relative entropy of disagreement over all propositions to assess
the credibility of applying the heuristic to each sender. The agent then combines interpreted signals,
giving more weight to the interpreted signals from senders deemed most credible.

Although the updating rule tends to reach a consensus, I show that the rule is also capable
of generating polarization and can sustain clustered disagreement, even on a connected network
where everyone directly-observes the same data and processes that data with the same model. A
key mechanism is generated by the use of relative entropy to assess the credibility of interpreted
signals. If a given agent tends to agree with those in a widely-distributed cluster (unbiased but
imprecise), but tends to disagree with those in a tightly-distributed cluster (biased but precise), that
agent will rely more on interpreted signals from the disagreeing cluster, and this can cause her to
overcompensate when they provide her with unbiased signals.

Polarization is possible because in contrast to updating in DeGroot or bounded confidence mod-
els, the agent can update her beliefs away from a signal if it comes from a sender with whom she
tends to disagree. In other words, the agent’s updating rule need not lead to constricting belief
updating (Mueller-Frank, 2015). Two keys for generating polarization are low-quality data and
perceptions about the distribution of models for interpreting directly-observed data.

The paper proceeds as follows: Section 2 sets the stage for the agent’s problem, describing how
she could arrive at a set of beliefs when directly observing data. Section 3 explores one way the
agent might try to resolve the ambiguity she faces, using the signals she receives from individuals
in her social network to form her beliefs. In the full paper I also show why finding a model of
social learning to solve the agent’s problem is an ill-posed problem, and describe the implications
of a heuristic the agent might use to specify a model of social learning. I further investigate the
implications of this heuristic in greater detail, studying belief dynamics under one specification of
the updating rule for several paramaterizations under various network and proposition structures.
Section 4 concludes.

2. Belief Formation via Directly-Observed Data

Suppose there is a finite set of propositions {p1, p2, . . . , pK} = K, none of which can be written as a
compound proposition using other propositions in the set.5 An agent must determine the truth value
of the statements, T (pk) ∈ {0, 1}, and agent i’s beliefs at time t are denoted by λkit = Pr(T (pk) =
1).6 The agent directly observes data Wit.

5. This greatly simplifies the analysis. See Paris and Vencovská (1990) and Wilmers (2010) for implications of propo-
sitional calculus when considering propositions formed as compound propositions.

6. A proposition is a statement that is either true (T (pk) = 1) or false (T (pk) = 0).
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Consider a classical (frequentist) setting. With high-quality dataW ∗it, the agent would be able to
use her model ϕk

i to translate her data into an independent and identically distributed (iid) sequence
of signals {σk∗it }Tt=1, where

σk∗it = ϕk
i (W ∗it) ∈ [0, 1].

The law of large numbers ensures convergence to the mean of the signal distribution, which I will
denote by µk∗i , for beliefs formed as

λk∗it+1 =
1

t

t∑
n=1

σk∗in

= βtσ
k∗
it + (1− βt)λk∗it where βt = 1/t. (1)

Now consider a setting in which the agent’s directly-observed data Wit only allows her to set
identify the true iid signal σk∗it . Inspired by the literature on partial identification (Manski, 2007;
Tamer, 2010), suppose the agent’s model and data allow her to determine a signal σkit and its quality
θkit,

(σkit, θ
k
it) = ϕk

i (Wit) ∈ [0, 1]2,

where the true signal is related to the observed signal by

σk∗it ∈ [ max{0, σkit − (1− θkit)} , min{σkit + (1− θkit), 1} ] ≡ [ σk∗it , σk∗it ]. (2)

The agent then knows from her signals of imperfect quality that the average

λk∗it+1 =
1

t

t∑
n=1

σk∗in ∈ Λk∗
it+1 =

[
1

t

t∑
n=1

σk∗in ,
1

t

t∑
n=1

σk∗in

]
,

where the sets [σk∗it , σ
k∗
it ] and Λk∗

it+1 are often referred to as “imprecise probabilities” (Coolen et al.,
2011). The set [σk∗it , σ

k∗
it ] is what can be learned about pk from the directly-observed data under the

most credible assumptions. While the agent can also determine σkit, doing so requires less credible
assumptions, so the agent cannot be sure that E[σkit] = µk∗i unless θkit = 1.

The canonical example of the proposition p1= “A given coin will land Heads.” helps to illustrate
the difference between these settings. Suppose that high-quality data maps into signals generated
by iid draws from a binomial distribution with probability 0.5 where σ = 1 if the coin lands Heads
and σ = 0 if the coin lands Tails. In the case of high-quality data where θ1it = 1 for all t, σkit = σk∗it ,
and so λk∗it+1 can be calculated from (1) as the relative frequency of Heads, and will converge to 0.5
as t→∞.

In contrast, an agent with low-quality data mapping into signals represented by θ1it = 0.2 for all
t will be subject to ambiguity in addition to risk.7 If the observed signal is Heads, then the agent
can bound the true signal to be within [0.2, 1]. If the observed signal is Tails, then the agent bounds
the true signal to be in [0, 0.8]. Thus as t→∞, the agent will infer that the mean of the true signals
is µk∗i ∈ Λk∗

i = [0.1, 0.9].8

7. In this context a point-valued belief λk
it ∈ (0, 1) represents risk, while a set-valued belief λk

it ∈ Λk
it ⊆ [0, 1]

represents Knightian uncertainty or ambiguity.
8. Confidence intervals for the identified set Λk∗

i are studied in Imbens and Manski (2004) and Stoye (2009), more
generally as confidence regions in Chernozhukov et al. (2007) and Romano and Shaikh (2010), and using Bayesian
methods in Moon and Schorfheide (2012) and Bollinger and van Hasselt (2008).
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In addition to describing signals, throughout the analysis I will use “high-quality” (relative to
the agent’s model) to describe data yielding point-identified signals (θkit = 1), and “low-quality”
to describe data yielding set-identified signals (θkit < 1). For causal propositions, the difficulty of
achieving identification is an obvious interpretation of signals having low quality. Examples abound
of counterfactual outcomes that are difficult to quantify in microeconomics, macroeconomics, and
finance because one cannot easily observe the Data Generating Process (DGP) under controlled
intervention.9

Non-causal propositions can also have low-quality signals for reasons like survey non-response
(Manski, 2015). Another interpretation of an extremely low-quality signal, θkit = 0, is that the agent
does not directly observe any data for a given proposition pk, so that ϕk

i (∅) = (σkit, 0) ⇒ σk∗it ∈
[0, 1]. It could also be the case that the agent’s model ϕk

i is not capable of extracting information
from data. For example, an agent ignorant of genetics and molecular biology would likely have
a model incapable of interpreting data on the human genome. In such cases, one could assign
ϕk
i (W ∗it) = ϕk

i (Wit) = (σkit, 0)⇒ σk∗it ∈ [0, 1] for any data set. For this analysis I will assume that
the agent’s model produces a point-identified signal given a high-quality data set.

3. Belief Formation via Social Learning

A criticism of Bayesian decision theory is that in some circumstances, it might not be possible for
the agent to express her beliefs using a distribution over the set Λk∗

it . Bayesian decision theory is
difficult to apply to these circumstances, since an imprecise probability cannot be used to make
decisions according to the standard Savage axioms (Gilboa and Marinacci, 2013).

When holding beliefs represented by an imprecise probability Λk∗
it , several approaches to deci-

sion making can be interpreted as picking one belief from the set Λk∗
it , and then using this probability

as a subjective belief with which to make decisions following the Savage axioms. The chosen prob-
ability is typically pessimistic, assuming the worst case in some sense of utility. For example, the
Γ-maxmin utility decision rule maximizes expected utility after choosing the belief that would be
set by a malevolent nature minimizing the agent’s utility for any decision (Gilboa and Schmeidler,
1989). Similarly, the Γ-minimax regret decision rule chooses the single belief that maximizes the
loss from making decisions with the chosen belief rather than the true probability when the agent
makes decisions to minimize this loss (Manski, 2011).

The subsequent model explores belief formation when the agent chooses one belief from Λk∗
it

using information from her social network.

3.1 The Agent’s Problem

Suppose the agent is a member of a network of J + 1 individuals from which she might gather
information. The agent directly-observes the information

Iit ≡
{

(λ1it, σ
1
it, θ

1
it) , . . . , (λKit , σ

K
it , θ

K
it )

}
.

To initialize the process we might let λki1 = σki1; assume that the agent observes point identified
signals from t = −T until t = 1 and then set identified signals for t > 1; or else assume that the
agent has just randomly reset t = 1 (as a random mutation in an evolutionary algorithm). The agent

9. See Footnote 2 for some examples from microeconomics.
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also observes information in her social network about the truth of propositions. We denote the set of
others in the agent’s network asJ . However, the agent does not directly observe the data individuals
in her network (j ∈ J ) directly observe. Instead, the agent observes individuals’ beliefs and their
interpreted data in the form of their signals. Thus, the socially-observed information available to
the agent is

IJt ≡
{
{λ1jt, σ1jt}j∈J 1 , . . . , {λKjt , σKjt }j∈JK

}
,

where the agent receives information about proposition pk from individuals in J k ⊆ J .
The agent might try Bayesian updating, or Bayesian social learning, according to Bayes’ rule:

Pr(T (pk) = 1|σkit, {σkjt}j∈J k) =
Pr(σkit, {σkjt}j∈J k |T (pk) = 1)Pr(T (pk) = 1)

Pr(σkit, {σkjt}j∈J k)

Using beliefs λkit as the agent’s prior, this would imply updating as

λkit+1 =
f(σkit, {σkjt}j∈J k |T (pk) = 1)λkit

f(σkit, {σkjt}j∈J k |T (pk) = 1)λkit + f(σkit, {σkjt}j∈J k |T (pk) = 0)(1− λkit)
.

Acemoglu et al. (2016) show in a related setting that strong restrictions would be required on the
conditional pdfs f(·|T (pk)) for there to be asymptotic agreement across agents. More fundamen-
tally, correctly specifying the likelihood function f(σkit, {σkjt}j∈J k |T (pk)) can require unrealistic
assumptions about the information and computation available to the agent (Acemoglu and Ozdaglar,
2011).10 Weakening these assumptions is a key motivation of the literature on non-Bayesian social
learning (Molavi et al., 2015).

Correctly specifying the likelihood function is the same as specifying

f(ϕk
it(W

∗
it), {ϕk

j (Wjt)}j∈J k |T (pk)),

which would require not only that the agent know the sampling processes for W ∗it and W ∗jt condi-
tional on T (pk), but also the models {ϕk

j }j∈J k . I rule out Bayesian social learning by restricting
social information to beliefs and signals, assuming that the agent does not observe the additional
information required to specify the likelihood function:

(A1) Imperfect Communication: Agent i can only observe point estimates λkjt and σkjt. She cannot
observe measures of the sender’s ambiguity Λk∗

jt , θ
k
jt or their model ϕk

j ∀ j, t, k

The issue captured by A1 is that data must be transformed into information using a model, and it
is difficult for individuals to communicate this process. Therefore, valuable details are lost relative
to directly observing the data when information is obtained socially. Among other reasons, this
assumption is positively appealing because there is a well-documented tendency for researchers
and statistical agencies to focus on communicating their point estimates σkit without communicating
about their models ϕk

i or measures of uncertainty θkit (Manski, 2007, 2015).

10. Benoı̂t and Dubra (2015) and Andreoni and Mylovanov (2012) study polarization under private learning when agents
disagree about f(σk∗

it |T (pk)). Alternatively, in this context their analyses could be interpreted as agents having
different models for private learning ϕk

i , each proposition pk being a conjunction of simple propositions pk =

pk
′
∧ pk

′′
, and W ∗it being revealed at different subperiods of t for pk

′
and pk

′′
.
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With A1 ruling out Bayesian social learning, I assume that the agent uses signals in an effort to
replicate classical inference. Given a loss function L, the agent’s problem is to choose functions fk

from some set F to solve the problem

min
f1,...,fK∈F

K∑
k=1

L
(
E
[
µk∗i − lim

t→∞
λkit+1

])
(3)

s.t. (Iit, IJt)

σ̂kit = fk(Iit, IJt) for k = 1, . . . ,K

λkit+1 = βtσ̂
k
it + (1− βt)λkit for k = 1, . . . ,K

I will refer to the agent’s construction of her unobserved, high-quality signals σ̂kit as her inferred
signals. A natural restriction on F is to make inferred signals a weighted average of directly- and
socially-observed signals. In this case, fk can be written as

σ̂kit = θki︸︷︷︸
share of signal

directly-observed

σkit + (1− θkit)︸ ︷︷ ︸
share of signal

socially-observed

σkJt.

This restriction reframes the choice of fk as the choice of σkJt.
11 Posing the inferred signals as

weighted averages also gives an interpretation to θkit as the agent’s subjective judgment about the
credibility of her modeling assumptions and/or a measure of the quality of her data.

3.2 Some Solutions to the Agent’s Problem

When faced with problems like the agent’s problem, a popular set F is linear opinion pooling
(Ranjan and Gneiting, 2010). It turns out that using repeated linear opinion pooling to solve the
agent’s problem results in DeGroot updating if data are only observed in the first period, and signals
continue to be sent in later periods.

Proposition 1 (DeGroot) If data are only observed once at t = 1, the agent sets λki1 = σki1, θkit =
θki1 for all t > 1, and subsequent signals are interchangeable with beliefs (σkit = λkit and σkjt = λkjt
for j ≥ 2), then linear opinion pooling where the agent constructs her inferred signals for t ≥ 2 as

σ̂kit = θki σ
k
it + (1− θki )σkJt where (4)

σkJt =
∑
j∈J k

wk
j︸︷︷︸

share of social signal
from individual j

σkj with wk
j ≥ 0 ∀ j ∈ J k,

∑
j∈J k

wk
j = 1 (5)

is equivalent to DeGroot updating where λk
t+1 = Ωk

tλ
k
t and the entries of Ωk

t are

ωk
iit = βtθ

k
i + (1− βt)

ωk
ijt = βt(1− θki )wk

j .

11. Assuming that {Wit}∞t=1 and {ϕk
i }Kk=1 are exogenous, both {σk

it}∞t=1 and {θkit}K,∞
k=1,t=1 are given. Thus, in an abuse

of notation, I will refer to fk both as the function determining σ̂k
it and as the function determining σk

Jt.
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Proof As hypothesized, set λki1 = σki1. For t ≥ 2, the equality of beliefs and signals, together with
the updating equation in the agent’s problem (3) imply that

σkit+1 = βtσ̂
k
it + (1− βt)σkit

= βtθ
k
i σ

k
it + (1− βt)σkit + βt(1− θki )

∑
j∈J k

wk
j σ

k
jt.

Furthermore, when the data observed in t = 1 generate unbiased point-estimates of signals,
repeated linear opinion pooling/DeGroot updating solves the agent’s problem.

Proposition 2 (Unbiased Signals) Assume again, as we did in the case of private learning, that

(A2) Averaging Signals: βt = 1/t, so that βtσ̂kit + (1− βt)λkit = 1
t

∑t
n=1 σ̂

k
in

If the observed data yield unbiased signals

(A3) Private signals are iid with E[σk∗it ] ≡ µk∗i = µki ≡ E[σki ], and

(A4a) Social signals are iid for each j ∈ J k with E[σk∗it ] ≡ µk∗i = µkj ≡ E[σkjt] ∀j ∈ J k,

then repeated linear opinion pooling/DeGroot updating following Equations 4 and 5 solves the
agent’s problem.

Proof Proposition 6 in Golub and Sadler (2016) states that as long as Ωk is strongly connected and
primitive, then

lim
t→∞

σkit+1 =
J+1∑
n=1

πknσ
k
n1

where πkn is n’s left-hand eigenvector centrality in Ωk. Since
∑J+1

n=1 π
k
n = 1 and E[σkn1] = µk∗i for

all n, we know that

E[µk∗i − lim
t→∞

λkit+1] = E[µk∗i −
J+1∑
n=1

πnσ
k
n1] = µk∗i − µk∗i = 0.

We can imagine scenarios in which the agent observes data and signals in each period, but this
additional information is potentially biased. In this case, the agent can still solve her problem if she
has a model capable of accurately interpreting the social signals she receives.

Proposition 3 (Biased Social Signals) Now suppose that the agent receives biased signals in the
sense that E[σkjt] 6= µk∗it , but that the agent has successfully engaged in statistical learning in the
following sense:

(A4b) The agent has a model of social learning gk that interprets social signals as skjt = gk(Iit, IJt).
The skjt are iid for each j ∈ J k with E[σk∗it ] ≡ µk∗i = E[skjt] ∀ j ∈ J k.
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Then linear opinion pooling where the agent constructs unobserved high-quality signals with her
model as

σ̂kit = θkitσ
k
it + (1− θkit)σkJt where (6)

σkJt =
∑
j∈J k

wk
jts

k
jt with wk

jt ≥ 0 ∀ j ∈ J k,
∑
j∈J k

wk
jt = 1 (7)

skjt = gk(Iit, IJt) (8)

solves the agent’s problem.

Proof By A2 we know that limt→∞ λ
k
it+1 = limt→∞

1
t

∑t
n=1 σ̂

k
in. If the signals are iid, then

since the sum of iid random variables is itself an iid random variable, by the law of large numbers
we know that limt→∞ λ

k
it+1 = E[σ̂kit]. After repeatedly applying the linearity of the expectations

operator, A3 and A4a imply that

lim
t→∞

λkit+1 = E[σ̂kit] = E[θ
k
i σ

k
it + (1− θki )σkJt] = θ

k
i E[σkit] + (1− θki )E[σkJt]

= θ
k
i E[σkit] + (1− θki )E[

∑
j∈J k

wk
jtσ

k
jt] = θ

k
i E[σkit] + (1− θki )

∑
j∈J k

wk
jtE[σkjt]

= θ
k
i µ

k
it + (1− θki )

∑
j∈J k

wk
jtµ

k
jt (9)

= µk∗i .

4. Conclusion

This paper presented a positive theory of belief formation. I proposed one way that an agent might
choose a single subjective probability from a set of possible probabilities. When the agent faces
ambiguity because her directly-observed data only allow her to partially identify a signal about the
truth of a proposition, she might seek to learn from individuals in her social network. Assuming
that communication is imperfect, so that individuals can only communicate a point estimate of their
signals and beliefs, the agent must determine how to combine the signals she observes. I showed
that when signals are unbiased, linear opinion pooling of signals generates DeGroot updating, and
is able to replicate classical inference with high-quality data yielding point-identified signals.
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editors, The Oxford Handbook of the Economics of Networks. Oxford University Press, 2016.

M. Hagedorn, F. Karahan, I. Manovskii, and K. Mitman. Unemployment benefits and unemploy-
ment in the great recession: The role of macro effects. Technical report, 2013.

G. W. Imbens and C. F. Manski. Confidence intervals for partially identified parameters. Econo-
metrica, 72(6):1845–1857, 2004.

M. O. Jackson. Social and Economic Networks. Princeton University Press, Princeton, 2008.

A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi. Non-Bayesian social learning. Games
and Economic Behavior, 76(1):210 – 225, 2012.

J. Kinsler. Assessing Rothstein’s critique of teacher value-added models. Quantitative Economics,
3(2):333–362, 2012.

J. Ludwig, J. B. Liebman, J. R. Kling, G. J. Duncan, L. F. Katz, R. C. Kessler, and L. Sanbonmatsu.
What can we learn about neighborhood effects from the Moving to Opportunity experiment?
American Journal of Sociology, 114(1):144–188, 2008.

C. F. Manski. Identification for Prediction and Decision. Harvard University Press, 2007.

C. F. Manski. Choosing treatment policies under ambiguity. Annual Review of Economics, 3:25–49,
2011.

C. F. Manski. Identification of income-leisure preferences and evaluation of income tax policy.
Quantitative Economics, 5(1):145–174, 2014.

11

http://dx.doi.org/10.1093/qje/qjr044
http://dx.doi.org/10.1093/qje/qjs021


ALIPRANTIS

C. F. Manski. Communicating uncertainty in official economic statistics: An appraisal fifty years
after Morgenstern. Journal of Economic Literature, 53(3):631–653, 2015.

C. F. Manski and J. V. Pepper. How do right-to-carry laws affect crime rates? coping with ambiguity
using bounded-variation assumptions. NBER Working Paper 21701, 2015.

P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie. Foundations of non-Bayesian social learning.
Mimeo., Columbia University, 2015.

H. R. Moon and F. Schorfheide. Bayesian and frequentist inference in partially identified models.
Econometrica, 80(2):755–782, 2012.

M. Mueller-Frank. Reaching consensus in social networks. IESE Working Paper 1116-E, 2015.

D. Neumark and W. Wascher. Minimum wages and employment: A case study of the fast-food
industry in New Jersey and Pennsylvania: Comment. The American Economic Review, 90(5):
1362–1396, 2000.
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